

Finding statistical relationship between primary modes of variability and atmospheric circulation

Hitomi SAITOU Climate Prediction Division Japan Meteorological Agency

16 November 2016, 11:20-12:30, 14:00-16:00

Objective of this exercise

Finding statistical relationship between *primary modes of variability* (ENSO index, AO, EU, ...) and *atmospheric circulation*

- Climate system has primary modes of variability. These modes influence global atmospheric circulations and climate.
- It is important in understanding climate characteristics of your country to know the statistical relationship between primary modes of variability and atmospheric circulation.
- We consider the mechanism of the relationship in the following exercise.

Outline

- 1. Introduction
- 2. Relationship between ENSO index and atmospheric circulation (referring to TCCHP)
- 3. Procedure of this exercise
- 4. Introduction of TCC products and tools
- 5. Exercise (using iTacs)

Program of this exercise

Day 3 - Wedr	nesday, 16 November	
9:30-11:00	10. Exercise: Finding climate characteristics associated with primary	
11:00-11:20	modes of Coffee Break	
11:20-12:30	 Exercise: Finding statistical relationship between primary modes of variability and atmospheric circulation 	
12:30-14:00	Lunch	
14:00-16:00	11. Exercise: Finding statistical relationship between primary modes of	
	variability and atmospheric circulation	
16:00-16:20	Coffee Break	
16:20-18:00	 Exercise: Considering mechanisms of the relationship between primary modes of climate variability and atmospheric circulation 	

11:20-12:30

- 1. Introduction
- 2. Relationship between ENSO index and atmospheric circulation (referring to TCCHP)
- 3. Procedure of this Exercise

1400-1600

- 4. Introduction of TCC products and tools
- 5. Exercise (using iTacs)

Outline

- 1. Introduction
- 2. Relationship between ENSO index and atmospheric circulation (referring to TCCHP)
- 3. Procedure of this exercise
- 4. Introduction of TCC products and tools
- 5. Exercise (using iTacs)

Primary modes of variability

- atmosphere-ocean variability in tropical region
 - El Nino and Southern Oscillation (ENSO)
 - ENSO influence atmospheric circulations and climate not only in tropical region, also in the global area.
- variability mode in the mid- and high latitudes
 Teleconnections pattern (AO, EU, PNA ...)

Relationship between ENSO index and atmospheric circulation

- El Niño and Southern Oscillation (ENSO) is the most dominant mode of variability in the Earth's climate system.
- In this section, I introduce the TCC product "Composite map for El Nino/La Nina event" providing the statistical relationship between *El Nino/La Nina event* and *global atmospheric circulation*.
- This product is an example of statistical relationship between *primary modes of variability* and *atmospheric circulation*, and will be useful reference for this exercise.

[TCCHP] Composite map for El Nino/La Nina event

This product provides the statistical analysis on the relationship between *warmer/cooler SST event in the areas of NINO.3, NINO.WEST and IOBW* and *atmospheric circulation*.

Monthly mean composite of 200-hPa velocity potential anomalies in the positive phase of NINO.3 (Jan.)

http://ds.data.jma.go.jp/tcc/tcc/products/clisys/enso_statistics/index.html

[TCCHP] Composite map for El Nino/La Nina event

This product also outlines *the characteristics of seasonal mean composite anomalies* in the positive and negative phases of the ENSO indices.

Statistical characteristics

This section outlines the characteristics of seasonal mean composite anomalies in the positive and negative phases of the ENSO indices.

1. Atmospheric circulation in the El Niño (positive) phase of NINO.3

Winter (December - February)

OLR and precipitation anomalies indicate that convective activity is enhanced over the central to e Pacific. Enhanced convective activity is seen over the Gulf of Mexico, and suppressed convective a Convergence Zone (ITCZ) exhibits equatorward shift.

In the lower troposphere, cyclonic (anti-cyclonic) circulation anomalies straddling the equator are and the Atlantic). These patterns are consistent with those of the gMatsuno - Gillh response (Mats lower troposphere. Zonal wind anomalies in the lower and upper troposphere indicate weaker-tha

The subtropical jet stream demonstrates a southward shift over the area from the Middle East to E hPa height field, wave trains such as the Pacific - North American (PNA) pattern (Wallace and Gut anomalies, negative sea-level pressure anomalies are seen to the south of Alaska, indicating enha

Spring (March - May)

OLR and precipitation anomalies indicate that convective activity is enhanced over the central to e Pacific. Suppressed convective activity is seen over the equatorial Atlantic and the north Indian Ocean.

