METEOROLOGICAL SATELLITE CENTER

Y

THE GMS USER'S GUIDE

Third Edition

PUBLISHED BY METEOROLOGICAL SATELLITE CENTER

3-235 Nakakiyoto, Kiyose, Tokyo 204, Japan Facsimile: +81-424-92-2433

Revision No.	Date of Issue	Date of Revision	Revised by
1	March 1997	March 1997	T. Suzuki System Engineering Division, MSC
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Change of The GMS User's Guide (English version) (published in March 1997)

We found some errors in some pages of The GMS User's Guide. We would like you to change with the correct pages. Thank you.

> Meteorological Satellite Center 3-235 Nakakiyoto, Kiyose, Tokyo 204-0012, JAPAN

Pages should be removed	Numbers	Pages should be inserted	Numbers
		58-1	1
		59-1	1
8 2	1	8 2	1
84~89	6	84~89	6
91	1	91	1
93~97	5	93~97	5

CONTENTS

FOREWORD

 \sim

·. ----

` _

SECTION 1 OUTLINE OF GMS SYSTEM

1.1 Outline of GMS System	1
1.2 Ground Facilities	3
1.3 Data Processing Center	8
SECTION 2 VISSR	
2.1 Visible and Infrared Spin Scan Radiometer	9
2.2 Calibration	12
	14
SECTION 3 VISSR OBSERVATION AND DIRECT DISSEMINATION OF CLOUD IM	AGE
3.1 S-VISSR	17
3.2 WEFAX	23
3.3 Schedule of VISSR Observation and WEFAX Dissemination	30
SECTION 4 METEOROLOGICAL PRODUCTS	
4.1 The outline of the product processings	33
4.1 The outline of the product processings	36
	30 42
	42 43
	43 46
4,0 Trespreible Water Amount	
1.0 Oca Garnace Temperature	48
1.1 Oloud Ambullet Distribution	50
4.8 Outgoing Longwave Radiation and brightness temperature	53
4.9 Solar Irradiation	54
4.10 Snow-ice Index	56
4.11 Cloud Information Chart	58
4.12 Typhoon Information	60
4.13 ISCCP Data	65
4.14 Global Precipitation Climatology Project Data Set	66
SECTION 5 GMS DATA COLLECTION SYSTEM	
5.1 General Description	69
5.2 DCPs Data Processing	70
SECTION 6 DATA ARCHIVES	
6.1 Type and Period of Data Archives	71
6.2 Monthly Report of the Meteorological Satellite Center	71

- 1

APPENDIX

A. MDUS Specification	·· 75
B. SDUS Specification	·· 106
C. Schedule of Observation and Dissemination	. 112
D. Manual Amendment (MANAM)	•• 114
E. S-VISSR Mapping	·· 116
F. Geometrical correction of cloud locations	·· 136
G. Format of VISSR Archive Data	·· 138
H. Format of VISSR Histogram Data	·· 158
I. Format of VISSR Cloud Grid Data	·· 162
J. Format on CD-ROM Concerning the Monthly Report of MSC	·· 171
K. Specification of GMS Image Microfilm	·· 179
L. Processing of NOAA Satellite Data	180
ACRONYMS	·· 187

FOREWORD

This document provides users with background information on the functions of GMS system to help them understand, obtain and use the GMS data. The basic GMS system and its function are outlined, followed by discussions of GMS data productions, formats and archiving.

This Third Edition is an updated version of the Second User's Guide published in 1989. This document includes the recent development of GMS data processing at the Meteorological Satellite Center. In addition, TOVS data processing at the MSC based on TIROS-N/NOAA satellite data is also described in an Appendix.

As regards the GMS and TOVS data, "Monthly Report of Meteorological Satellite Center" has been published on CD-ROM since July 1996.

ARmisan

A. Kurosaki Director Meteorological Satellite Center

SECTION 1 OUTLINE OF GMS SYSTEM

1.1 OUTLINE OF GMS SYSTEM

The Geostationary Meteorological Satellite (GMS) series are operated as part of the Global System of Meteorological Satellites (see Fig.1.1.1) by the MSC/JMA. The first GMS was launched in July 1977 and started to provide meteorological products operationally on April 6, 1978. The successors GMS-2,3,4 and 5 were launched in August, 1981, August, 1984, September, 1989 and March, 1995 respectively. The current operational satellite is the GMS-5.

