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Climate and Climate System

“Weather 1s what 1s happening to the atmosphere at any given
time.

Climate 1n a narrow sense 1s the "average weather," the
statistical description over a period of time.”

Climate 1s formed 1n the interactions in climate system,
consisting of atmosphere including composition and
circulation, the ocean, hydrosphere, land surface, biosphere,
snow and ice, solar and volcanic activities 1n its spatial and
temporal variability.
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Schematic view of the components of the climate system, their processes and interactions.
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Radiative Balance



Radiative Balance between Earth and Space
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Pictures are from NASA web-sites

Difference between
Equilibrium radiative temperature and Ground Surface Temperature
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Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar
radiation is absorbed by the Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by
evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back
to Earth as well as out to space. Source: Kiehl and Trenberth (1997).
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Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar
radiation is absorbed by the Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by
evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back
to Earth as well as out to space. Source: Kiehl and Trenberth (1997).



Pictures are from NASA and JMA web-sites
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(a) Spectral distribution of long-wave cmission from the op of the atmosphere to the surface. Notice the compara-
blnckbod:cs at 6000 K and 255 K, corresponding to the mean  tively weak absorplion of the solar spectrum and the region of
emitting temperatures of the Sun and Earth, respectively, and (b)  weak absorption from 8 to 12 pm in the long-wave spectrum
percentage of atmospheric absorption for radiation passing from  (from MacCracken and Luther, 1985).



Radiative heating tends to create vertical instability

between heated ground and cooled atmosphere on average
http://ipcc-wgl.ucar.edu/wgl/FAQ/wgl fag-1.1.html
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Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About half of the incoming solar
radiation is absorbed by the Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by
evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back
to Earth as well as out to space. Source: Kiehl and Trenberth (1997).



Thermal Equilibrium of the Atmosphere with a Convective Adjustment

SYUKURO MANABE AND ROBERT F. STRICKLER

General Circidalion Rescarch Laboratory, U. S. Weather Burecawu, Waslhington, D. C.
(Manuscript received 19 December 1963, in revised form 13 April 1964)
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Thermal Equilibrium of the Atmosphere with a Convective Adjustment

SYUKURO MANABE AND ROBERT F. STRICKLER

General Circidalion Rescarch Laboratory, U. S. Weather Burcawu, Washingion, D. C.
(Manuscript received 19 December 1963, in revised form 13 April 1964)

Observed Temperature 1-D model Simulations for each latitudes
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Horizontal Radiative Imbalance
and Circulations



Picture is from IPCC 1995

Imbalanced horizontal distribution of radiative heating

(1) Latitudinal Imbalance between Pole and Tropics

Timescale=1year

Driving Forces of Climate

Net Radiation
Heat Transport

Relaxation time to radiative
equilibrium temperature
(radiative equilibrium
timescale) is estimated as
about 30 days.

Radiative imbalance between
Pole and Tropics drives
global circulations.

Radiative imbalance between
day and night has small
influence on global
circulations directly.

(2) Longitudinal Imbalance between Day and Night

Timescale=1day




Diurnal Cycle of Precipitation from TRMM

From Takayabu, Y.N., 2002: GEOPHYSICAL From Arakawa, O. and A. Kitoh at MRI/JMA
RESEARCH LETTERS, VOL. 29, NO. 12, 1584,
10.1029/2001GL014113. ANN: Max. localtime of mean rainfall diurnal variation (Tmax1)
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Diurnal Precipitation Regimes in the Global Tropics*

JOURNAL OF CLIMATE

VorLume 21

Diurnal Precipitation near Coastal Area
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F1G. 10. Schematic diagram showing the global tropical diurnal precipitation regimes. Three regimes,
namely oceanic, continental, and coastal regimes, are identified according to the amplitude, peak time,
and phase propagation characteristics of the diurnal precipitation.
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FI1G. 9. Evolution of precipitation represented by the combination of EEOF, and EEOF, for the following
regions: (a) South Asia, (b) Central America and northwest part of America, (c¢) West Africa, (d) Indonesia
Maritime Continent, (¢) South America, and (f) Madagascar. See the text for the complete description of the
procedure. The corresponding modified LSTs are shown at the right corner of panels in (a) and (d). The horizontal
resolution of the EEOFs is 0.75° x 0.75°.
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Meridional distribution of Annual mean radiation balance

Solar radiation
Global mean : 235 Wm™—2
Low latitude : over 300 Wm~™2
Poles : about 50 Wm™2

Terrestrial radiation

Global mean : 235 Wm™2
Less gradient between low
latitudes and poles compared
to that in solar radiation

Net radiation
Global mean : 0 Wm™2

Positive in low latitudes,
negative in high latitudes

g0 P Poleward heat transport by

the atmosphere and ocean
balances this meridional heat
imbalance



Observed annual mean SST, surface wind, precipitation
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Saturated Vapor Pressure

Penetration Height

From Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions, Review of Geophysics, 32,427-476.