In the lower troposphere, cyclonic (anti-cyclonic) circulation anomalies straddling the equator are seen, and westerly (easterly) wind anomalies a Atlantic). In the upper troposphere, the signs of anomaly patterns are opposite to those observed in the lower troposphere, indicating weaker-tha

The subtropical jet stream exhibits a southward shift over the area from the Middle East to southern China. In the 500-hPa height field, positive a

Summer (June - August)

OLR and precipitation anomalies indicate that convective activity is enhanced over the equatorial Pacific and suppressed over the Maritime Contine activity is seen over India, indicating an inactive Indian monsoon. The coefficient of correlation between the NINO.3 index and the intensity of the normal Asian monsoon circulation seen in El Niño events (not shown).

In the lower troposphere, cyclonic circulation anomalies straddling the equator are seen, and westerly wind anomalies are dominant over the Paci troposphere. Cyclonic circulation anomalies are seen over vast areas of southern Eurasia, indicating a weaker-than-normal Tibetan High in its nort

In the 500-hPa height field, negative anomalies are seen over Japan and the North Pacific in line with southward meandering and enhancement of function fields, negative anomalies are seen over vast areas of the North Pacific, indicating a weaker-than-normal subtropical high.

http://ds.data.jma.go.jp/tcc/tcc/products/clisys/enso_statistics/explanation.html#statistics

Contents

- > Data and methods
- Statistical characteristics
 El Niño phase of NINO.3
 La Niña phase of NINO.3
 El Niño phase of NINO.WEST
 La Niña phase of NINO.WEST
 El Niño phase of IOBW
 La Niña phase of IOBW
- References

[TCCHP] Composite map for El Nino/La Nina event

- Data
 - COBE-SST analysis dataset for SST
 - JRA-55 reanalysis dataset for Atmospheric Circulation Data
 - satellite observation data for Outgoing Longwave Radiation
- Base period
 - 1958 2012 for SST and JRA-55 dataset
 - 1979 2012 for OLR
- Definition of positive/negative phase
 - The five-month running mean SST deviation* satisfies the threshold requirements (see the Table) for at least six consecutive months

[Review] Composite analysis

Composite analysis is a statistical technique to extract the common characteristics in past events of a targeted phenomenon (e.g., El Niño and La Niña events) from the other phenomena.

Sea Surface Temperature (DJF)

La Niña phase

 In the El Nino phase, positive SST anomalies were seen over the central to eastern Pacific and Indian Ocean, and negative SST anomalies were seen over the western Pacific.

El Niño phase

<u>Three-month mean composite of sea surface temperature anomalies in the positive</u> (left) and negative (right) phase of NINO.3 (Dec.-Feb.) Contours show composite anomalies at intervals of 0.2 C. Shading indicates the confidence level. The base period for composite analysis is 1958 - 2012.

Convective Activity (DJF)

• In the El Nino phase, convective activity is enhanced over the central to eastern equatorial Pacific, and suppressed over and around the Maritime Continent in response to the east-west contrast of SST anomalies over the equatorial Pacific.

<u>Three-month mean composite of outgoing longwave radiation anomalies in the</u> <u>positive (left) and negative (right) phase of NINO.3 (Dec.-Feb.)</u> Contours show composite anomalies at intervals of 5 W/m². Shading indicates the confidence level. The base period for composite analysis is 1979- 2012.

Upper-level Divergence/Convergence (DJF)

• In the El Nino phase, large-scale divergence anomalies were seen central to eastern Pacific, and large-scale convergence anomalies were seen over the Maritime Continent.

La Niña phase

El Niño phase

<u>Three-month mean composite of 200-hPa velocity potential anomalies in the positive (left) and negative (right) phase of NINO.3 (Dec.-Feb.)</u> Contours show composite anomalies at intervals of 0.2x10⁶ m²/s. Shading indicates the confidence level. The base period for composite analysis is 1958 - 2012.

Low-level Circulation (DJF)

• In the El Nino phase, cyclonic (anti-cyclonic) circulation anomalies straddling the equator are seen over central Pacific (around the Maritime Continent), and westerly (easterly) wind anomalies are dominant over the equatorial area.