The GMS-5 configuration is shown in Fig.1.1.2. The spacecraft height is 354 cm and its diameter 215 cm. Its weight is approximately 344 kg at the beginning of the life. The designed mission life is 5 years. The spacecraft consists of a despun earth oriented antenna assembly and a spinning section rotating at 100 rpm. The spinning section consists of VISSR and supporting subsystems. It is covered by solar panels.

There are three major missions in the GMS project :

(1) Observation with VISSR

- -Imaging earth surface and cloud distribution, and observation of meteorological phenomena such as typhoons, cyclones, fronts, and detection of volcanic ash clouds.
- -Meteorological parameter extraction such as temperature on both the earth's surface and cloud top and cloud height, cloud amount, cloud motion winds, upper level water vapor amount.

(2) Collection of Meteorological Observation Data

-Collection of meteorological data from Data Collection Platforms (DCPs) installed in ships, buoys, aircraft and land stations.

(3) Direct Broadcast of Cloud Images

-Real-time dissemination of digital image data, the Stretched VISSR, to users of the Medium Scale Data Utilization Station (MDUS).

-Dissemination of processed analog image data, the WEFAX, to users of the Small Scale Data Utilization Station (SDUS)

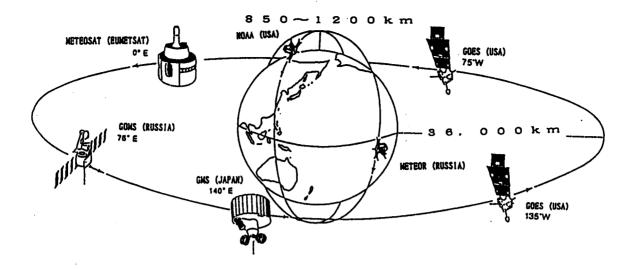


Fig.1.1.1 The Global System of Meteorological Satellites

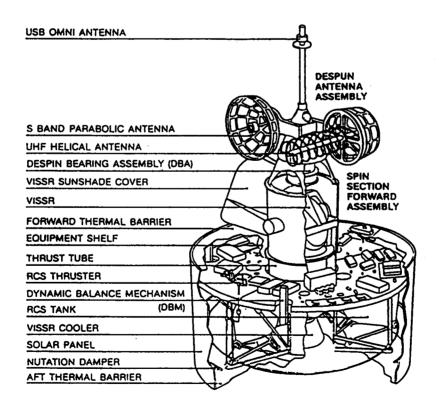


Fig.1.1.2 The GMS-5 Configuration

1.2 Ground Facilities

The GMSS consists of the GMS spacecraft itself and ground facilities; Command and Data Acquisition Station (CDAS), the Data Processing Center (DPC), the Turn Around Ranging Station (TARS), the Data Utilization Stations (DUSs), etc. These facilities and data communication between them are described in this section and illustrated in Fig.1.2.1.

1.2.1 Telecommunication System

The GMS ground telecommunication facilities consist of the CDAS telecommunication system and the DPC telecommunication system. The configuration of the telecommunication system and its data linkage is shown in Fig.1.2.2. The characteristics of the GMS communication system is shown in Table.1.2.1.

1.2.1.1 CDAS Telecommunication System

The primary role of the CDAS is to make a communication between the GMS spacecraft/ other ground facilities and CDAS itself. The CDAS system is controlled mainly automatically by a duplex computer system with hot-standby architecture.

A couple of large Cassegrain antennas with a diameter of 18 meters are installed in CDAS compound to communicate with the GMS spacecraft. The commands to operate the GMS the Stretched VISSR data, and WEFAX image data are transmitted to the GMS through the antenna, and the telemetry data, observed VISSR image data, weather reports of DCP, and observed solar particle data are received by the antenna. The CDAS system is processing these data and interchanging with DPC in Kiyose through the PCM microwave link.

The major functions of CDAS are:

-VISSR signal production and transmission to MDUS

-Processing of telemetry, and transmission of command signal to GMS

-Operation of trilateration ranging by use of TARS stations

-Relay of DCP signal to DPC

-Modulation/transmission of WEFAX signal to SDUS

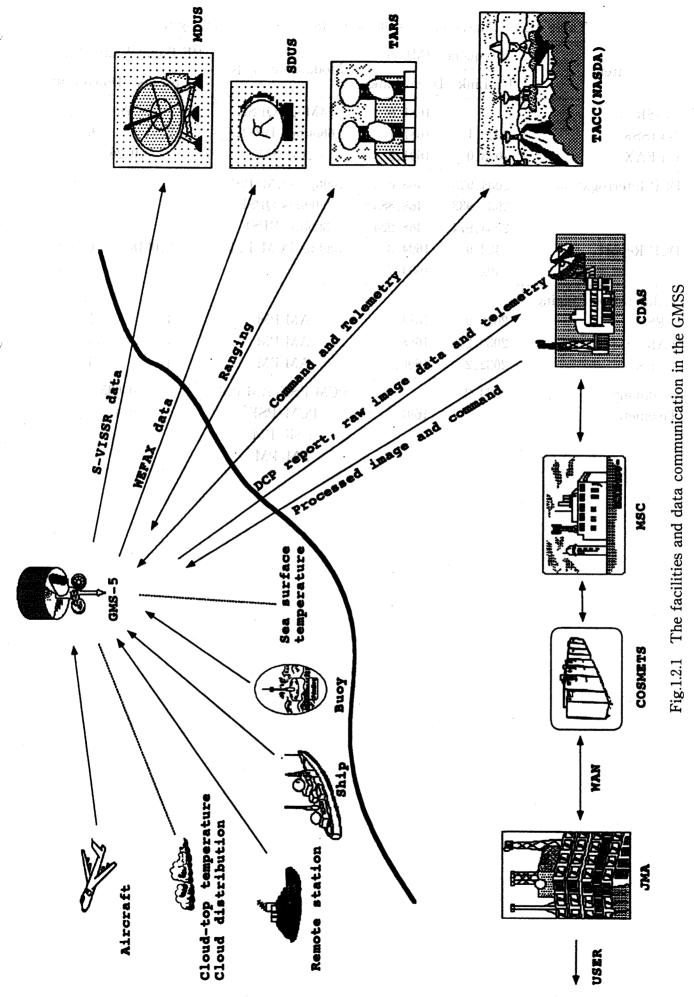
1.2.1.2 DPC Telecommunication System

The system consists of VISSR interface, monitoring/control unit, and automatic imagerecorder. The monitoring/control of the equipments are performed automatically.

The major tasks of the system are:

-Dissemination of the WEFAX signal to mass media, and SDUS user via CDAS/GMS;

-Relay of the VISSR signal to the computer system in DPC, and monitoring the signal, the status of each equipment, and the connection routes.

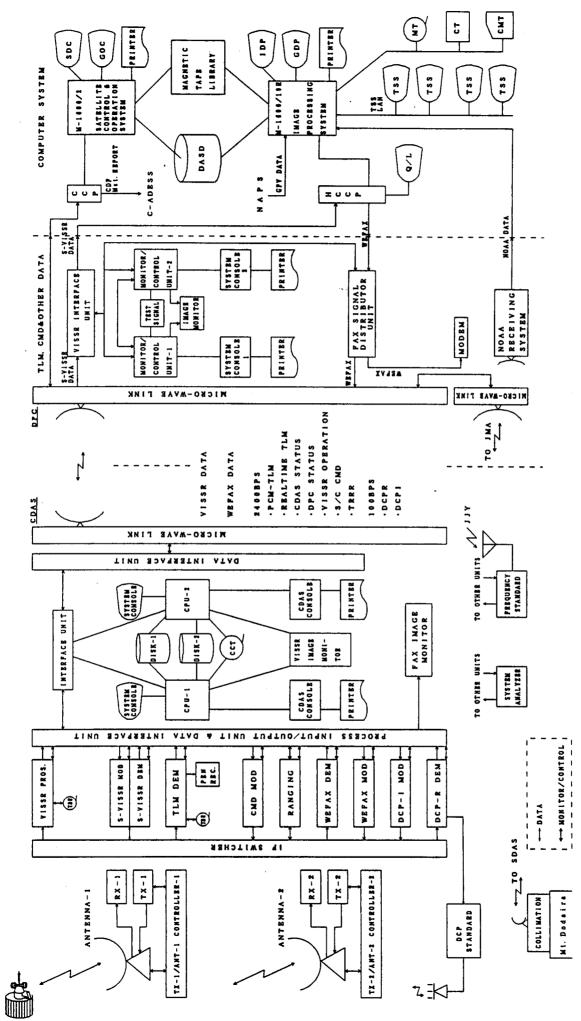

1.2.2 Turn Around Ranging Station

Turn Around Ranging Station (TARS) is a station for ranging the distance between TARS and the spacecraft. TARSs are operated in Ishigaki Is., Japan and in Australia. The ranging data obtained from three stations, two TARSs and CDAS, are used for the determination and prediction of the spacecraft orbit.