Sea surface temperature (SST) and Cumulus

a Vertical Circulation in Columns of Temperature Ty, and Ta.
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From Wallace, J.M. and P. V. Hobbs, 2006: Atmospheric Science. Academic Press, 483pp.

Energy Transport by Atmospheric Circulation
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Fig. 10.3  Schematic of air parcels circulating in the atmos-
phere. The Colored shading represents potential temperature

or moist static energy, with pink indicating higher values and H of air parcels Is conserved even
2 through adiabatic process and/or
blue lower values. Air parcels acquire latent and sensible heat Condgnsation procpess

during the time that they reside within the boundary layer, rais- but. not conserved through the
processes of radiation, heat and

as they ascend rapidly in updrafts in clouds, and they cool by moisture Supply from ground
radiative transfer as they descend much more slowly in clear air. surface

ing their moist static energy. They conserve moist static energy



Heat transport by the atmosphere and ocean
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(TOA) radiation balance
Integrate net radiation
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Both the atmosphere
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transport
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Atmospheric global
circulations driven by
latitudinal heating
contrast

From Wallace, J.M. and P. V. Hobbs,
2006: Atmospheric Science. Academic
Press, 483pp.
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Ose,T., 1989: Hadley circulations and penetrative cumulus convection. J.Meteor.Soc.Japan, 67, 605-619.

Hadley (direct) circulation

These are model results.
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From James, |. N., 1995: Introduction to Circulating Atmospheres. Cambridge University Press, 422pp.

Ferrel (in-direct) circulation.

Three mechanisms to drive meridional mass circulations

Heating contrast Heat Transport by Waves Vertical contrast of Momentum Transport by
Waves and/or Friction
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PRESSURE (mb)

PRESSURE (mb)

Mean meridional Circulations depend on vertical coordinates.
lwasaki, T., 1989: A diagnostic formulation for wave—mean flow interactions and Lagrangian-mean circulation with a hybrid
vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67, 293-312.
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Seasonal Change



B - /

Viewed in the present, the tilted Earth revolves around the Sun on an elliptical path. The orientation

of the axis remains fixed in space, producing changes in the distribution of solar radiation over the
course of the year. These changes in the pattern of radiation reaching Earth's surface cause the succession
of the seasons. The Earth's orbital geometry, however, is not fixed over time. Indeed, long-term variations
in the Earth's orbit help explain the waxing and waning of global climate in the last several million years.




Seasonal Change of Sea Surface Temperature (SST)

Solar Insolation Dec.-Jan.-Feb. Jun-July-August
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SST and Precipitation in each season
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Seasonal Change of Temperature and Zonal Wind

Solar Insolation
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200 hPa and 850 hPa winds in JJA and DJF

(a) 200hPa zonal wind DJF
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Jan-Jul contrast of surface temperature/precipitation

January  Surface Air Tempera
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Northern Summer Monsoon
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Q. J. R. Meteorol. SOC. (1996), 122, pp. 1385-1404 Monsoons and the dynamics
of deserts. By MARK J. RODWELL’ and BRIAN I. HOSKINS
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Figure 8. Day 11 of a series of integrations without orography. (a), (c), (¢), (g) and (i) pressure and horizontal

winds on the 325 K isentropic surface, with contour interval 40 hPa; (b), (d), (), (h) and (j) vertical velocity at

477 hPa, with contour interval 0.25 hPa hr~!; (a) and (b) integration linearized about a resting basic-state and

forced with heating at 90°E, 25°N; (c) and (d) integration lincarized about a resting basic-state and forced with

heating at 25°N superimposed on the June to August zonal-mean flow; (¢) and (f) integration linearized about the

zonal-mean basic-state and forced with heating at 25°N; (g) and (h) non-linear integration forced with heating at
25°N; (i) and (j) nonlinear integration forced with heating at 90°E, 10°N.
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FIG. 1. Jun-Aug climatologies of surface precipitation (mm month ') based on (a) CMAP, (b) TRMM PR, and (c) SSM/I-gauge
merged products. (d) Land orography (km) and QuikSCAT surface wind velocity (ms™!).



Southern Summer Monsoon
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Annual temperature range
Annual Range of Monthly Temperature CRU(1901-1998)
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Month of maximum monthly mean temperature

Month of Maximum T2m NCEP(1949-2000) fonth of Maximum Downward Solar Radiation Flux at top

. —= : b : == = :

(Right) Downward solar radiation at the top of the atmosphere is maximum in June
(December) poleward of about 15° latitude in the NH (SH). In the tropics, it is January,
February, March, April and May at 10° S,4° S,2° N, 8" Nand 14° N, respectively.

(Left) Actual month of maximum monthly mean temperature is quite different due to
inertia of atmosphere, land and ocean. It is July over the continents and August over the
oceans in the NH, but its distribution is not simple.