<u>Three-month mean composite of 850-hPa stream function anomalies in the positive</u> (left) and negative (right) phase of NINO.3 (Dec.-Feb.) Contours show composite anomalies at intervals of 0.5x10⁶ m²/s. Shading indicates the confidence level. The base period for composite analysis is 1958 - 2012.

Upper-level Circulation (DJF)

• The signs of anomaly patterns are opposite to those observed in the lower troposphere. In the El Nino phase, zonal wind anomalies in the lower and upper troposphere indicate weaker-than-normal Walker Circulation.

El Niño phase

La Niña phase

<u>Three-month mean composite of 200-hPa stream function anomalies in the positive</u> (left) and negative (right) phase of NINO.3 (Dec.-Feb.) Contours show composite anomalies at intervals of 1x10⁶ m²/s. Shading indicates the confidence level. The base period for composite analysis is 1958 - 2012.

Jet Stream (DJF)

• In the El Nino phase, the subtropical jet stream demonstrates a southward shift over the area from the Middle East to East Asia in line with cyclonic circulation anomalies in the upper troposphere.

El Niño phase

La Niña phase

<u>Three-month mean composite of 200-hPa zonal wind anomalies in the positive (left)</u> and negative (right) phase of NINO.3 (Dec.-Feb.)

Contours show composite anomalies at intervals of 1 m/s.

Shading indicates the confidence level.

The base period for composite analysis is 1958 - 2012.

The green solid line represents the normal position of the subtropical jet stream.

500hPa Height Field (DJF)

• In the El Nino phase, positive anomalies extend in the global tropics and to the southeast of Japan, and negative anomalies in the northern North Pacific.

La Niña phase

El Niño phase

<u>Three-month mean composite of 500-hPa height anomalies in the positive (left) and</u> <u>negative (right) phase of NINO.3 (Dec.-Feb.)</u> Contours show composite anomalies at intervals of 5 m. Shading indicates the confidence level. The base period for composite analysis is 1958 - 2012.

Sea-level Pressure (DJF)

• In the El Nino phase, positive anomalies extend from the eastern Indian Ocean to the western Pacific and negative anomalies in the eastern Pacific.

La Niña phase

El Niño phase

<u>Three-month mean composite of sea level pressure anomalies in the positive (left)</u> <u>and negative (right) phase of NINO.3 (Dec.-Feb.)</u> Contours show composite anomalies at intervals of 0.5 hPa. Shading indicates the confidence level. The base period for composite analysis is 1958 - 2012.

Outline

- 1. Introduction
- 2. Relationship between ENSO index and atmospheric circulation (referring to TCCHP)
- 3. Procedure of this exercise
- 4. Introduction of TCC products and tools
- 5. Exercise (using iTacs)

Procedure of this exercise

Finding statistical relationship between *primary modes of variability* (ENSO index, AO, EU, ...) and *atmospheric circulation*

- 1. Select a mode for your statistical analysis.
- 2. Decide the target months of your statistical analysis.
- Try the statistical analysis between *the* selected mode and atmospheric circulation using iTacs.
- 4. Make a PPT materials about your statistical analysis.

Procedure of this exercise (1)

- 1. Select a mode for your statistical analysis.
 - The mode which is closely related to your country's climate is recommended.
 - Please refer to the previous exercise materials ("Finding Climate Characteristics Associated with Primary Modes of Global Climate Variability").

Procedure of this exercise (2)

- 2. Decide the target months of your statistical analysis.
 - Take into climatic features of your country (summer, winter, monsoon season, post-monsoon, ...).
 - For example, January (July) is representative month of winter (summer) in Japan.

Procedure of this exercise (3)

- Try the statistical analysis between *the* selected mode and atmospheric circulation using iTacs .
 - We do *the regression analysis* in this exercise.
 - iTacs is very convenient and useful tool for regression analysis. Regression analysis and significance testing based on t-testing can be performed at the same time.

Procedure of this exercise (4)

- 4. Make PPT materials about your statistical analysis.
 - execute step 3 for various elements
 - SST, OLR, velocity potential, stream function, geopotential height, sea level pressure, temperature, ...
 - make PPT materials
 - You will need figures that you make here for the following exercise.
 - If you have time to spare
 - You can change month, average period (e.g., DJF for winter) and the climate variability mode's index (e.g., IOBW SST index (tropical Indian Ocean), Arctic Oscillation(AO), and others).
 - You can try another statistical method (e.g., composite analysis) .