1.2.3 Data Utilization Station

There are two types of Data Utilization Station (DUS): the Medium-scale Data Utilization Station (MDUS) and the Small-scale Data Utilization Station(SDUS). The MDUS receives the S-VISSR image data from the GMS and the SDUS receives the WEFAX image data.

Functions and specifications of DUS are described in Appendices A and B.


5

Ĺ

.	Frequen	cy (MHz)	Madulation Trans	RF Band V	Vidth (MHz)
Item	Up-Link	Down-Link	Modulation Type	Up-Link	Down-Link
VISSR		1681.6	14Mbps QPSK		20
S-VISSR	2029.1	1687.1	660kbps BPSK	2	6
WEFAX	2033.0	1691.0	AM-FM	0	. 26
DCP Interrogation	2034.925	468.875	100bps PCM/PSK	0.005	0.005
	2034.933	468.883	4800bps QPSK		
	2034.974	468.924	300bps BPSK		
DCP Report	402.0	1694.3	100bps PCM/PSK	0.0018	0.002
	-402.4	-1694.7			
Trilateration ranging					
MRS	2026.0	1684.0	AM-PM	1	1
TARS-1	2030.2	1688.2	AM-PM	1	1
TARS-2	2032.2	1690.2	AM-PM	1	1
Command	2034.2		PCM-FSK/AM-PM	0	.035
Telemetry		1694.0	PCM/PSK	0	. 4
			FSK/PM		
		I	FM/PM		

Table 1.2.1 Characteristics of the GMS Communication System

- -

1.3 Data Processing Center

A computer system is installed at the DPC to process various observational data derived from the GMS and NOAA spacecrafts. This system consists of two types of mainframe computers, Fujitsu M-1600/2 and M-1600/10R.

The configuration of the computer system is shown in Fig.1.4.2

(1) Satellite Control & Operation System

M-1600/2's are used for control/ operation of the GMS.

(2) Image Processing System

M-1600/10R's are used to process imagery data derive from the GMS. The image processing system performs collection of imagery data, production of WEFAX, extraction of meteorological parameters such as sea surface temperature, cloud top height, cloud motion winds, and archive of meteorological satellite data products.

(3) High-speed Communication Control Processor (HCCP)

The HCCP is connected to the image processing system as the FEP(front-end processor) to receive imagery data from the CDAS and send WEFAX data to the CDAS.

(4) Communication Control Processor (CCP)

The CCP receives meteorological data from the C-ADESS(Central Automated Data Editing and Switching System). The CCP is connected to the control/ operation system as the FEP to the CDAS and the C-ADESS to collect various telemetry and DCP data from the CDAS and send commands to the CDAS.

(5) Image Display Processor (IDP)

The IDP has functions for display, analysis, and animation of cloud images. The IDP is connected to the image processing system.

(6) Graphic Display Processor (GDP)

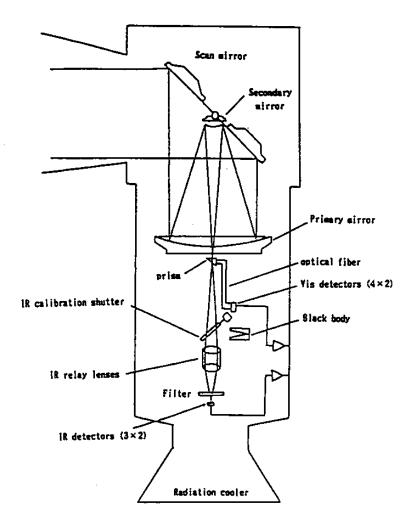
The GDP has functions to process imagery data. The GDP is connected to the image processing system.

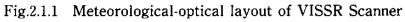
8

SECTION 2 VISSR

2.1 Visible and Infrared Spin Scan Radiometer

2.1.1 VISSR Scanner Configuration


The Visible and Infrared Spin Scan Radiometer(VISSR) consists of an optical scope made up with a scan mirror, reflectors and lenses and visible(VIS) and infrared(IR) detectors with the radiation cooler as shown in Fig.2.1.1. The detectors convert the incoming radiation energy to electrical currents. In flight calibration methods are provided for both VIS and IR. In the VIS channels, the sun is viewed with a reduced size sidelooking prism system. And in the IR channels, a blackbody radiation is directed to the detectors by a refection mirror intruding the optical axis outside of the earth view.


