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» About update of the system

e In March 2014, JMA’s One-month Ensemble Prediction
System (one-month EPS ) was updated.

| Oldsystem

Numerical model JMA-GSM (Atmospheric General Circulation Model)
Dx, Dz Approx. 110km, L60 (Top: 0.1hPa)  Approx. 55km), L60 (Top: 0.1hPa)
nitial osPh Analysis of global atmosphere
Sl Land Land surface analysis
Lateral SST Persisted anomaly (1° X1° )  Persisted anomaly (0.25° X 0.25° )
boundary Statistically estimated using initial
condition ICE Climatorogy " S
anomaly with climatological variation
Ensemble size 50 members (25members X 2 initials)

BGM, LAF, and
stochastic physics scheme
(Buizza et al. 1999)

Perturbation Breeding Growing Mode (BGM),
method Lagged Average Forecast (LAF)




> Increased horizontal resolution
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® Improvement of the prediction skills such as high frequency eddy
activities, blocking are expected owing to the increased
horizontal resolution of AGCM (Jung et al. 2012) .

® We confirmed these improvements in the new system.



» A method of predicting sea ice distribution

® |Initial anomalies of sea ice distribution was considered
to estimate the distribution more accurately.

~ 14 days prediction -> Persisted initial anomaly Seaice Anl. T | Anl F
of sea ice concentration distribution
15 days prediction~ -> Persisted initial anomaly Est, T o g
of sea ice extent Est, F . white
Climatolo Persisted anomaly of sea ice
24 concentration + extent
Tv@/—" 290CT2010 o 290CT2010
1
WGNE Blue
2 Book
(Sugimoto and
Takaya 2013)

010ct2010 initial, 28 days prediction.




» Performance of the new system
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Comparison of the Anomaly Correlation Coefficient (ACC) of Geopotential height at
500 hPa (Z500) in boreal winter (DJF) . Shading shows ACC of Z500 for 30-day
averaged prediction.

® Performance of the new system was evaluated by the hindcast
experiment (5member, calculation period is 1981 to 2010) .

® Forecast skills including ACC of Z500 were improved significantly
(especially in the extratropical region) .




» Change of the product dissemination timing

® Improvement of the prediction skill was large enough to
change the dissemination timing of products without
loss of prediction skills.

— JMA’s One-month EPS products are released every Thursday (a
day earlier than before) since March 2014.
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Subseasonal Predictability in negative
phases of the Arctic Oscillation
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1.1 Arctic Oscillation (AO)
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Monthly averaged Sea Level Pressure (SLP) , Geopotential height at 500 hPa (Z500),
Zonal mean wind anomaly (Uz) in the case of March 2013. Shading shows anomaly.

® AO is a leading atmospheric variability in Northern hemisphere
(Thompson and Wallace, 1998) .

® The characteristic of AO is the annular pattern of SLP or
geopotential anomaly field or meridional shift of westerly jet.
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temperature on March 2013.

® Negative phase of the AO sometimes result in extreme cold
conditions over the hemispheric regions.



1.3 Relationship between AO and prediction skills
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The relationship between AO and prediction skill. ACC of 28-day averaged
prediction is shown.

® Are negative phases of the AO events predicted well in
subseasonal time scale?



1.4 Motivations

® This study aims to address:

1. The relationship between AO and predictability
in subseasonal time scale.

2. The dynamical processes behind predictability.

using hindcasts of the JMA’s operational One-month
Ensemble Predicion System (One-month EPS) .



2.1 Data

e Hindcast dataset of the latest JMA’s One-month EPS
e JRA-55 (Kobayashi et al., 2015) was used as a verification data

@ To focus on the AO in boreal winter, 12 initial dates from 20 Nov. to
10 Mar. with roughly 10-day intervals were used. Total number of
initial date used in this study is 360.

Details of the hindcast experiment

Model Latest JMA AGCM (Ver:1304)

Dx, Dz About 55km, 60 (top: 0.1hPa)
Ensemble size 5 members
Initial data conditions JRA-55 (Kobayashi et al., 2015)
SST Persisted anomaly

Breeding Growing Mode
Stochastic physics scheme (Buizza et al., 1999)

Period 1981 — 2010 (3 initial dates a month)

Perturbation method




2.2 Method

1. Calculating AO index

by projecting daily sea level pressure (SLP) fields to the
first leading mode of Empirical Orthogonal Function
analysis of monthly SLP from December to March of 1981
to 2010.