[Review] Regression analysis

- Single regression analysis is used to investigate <u>quantitatively</u> to what extent a response variable is explained by a explanatory variable.
- Regression coefficient shows the anomaly of a response variable in one standard deviation of a explanatory variable.

Regression analysis using iTacs

- We can do regression analysis for any indices using "USER INPUT" function on iTacs.
- For this exercise, the text files of major indices (NINO3, IOBW, AO, EU, ...) are prepared.
- Please copy the text files from shared folder to your PC.

Primary mode's indices for this exercise

- Indices
 - ENSO monitoring Indices

- Sea surface temperatures for NINO.3, NINO.WEST and IOBW
- The five-month running mean SST deviation from the sliding 30-year base period average.
- You can download these Indices from TCC website. <u>http://ds.data.jma.go.jp/tcc/tcc/products/elnino/index/</u>
- Teleconnection indices
 - AO, EA, EU, NAO, PNA, TNH, WA, WP
 - These indices are used in the operational analysis at JMA.
 - Now we are preparing to provide these indices on TCC website.

Atmospheric circulation data for this exercise

- Dataset for this exercise are available without any preparation on the iTacs.
- Dataset
 - COBE-SST analysis dataset for sea surface temperature
 - JRA-55 reanalysis dataset for Atmospheric Circulation
 Data
 - satellite observation data for Outgoing Longwave Radiation (OLR)
- Period for this exercise
 - 1958 2012 for COBE-SST and JRA-55 dataset
 - 1979 2012 for OLR dataset

OLR data in 1978 is partially missing.

[sample] Regression analysis using iTacs

 Regression coefficient of *outgoing longwave* radiation (OLR) onto NINO.3 SST index for

January from 1979 to 2012.

Contour: regression coefficients

Gray shade: the area where regression coefficient is significant at 95% confidence level by ttesting

Regression analysis (1)

"Data1" is a response variable (OLR in this case).

 \checkmark

Analysis method: -Analysis method-

Dataset:	SAT			
≻Element:	OLR			
≻Data type:	HIST			
≻Area:	ALL (Lat:-90 – 90, Lon:0 - 360)			
≻Level:	1			
≻Time unit:	MONTHLY checking "Yea	nr-to-year"		
Showing period	1:1979 – 2012; 1 – 1	"Year-to-year" must		
Select parameters Graphic Options		regression map		
Data1				
DatasetElementSATVOLR [W/m^2]	Data type Area Le HIST ALL 1 Lat: -90 Ave	Vel Time unit Showing period ✓ MONTHLY RANGE ✓ □ Ave Year-to-year 1979 ✓ □ Time filter 1		
□ Vector □ SD Derivative: □ Ion □ Iat	Lon: 0 - 360 Ave L			

Regression analysis (2)

Select "REGRESSION_COEFFICIENT" in the Analysis method box.

Regression analysis (3)

Setting an explanatory variable

- You can see "Data2" open.
- "Data2" is an explanatory variable (NINO.3 SST index in this case).