2.1.2 Characteristics

The characteristics of the VISSR are shown in Table 2.1.1. The VISSR of GMS-5 is improved in spectral bands on its predecessors by the addition of the IR split spectral detectors for the atmospheric window band and a detector for the water vapor absorption band. Also, silicon photodiodes are equipped for VIS detectors instead of photomultiplier tubes. Their features are more stable over temperature variations after solar illumination and throughout life, and have redundant pairs for reliability. The outputs of VIS and IR detectors are quantized into 64 levels(6 bits) and 256 levels(8 bits) respectively, and then transmitted to the earth as the raw VISSR data.

2.1.3 Spin-scan Geometry

The VISSR optical axis is in line with the spacecraft mechanical center axis and its spinning motion orients the line of sight of VISSR to the earth scene west-to-east and the stepping motion of the scan mirror reflection angle (70 micro-radians per spin) provides north-to-south scanning as shown in Fig.2.1.2. Full earth disk imagery are obtainable both in VIS and IR spectral bands at the same time by 2,500 scans at 30 minutes intervals including necessary periods for scan mirror retrace and attitude stabilization of the spacecraft. Fig.2.1.3 indicates the arrangement of the detectors in the image field of view. The pixel resolution is 1.25 km in VIS and 5 km in IR respectively at the subsatellite point. The transmission of the raw data is made within 20 deg. west-to-east and 20 deg. north-to-south area to cover the earth which occupies 17.4 deg. circle observing from the geosynchronous orbit.

Table 2	2.1.1	Characteristics	of	the	VISSR

Functions		ared spectrum mapping of earth, its ric water vapor distribution
Design	291.4 cm focal length Rit photo diodes and HgCd	udes scan mirror, 40.64 cm diameter chey-Chretien optical system, Silicon ITe detectors, $\simeq 90K$ (-175°C) by o temp. control. Beryllium housing.
	Visible Channels	Infrared Channels
Number	4 (+4 redundant)	3 (+3 redundant)
Instantaneous geometrical		
field of view (IGFOV)	$35 \times 31 \ \mu$ rad	$140 \times 140 \ \mu rad$
Band	0.55 to 0.90µm	10.5 to 11.5 μ m (band 1)
		11.5 to 12.5 μ m (band 2) 6.5 to 7.0 μ m (band 3)
Resolution	1.25 km	5.0 km
Scanning lines/frame	2500×4	2500
Scan step repeatability (1σ)	≦1.8 <i>µ</i> rad	≦1.8 μrad
Noise periormance	$S/N \ge 84$ (albedo=100%)	NEΔT (300 K) NEΔT (220 K)
	$S/N \ge 6.5$ (albedo = 2.5%)	≤ 0.35 K (band 1) ≤ 1.00 K (band 1)
		≤ 0.35 K (band 2) ≤ 0.90 K (band 2)
		≤ 0.22 K (band 3) ≤ 1.50 K (band 3)

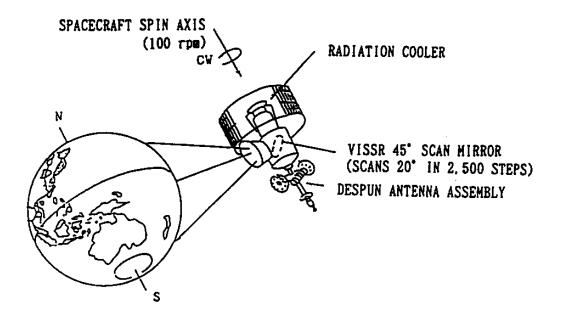


Fig.2.1.2 VISSR Spin-SCAN Geometry

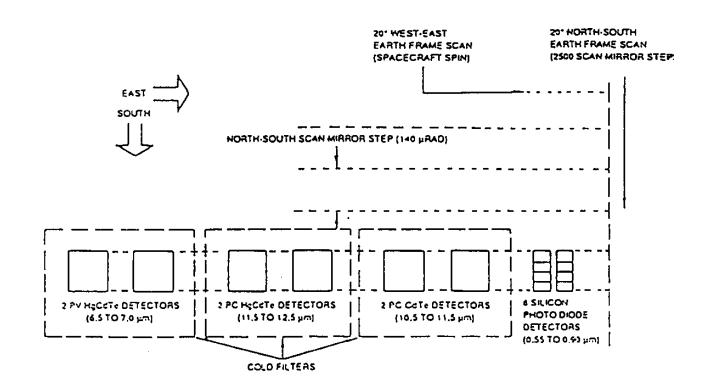


Fig.2.1.3 Image data Format

2.2 Calibration

The sensor output signals (Voltage) correspond to energy of light incident on the VISSR. Infrared channel brightness data and visible brightness data are quantized into 256(8bit) and 64 (6bit) levels by VDM (VISSR Digital Multiplexer), and are transmitted to CDAS. Infrared and visible level data are converted into temperature and albedo. This conversion is called calibration.