2. Defining the phase of AO according to the
definition below.

3. Investigating prediction skills initiated in

: Eigenvector used to
the different phases of AO. calculate AO index.

<-1.0 Negative phase
Normalized AOI —10<
and Normal phase
(360 cases)
<+1.0

Definition of the phases of AO



3.1 Prediction skill for each phase event
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Prediction skill for 28-day averaged forecast initiated in the negative, normal
and positive phases of the AO.

® Negative phase events tend to record higher prediction skills than
normal phase as well as positive phase events.

e A ratio of ACCs above 0.7 for SLP (Uz) in negative phases is roughly
25% (15%) higher than that for normal phases.



3.2 Prediction skill for each lead time
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Error bar shows the 95% confidence level calculated by 1000 subsamples
generated with the bootstrap method.

e ACGs initiated in the negative phases are higher than that in normal
phases until about 3 weeks beyond.



3.3 Dynamical process behind predictability of AO

 Eddies and zonal mean wind interaction is thought to
be the basic dynamics for AO variability. This
interaction maintains the zonal mean wind anomaly

associated AO (e.g. Lorenz and Hartmann 2003) .

2% Though stratosphere, ENSO and MJO are also said to be important for
AO variability, we focus on tropospheric dynamics here.

 We focused on this dynamical process and analyzed
the fields by using Eliassen-Parm flux F (EP flux) .

F=| -u'V, fRﬂ
S

< Here, u’,v' indicate horizontal and meridional wind deviation from each zonal
mean respectively and T'is the temperature deviation from the zonal mean. fis
coriolis parameter, R is the gas constant and S is static stability. Over bar indicate

the zonal mean.



3.4 Zonal mean wind anomaly (Negative phases)
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Composite of the zonal mean wind anomaly (28-day averaged) for the cases
initiated in the negative phases. Contour shows the zonal mean wind and shading
shows its anomaly.

e Equatorward shift of the westerly jet is the characteristic of the
negative phases of the AO.

e One-month EPS simulated the anomaly field very well.




3.5 Wave-mean flow interaction (Negative cases)
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Composite of EP flux anomaly (28-day averaged) . Vectors show EP flux anomaly and shading
shows its divergence for all wave numbers. Dotted area indicate statistical significance of EP flux
anomaly at 90% level by Student’s t-test. Contour shows composite of zonal mean wind anomaly.

e Negative phases of the AO is enforced by eddies.
e One-month EPS simulated the pattern of convergence and

divergence of EP flux anomaly.



3.6 Wave-mean flow interaction (Positive cases)
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Composite of EP flux anomaly (28-day averaged) . Vectors show EP flux anomaly and shading
shows its divergence of all wave numbers. Dotted area indicate statistical significance of EP flux
anomaly at 90% level by Student’s t-test. Contour shows composite of zonal mean wind anomaly.

e The dynamical process works for the positive cases as the negative cases.

® One-month EPS also simulated the pattern of convergence and divergence
of EP flux anomaly.



3.7 Discussions

e Why negative phase events is more predictable than the

Frequency

positive cases?
AO duration — ACC/SLP
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 The difference between negative and positive phases of the
AO is ..

— The duration of negative AO is longer than positive one.

e Besides, one-month EPS tends to simulate well if the same
phase lasts longer.




4. Summary

® Relationship between AO and predictability in
subseasonal time scale was investigated using hindcast
of the latest JMA’s one-month EPS.

— Prediction skills initiated in the negative phases of the AO

were higher than that in other phases for about 3 weeks from the
initial.

® Dynamical process serving the predictability initiated in
the negative phases was investigated.
— Westerly jet was shifted equaterward associated negative

phases of the AO and it was enforced by the eddies mean-flow
interaction.

— One-month EPS simulated the characteristics well.




Thank you for your attention!
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> Future works

® Since we focused on only toropopheric dynamics in this
study, we should investigate the contribution of another
factors such as stratosphere, ENSO, MJO, and Arctic sea
ice which are also thought to be important for AO
variability.

— Especially, since sea ice distribution was well predicted in the
One-month EPS used in this study, we may be able to obtain some
implications.



» AO and its prediction skills March 2013
ACC/SLP: 0.914
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day averaged prediction field.



» Prediction skill for each phase event
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e Negative phase events tend to record higher prediction skills than
other phase events.

e Arate of ACCs above 0.7 for SLP (Z500) in negative phases is roughly
25% (15%) higher than that for normal phases.