Select parameters Graphic Options Dataal Dataset Element Data type Area Level Time unit Showing period SAT OLR [W/m^2] HIST ALL I MONTHLY RANCE > Lat: -90 -90 Ave Ave @ Year-to-year 12012 × Vector SD Lon: 0 -360 Ave Time filter 1 × 1 Analysis method: RECRESSION_COEFFICIENT V Data type Area Level Time unit Lag Signific SAT OLR [W/m^2] HIST All I MONTHLY 0 90%(two side) SAT OLR [W/m^2] HIST All I MONTHLY 0 90%(two side) SD Lat: -90 -90 Ave 1 MONTHLY 0 90%(two side) SD Lat: -90 -90 Ave 1 Time filter To-year									
Dataset Element Data type Area Level Time unit Showing period SAT OLR [W/m^2] HIST ALL I MONTHLY RANCE V Lat: -90 -90 Ave Ave @ Year-to-year 1979 - 2012 V Lat: -90 -90 Ave Time filter 1 - 1 Derivative: Ion Iat -360 Ave Time filter 1 - 1 Analysis method: REGRESSION_COEFFICIENT - 1 - 1 - 1 Dataset Element Data type Area Level Time unit Lag Signification SAT OLR [W/m^2] HIST ALL I MONTHLY 0 90%(two side)	Select parameters	Graphic Options							
Dataset Element Data type Area Level Time unit Showing period SAT OLR [W/m^2] HIST ALL 1 MONTHLY RANCE Lat: -90 -90 Ave Ave Ave Ørea-to-year 1979 -2012 Uvector SD Lon: 0 -360 Ave Time filter 1 -1 -1 Analysis method: REGRESSION_COEFFICIENT V -1 <th>Data 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Data 1								
SAT VOLR [W/m^2] HIST ALL I MONTHLY RANCE Lat: 90 -90 Ave Ave Ø Year-to-year 1979 - 2012 Vector SD Lon: 0 - 360 Ave Time filter 1 - Analysis method: REGRESSION_COEFFICIENT V Image: Signification of the second o	Dataset	Element	Data type	Area		Level	Time unit	Showing p	eriod
Lat: 90 - 90 Ave Vector SD Lon: 0 - 360 Ave Derivative: lon lat Analysis method: REGRESSION_COEFFICIENT Dataset Element Data type Area Level Time unit Lag Signification SAT OLR [W/m^2] HIST ALL SAT OLR [W/m^2] HIST ALL SD Lat: 90 - 90 Ave Lon: 0 - 360 Ave Time unit Lag Signification Ave Year-to-year Time unit Lag Signification Ave Year-to-year Time unit Lag Signification Time unit Lag Signification SD Lat: 90 - 90 Ave Lon: 0 - 360 Ave Time unit Time unit Lag Signification Time unit Lag Signification Tim	SAT 🗸	OLR [W/m^2]	V HIST V	ALL	~	1 🗸	MONTHLY V	RANGE	$\overline{}$
Vector □ SD Derivative: □ Ion □ Iat Analysis method: REGRESSION_COEFFICIENT ▼ Data2 Dataset Element Data type Area Level Time unit Lag SD Lat: -90 -90 Ave Correct Correct				Lat: -90 - 90	Ave 🗆		Ave Vear-to-	year 1979 🗸 - 2	012 🗸
Analysis method: RECRESSION_COEFFICIENT V Data2 Dataset Element Data type Area Level Time unit Lag Significe SAT OLR [W/m^2] HIST ALL I MONTHLY 0 90%(two side) SD Lat: -90 Ave Ave YEAR YEAR YEAR Image: Comparison of the second seco		□Vector □SD Derivative: □Ion □Ia	at	Lon: 0 - 360	Ave 🗆		Time filter	1 🗸 - 1	~
Dataset Element Data type Area Level Time unit Lag Signific SAT OLR [W/m^2] HIST ALL I MONTHLY 0 90%(two side) SD Lat: -90 Ave Ave Year- YEAR Year- Lon: 0 - 360 Ave Time filter Time filter	Analysis method: REG	CRESSION_COEFFICIENT	· •						
Dataset Element Data type Area Level Time unit Lag Signific SAT OLR [W/m^2] HIST ALL I MONTHLY 0 90%(two side SD Lat: -90 -90 Ave Ave Ave YEAR YEAR Lon: 0 - 360 Ave Time filter Time filter Image: Note that the second	Data2	_							
SAT OLR [W/m^2] HIST ALL I MONTHLY 0 90%(two side) SD Lat: -90 Ave Ave Ave Year- YEAR 90%(two side) Lon: 0 -360 Ave Time filter Time filter	Dataset	Element	Data type	Area		Level	Time unit	Lag	Signific
□ SD Lat: -90 - 90 Ave □ Ave Year- YEAR ✓ Lon: 0 - 360 Ave □ Time filter	SAT 🗸	OLR [W/m^2]	V HIST V	ALL	~	1 🗸	MONTHLY V	0 ~	90%(two side)
		□sd		Lat: -90 - 90 Lon: 0 - 360	Ave Ave		Ave Vear- to-year Time filter	YEAR 🗸	

Regression analysis (4)

• Select "USER_INPUT" in the Dataset box and "UPLOAD_TXT" in the element box of Data2.

Regression analysis (5)

• Click the "reference" button, select the NINO.3 index file and click the "Open" button in the Input txt box.