2.2.1 Visible data calibration

The visible calibration procedure is obtained through the following process (see Fig.2.2.1). The brightness levels are related to the voltage by the following equation,

$$\mathbf{L} = \mathbf{b}_0 + \mathbf{b}_1^* \sqrt{\mathbf{V}} \tag{1}$$

where L and V are the brightness level and the sensor output voltage. The coefficients b_0 and b_1 are determined from the prelaunch test data.

Relationship between output voltage and albedo is expressed by Eq(2).

$$\mathbf{V} = \mathbf{a}^* \mathbf{A} + \mathbf{V}_0 \tag{2}$$

where A is albedo, and coefficients a and V_0 are determined from the prelaunch test data. Then albedo is obtained from Eq.(3)

$$A = \{(L - b_0)/b_1\}^2/a - V_0/a$$
(3)

The coefficients b₀, b₁ and V₀ have been utilized up to now. Spectral response of VIS is shown in Fig.2.2.2. The sensitivity of each detector is different. Adjustment of sensitivity among four detectors is carried out once after launch and called "Normalization of Visible".

2.2.2 Infrared data calibration

The brightness levels are related to the voltage by the following equation,

$$\mathbf{L} = \boldsymbol{\beta}_1 * \mathbf{V} + \boldsymbol{\beta}_0 \tag{4}$$

where L and V are brightness level and the sensor output voltage. The coefficients β_1 and β_0 are determined from the prelaunch test data.

The relation between the sensor output voltage and the radiation energy is obtained by the following equation,

$$\mathbf{V} = \mathbf{d}^* \mathbf{R} + \mathbf{V}_0 \tag{5}$$

where R is radiation energy. The coefficients d and V_0 are determined from blackbody shutter brightness level, space brightness level, effective shutter temperature (Te) computed by telemetry of GMS-5. The blackbody shutter voltage(Vsh) and space voltage(Vsp) are calculated substituting the blackbody shutter brightness level(Lsh) and space brightness

level(Lsp) into Eq.(4).

A radiation energy R(Te) corresponding to effective shutter temperature Te is obtained from

$$R(Te) = \frac{\varepsilon \int \phi(\lambda) B(\lambda, Te) d\lambda}{\int \phi(\lambda) d\lambda}$$
(6)

where λ is wave length, B(λ , Te) is Plank's function, $\phi(\lambda)$ is a spectral response and ε is the emissivity of the shutter($\varepsilon = 1.0$). Spectral responses of IR are shown in Fig.2.2.3 - 2.2.4.

The radiation energy in space is small and is regarded as 0. The coefficients d and V_0 of Eq. (5) determined from Eq.(7) and Eq.(8),

$$V_{sp} = d^* 0 + V_0 \tag{7}$$

$$Vsh = d^*R(Te) + V_0 \tag{8}$$

where Vsh and Vsp are obtained by Eq.(4), R(Te) is obtained by Eq.(6). Since Eq.(5) also can be expressed as

$$V = d^*R + V_0 = \frac{Vsh - Vsp}{R(Te)} * R + Vsp = G^*R + Vsp$$
(9)

Here,

$$G = \frac{Vsh - Vsp}{R(Te)}$$

The relation between brightness level L and radiation R is obtained from Eq.(4) and Eq.(9), as

$$R = \frac{L - \beta_0 - V sp^* \beta_1}{\beta_1 * G}$$
(10)

The relation between radiation energy and temperature is given by the following equation.

$$R = \frac{\int \phi(\lambda) B(\lambda, Te) d\lambda}{\int \phi(\lambda) d\lambda}$$
(11)

A calibration table between temperature and brightness level is made with Eq.(10) and Eq.(11). The infrared calibration procedure is shown in Fig.2.2.5.