Koppen climate classification

Observation
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Climate Modeling
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MRI Coupled Atmosphere-Ocean General Circulation
Model (MRI-CGCM2)

°AGCM
—MRI/JMASS
—T42 (2.8x2.8), L30 (top at 0.4 hPa)
—Longwave radiation - Shibata and Aoki (1989)
—Shortwave radiation - Shibata and Uchiyama (1992)
—Cumulus - Prognostic Arakawa-Schubert type
—PBL - Mellor and Yamada level 2 (1974)
—Land Surface - L3SiB or MRI/JMA_SiB
°OGCM
—Resolution : 2.5x(0.5-2.0), 23layers
—Eddy mixing : Isopycnal mixing, GM
—Seaice : Mellor and Kantha (1989)
*Coupling
—Time interval : 24hours
—Flux adjustment: used “with” or “without”
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unset rentad: the jullan pentad In which tne relative
climatological pentad mean rainfall rate exceeds 4 mm/day.

Indian region

* Northeastward progression
over AS and the
northwestward progression
over the Bay of Bengal are
well reproduced.

East Asia
* The model simulates earlier
monsoon onset over

southeast Asia.

e Onset over Indochina in
early May, the mid-May onset
over the SCS & |later
northward progression due
to Meiyu/Baiu rainband are
all simulated, although the
precise timings differ
slightly.

e In northern China, onset is
earlier and precipitation is
heavier.

1979LZOIOI Relative CP]IV.I Rain

Monsoon Onset Date
Xie-Arkin Observation

1 " 1 1 i 1

30 Yem'l Relative CPM lllam

120E 180
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180
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Mean Evolution of Monsoon: Withdrawal
Withdrawal Date of Rainy Season
Xie-Arkin Observation

Withdrawal Pentad: the o 1979-2001 Relative CPM Rain. .
transitional pentad in
which  rainfall  drops <~ - [
below 4 mm/day. son .
20N — -
Observation shows: o = )
>»southward retreat of o = =
monsoon  over India, o0E "r‘ | 180
southeast Asia and May3l Jun30  Jul30 Aug29 Scp28  Oc28  Nov2? Dec2?
Western north Pacific MRI CGCM2.2.2 Simulation
30 Ycarl Rclativ_c CPMlllain ‘
»northward retreat over ™
East Asia. SON — »
30N — -
Simulation close to ™ i
observation. 10N =
0
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Role of orography on climate



Effect of mountains on climate

EFFECTS OF MOUNTAINS / PLATEAUS

TEMPERATURE
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Figure 1.

Effects of mountamslpla:eaus on climate: (a) ‘temperature, (b) upslopcldownslopc winds and rainfall”
patterns, (¢) summer heating and monsoon circulation, and {d) winter spin dynamics in mld latitude westerlies, and
low-level blockmg See text for e‘(plananon.

Kutzbach et al.
(1993) J.Geology



Effect of mountain: Koppen climate (Kitoh, 2005)

MRI-CGCM2.2 no—mountain

g =
D ==

0TE RS O O | eow

ON{- - o J0NT- -

£Q I TIEEEEEREEY = Staunse e

.....................................

303 | sog . - ................

. . . : : . ~

[} m:m 12;am 180 m:um a::m
Af Am Aw BS BW Ca Cw ct Dt Dw ET EF

Af Am Aw BS BW (Cas Cw Cf Df Dw ET EF

. Tropical humid (Tropical wet, Tropical monsoonal, Tropical savanna)

. Dry (Subtropical desert, Subtropical steppe, Mid-latitude desert, Mid-latitude steppe)
. Mild mid-latitude (Mediterranean, Humid subtropical, Marine west coast)

. Severe mid-latitude (Humid continental or Subarctic)

Polar (Tsundra, Ice cap)

moow>



Paleo climate



http://ipcc-wgl.ucar.edu/wgl/FAQ/wgl fag-6.1.html

There are three fundamental ways the Earth’s

Orbital pa ramete rs radiation balance can change, thereby causing a

climate change:

(1) changing the incoming solar radiation (e.g.,
by changes in the Earth’s orbit or in the Sun
itself),

(2) changing the fraction of solar radiation that is
reflected (this fraction is called the albedo —
it can be changed, for example, by changes
in cloud cover, small particles called
aerosols or land cover), and

(3) altering the longwave energy radiated back to
space (e.g., by changes in greenhouse gas
concentrations).

(4) local climate also depends on how heat is
distributed by winds and ocean currents.

Schematic of the Earth’s orbital changes (Milankovitch cycles) that drive the ice age cycles. ‘T’ denotes
changes in the tilt (or obliquity) of the Earth’s axis, ‘E’ denotes changes in the eccentricity of the orbit (due to
variations in the minor axis of the ellipse), and ‘P’ denotes precession, that is, changes in the direction of the
axis tilt at a given point of the orbit. Source: Rahmstorf and Schellnhuber (2006).



Mid-Holocene: 6ka

Tassili n’Ajjer, Algeria
- Sahara was greener




Last Glacial Maximum: 21ka
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