Data2

Regression analysis (6)

• Click the "Upload" button in the Input txt box.

Select parameters	Graphic Options					
Data1						
Dataset	Element	Data type	Area	Level	Time unit	Showing period
SAT 🗸	OLR [W/m^2] 🗸	HIST 🗸	ALL	✓ 1 ✓	MONTHLY V	RANGE 🗸
	□Vector □SD Derivative: □Ion □Iat		Lat: -90 - 90 Lon: 0 - 360	Ave	☐ Ave ☑ Year-to-year ☐ Time filter	1979 ↓ - 2012 ↓ 1 ↓ - 1 ↓
Analysis method: REG	CRESSION_COEFFICIENT	~				
Data2						

Dataset Eleme	ent Input txt		Time unit	Lag	Significance
USER_INPUT V UPLOAD_TXT	✓ C:\Users\JMA1901\De 参照	Upload	MONTHLY 🗸	0 VEAR	 95%(two side)
	Upload and save as		Ave Year-to-year		

Regression analysis (7)

- Set each of the remaining items in data2 as shown below.
 - Time unit: MONTHLY checking "Year-to-year"

95% (two side)

- 0; YEAR *simultaneous regression
- ➢ Significance:

≻Lag:

Data2

Regression analysis (8)

• Click "Graphic Options" and select "CONTOUR" in the Drawing box of Graphic Option.

Select parameters	Graphic Options	
Data1		Click!
Dataset	Element	Data
SAT 🗸	✓ OLR [W/m^2] ✓	HIST
	□Vector □SD Derivative: □Ion □Iat	

Graphic Options

Colorizing: COLOR Show Contour Labels Drawing: CONTOUR Show Color Bar Image Freshape Font: CONTOUR Font: CONTOUR Color Tab SCATTER Color Tab SCATTER Show Contour Labels M Show Color Bar M Show Color Ba	 Polar Stereographic: North pole Logarithmic Coordinates Reverse the Axes Flip the X-axis Flip the Y-axis No Caption
--	--

Detailed Options for Image 1

Set "Drawing" "CONTOUR" to shade the grids exceeding confidence level in gray.

Regression analysis (9)

 Select "Blue - Red" in the Color Table box to display negative and positive values with blue and red contours, respectively.

Analysis Dataset

Select parameters Graphic Options	Check the "Set Contour Parameters" box and set the contour interval (interval:5, min:-20, max:20).			
Colorizing: COLOR V Show Contour La Drawing: CONTOUR V Show Color Bar Image Format: png V Set Contour Paran Font: default V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Table: Blue - Red V Set Vector size: Color Set Vector Set Vector size: Color Set Vector Set Vector Size: Color Set Vector Size: Color Set Vector Set Vector Set Vector Size: Color Set Vector Size: Color Set Vector Set V	els Polar Stereographic: North pole No Scale Labels Logarithmic Coordinates Draw Credit Inside Reverse the Axes Apply All Pics picture size %			

"Blue – Red" >> Blue: Lower, Red: Higher

Regression analysis (10)

• You can draw the following chart.

[sample] Various regression analysis

Outline

- 1. Introduction
- 2. Relationship between ENSO index and atmospheric circulation (referring to TCCHP)
- 3. Procedure of this exercise
- 4. Introduction of TCC products and tools
- 5. Exercise (using iTacs)

Introduction of TCC products and tools

- Interactive Tool for Analysis of the Climate System (iTacs) <u>http://extreme.kishou.go.jp/tool/itacs-tcc2015/</u>
- ENSO Impacts on Global Climate
 "Impacts of Tropical SST Variability on the Global Climate"
 <u>http://ds.data.jma.go.jp/tcc/tcc/products/climate/ENSO/in</u>

 <u>dex.htm</u>
- ENSO Impacts on Atmospheric Circulation
 "Composite analysis of atmospheric circulation"
 http://ds.data.jma.go.jp/tcc/tcc/products/clisys/enso_statis
 tics/index.html

Outline

- 1. Introduction
- 2. Relationship between ENSO index and atmospheric circulation (referring to TCCHP)
- 3. Procedure of this exercise
- 4. Introduction of TCC products and tools
- 5. Exercise (using iTacs)

Let's try!

Try the statistical analysis between the selected mode and atmospheric circulation using iTacs and make a PPT materials. Please feel free to ask TCC staff your question.