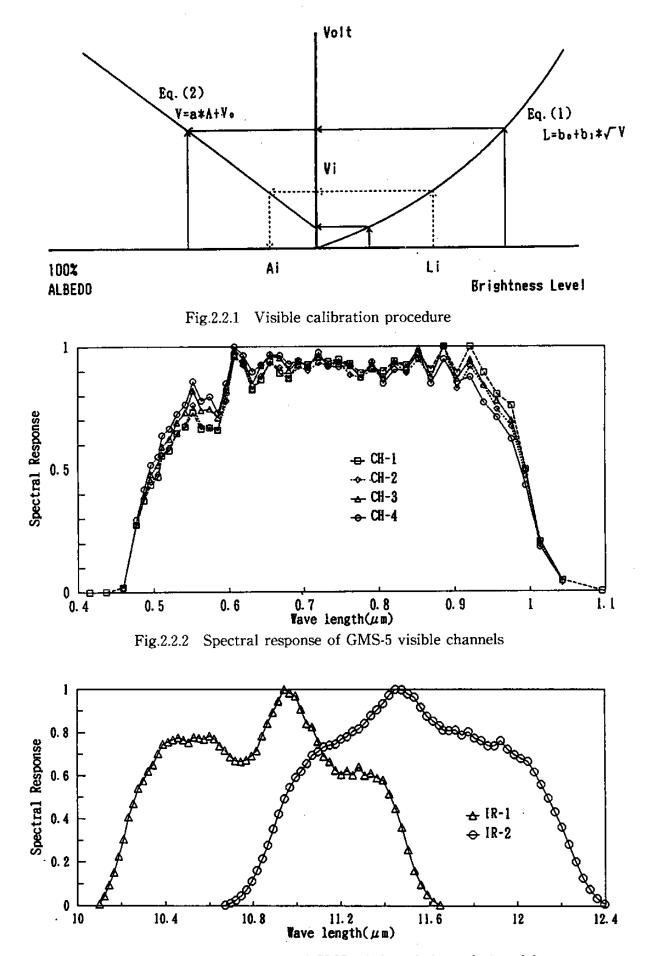


Fig.2.2.3 Spectral response of GMS-5 infrared channels 1 and 2

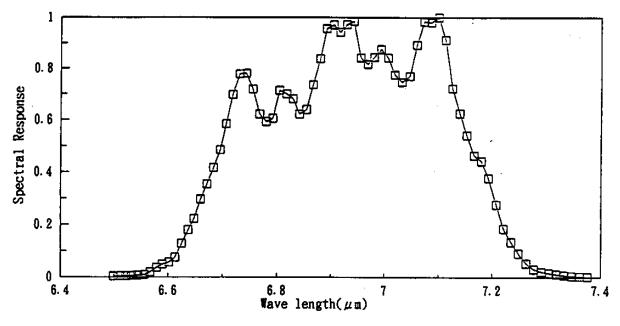


Fig.2.2.4 Spectral response of GMS-5 infrared channel 3

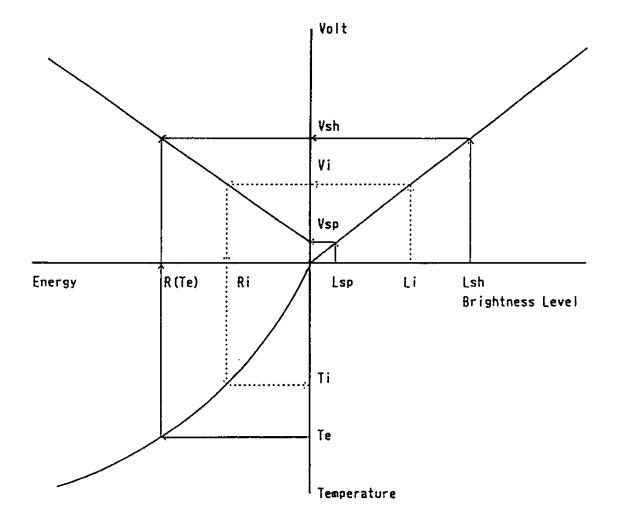


Fig.2.2.5 Infrared calibration procedure

(Blank page)

- 1

SECTION 3 VISSR OBSERVATION AND DIRECT DISSEMINATION OF CLOUD IMAGE

3.1 Stretched-VISSR

The Stretched-VISSR(S-VISSR) data are the digital image data for Medium scale Data Utilization Station(MDUS). The S-VISSR data format was revised in June of 1995 to fit the new format to GMS-5 which was additionally equipped with a water vapor channel and infrared split-window channels.

3.1.1 Contents of information sectors

S-VISSR data consists of a documentation sector, an infrared data sector and a visible data sector. The documentation sector is composed of spacecraft and CDAS status block, simplified mapping block 1, simplified mapping block 2, orbit and attitude information block including attitude/orbit prediction data sub blocks, manual amendment block and calibration information block.