> Prediction skill for each lead time
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Error bar shows the 95% confidence level calculated by 1000 subsamples
generated with the bootstrap method.

® ACGs initiated in negative phases are higher than that in normal
phases for almost all forecast times.
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» Eddy forcing
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» Wave-mean flow interaction (Negative cases)
hPa
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Composite of the difference of EP-flux convergences anomaly
for all wave numbers. Blue shading means that eddies enforced
to shift the westerly jet equatorward.

e Westerly jet is enforced to shift equatorward by the eddies for
about one month from the initial day.

 Though there are slight difference between the analysis and
prediction, westerly jet is also enforced to shift equatorward
by eddies in the prediction of the one-month EPS.



» Wave-mean flow interaction (-1.50)
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Composite of EP flux anomaly (28-day averaged) . Vectors show EP flux anomaly and shading
shows its divergence of all wave numbers. Dotted area indicate statistical significance of EP flux
anomaly at 90% level by Student’s t-test. Contour shows composite of zonal mean wind anomaly.

e Negative phases of the AO is enforced by eddies.

e One-month EPS simulated the pattern of convergence and
divergence of EP flux anomaly.




» Wave-mean flow interaction (Positive cases)
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» Eddy feedback mechanism

Tilted-trough mechanism (Kimoto et al. 2001) is a concept of

positive eddy-mean flow interaction.

Steam function

>

ﬁl

Trough tilted NE-
SW direction

Zonal mean flow
anomalies associated AO

4 w;/ wi+y,  (uV),

Northward
transport of eddy

momentum flux

Zonal mean flow
anomalies are enhanced.

Jin et al. 2005, Fig.11



Duration of AO events
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> Prediction skill of the MJO
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e Unfortunately, prediction skill of MJO was not improved.



» High frequency eddy activities
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Bias of the high frequency eddy activity+/u’* +Vv'? at 300 hPa in January.

Contour shows monthly averaged prediction and shading shows its bias. High frequency eddy was extracted by using 2"
butter-worth filter (cut off: 10days) . Here, and mean eddy component of zonal and meridionallwind réé'pectively.



> A method of sea ice estimation

Step 1. Classification of ocean grids : sea ice grids _ _ _ _ h
(SIC(x,y,t) = 55 %) and open-sea grids (SIC(x,y,t) <55 % Blueline : climatological sea ice edge
Red line : initial sea ice edge
Signsof + and — : regions where SICa
Step 2. Calculation of SICa(x,y,0) and SIEa(h,0) : are positive and negative .
SICa(x,y,t0) = SIC(x,y,0) — SICc(x,y,0), SIEa(h,0) = SIE(h,0) — SIEc(h,0). + )

Lead time of less than 14 days (t< 14 ) < Combination of persistent initial SICa and initial SIEa >

Step 5. Adjustment of the potential sea ice
distribution : modifying the potential sea ice
(open-sea) grids with lower (higher)
climatological frequency to open-sea (sea
ice) grids to satisfy
SIEa(h,t) = SIEa(h,0),

Red solid line : estimated sea ice edge where SIEa(th) = SIE(th) - SlEC(th)'
Red broken line : potential sea ice edge  Orange shaded area : added sea ice area Iterations from Step 3 to Step 5/

Step 3. Prediction of SIC(x,y,t) :
SIC(x,y,t) = SICa(x,y,0) + SICc(x,y,t).

- Step4. Classification of ocean grids : \
¢ potential sea ice grids (SIC(x,y,t) 255 %) and \
* <+  potential open-sea grids (SIC(x,y,t) < 55 %) .

.

Lead time of more than 15days (t>15) < Persistent initial SIEa >

Step 6. Adjustment of the previous day’s sea ice
distribution : modifying the previous sea ice (open-
sea) grids with lower (higher) climatological frequenc
to open-sea (sea ice) grids to satisfy

SIEa(h,t) = SIEa(h,0),

\where SIEa(h,t) = SIE(h,t) — SIEc(h,t).

*SICa : SIC anomalies, SICc : SIC climatologies, SIEa : SIE anomalies, SIEc :SIE cIimatoIogiWGNE Blue Book

(x,y) : horizontal position, t : lead time [day], h : northern or southern hemisphere (Sugimoto and Ta kaya 2013)

Red broken line : sea ice edge in the previous day
Red solid line : estimated sea ice edge
Orange shaded area : added sea ice area

lterations of Step 6 )
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