The infrared data sector is composed of infrared-1(IR-1), infrared-2(IR-2) and water vapor(IR-3) data. The visible data sector is composed of visible 1, 2, 3 and 4 data. Details of the S-VISSR signal format and S-VISSR data format are given in APPENDIX A.

3.1.2 Infrared data brightness level conversion

There are two methods for conversion from S-VISSR brightness levels to brightness temperatures. One is to use the calibration table, and the other is to use the conversion table.

3.1.2.1 Calibration table

A calibration information block is newly added in the documentation sectors which consists of calibration tables for infrared and visible data and calibration coefficients for infrared data. The calibration tables for infrared data are updated at every observation. In case of visible data, the tables are prepared as fixed conversion tables.

3.1.2.2 Conversion table

The conversion table for infrared data has already been prepared and distributed to the MDUS users by a document. The values in the table were estimated from the result of a GMS-5 prelaunch test. The conversion tables for IR-1, IR-2 and IR-3 data are shown in tables 3.1, 3. 2 and 3.3 respectively.

3.1.2.3 Notice to utilize

The conversion table is no consideration of diurnal and annual variations of the relationship between brightness level and brightness temperature. Then users need to understand that use of the conversion table possibly causes same errors in the corresponding brightness temperature due to the diurnal and annual variation.

3.1.3 Visible data brightness level conversion

In the case of visible data, both the calibration and conversion tables are really the same values, which are an assigned relationship between S-VISSR brightness levels and brightness albedo. The table for visible data is shown in table 3.4.

3.1.4 Dissemination schedule

S-VISSR data are disseminated simultaneously every VISSR observation. The dissemination schedule of S-VISSR data is shown in APPENDIX C.

Details of the revision are described in "REVISION OF GMS STRETCHED VISSR DATA FORMAT. (October 1993)

	317.18	317.53	317.88	318.24	318.59	318.94	319.28	319.63	319.98	320.32	320.67	321.01	321.36	321.70	322.04	322.38	322.72	323.06	323.40	323.74	324.07	324.41	324.74	325.08	325.41	325.75	326.08	326.41	326.74	327.07	327.40	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	ъ	4	ę	2	F.	
	305.36	305.74	306.13	306.51	306.90	307.28	307.66	308.04	308.42	308.79	309.17	309.54	309.92	310.29	310.66	311.03	311.40	311.77	312.14	312.51	312.87	313.24	313.60	313.96	314.32	314.68	315.04	315.40	315.76	316.12	316.47	
	63	62	61	09	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	%	37	36	35	34	33	
	292.28	292.71	293.14	293.57	293.99	294.42	294.84	295.27	295.69	296.11	296.52	296.94	297.36	297.77	298.18	298.59	299.00	299.41	299.81	300.22	300.62	301.02	301.42	301.82	302.22	302.62	303.01	303.41	303.80	304.19	304.58	
	95	94	93	92	91	60	89	88	87	86	85	84	83	82	81	80	61	78	77	76	75	74	73	72	71	70	69	68	67	99	65	
	277.42	277.92	278.41	278.91	279.40	279.89	280.37	280.86	281.34	281.82	282.30	282.77	283.24	283.71	284.18	284.65	285.11	285.58	286.04	286.49	286.95	287.40	287.86	288.31	288.75	289.20	289.65	290.09	290.53	290.97	291.41	
	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101	100	66	8 6	97	
	259.81	260.42	261.03	261.62	262.22	262.81	263.40	263.98	264.56	265.13	265.70	266.27	266.83	267.39	267.95	268.50	269.05	269.60	270.14	270.68	271.21	271.75	272.28	272.80	273.33	273.85	274.37	274.88	275.39	275.90	276.41	
	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	
	237.23	238.06	238.87	239.68	240.48	241.27	242.05	242.82	243.58	244.33	245.08	245.81	246.54	247.26	247.98	248.69	249.39	250.08	250.77	251.46	252.13	252.80	253.47	254.12	254.78	255.42	256.07	256.70	257.33	257.96	258.58	
	191	190	189	188	187	186	185	184	183	182	181	180	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164	163	162	161	
	201.42	203.02	204.57	206.07	207.52	208.92	210.29	211.62	212.91	214.17	215.40	216.60	217.78	218.92	220.05	221.15	222.23	223.29	224.33	225.35	226.35	227.33	228.30	229.26	230.20	231.12	232.03	232.93	233.81	234.68	235.54	
	223	222	221	220	219	218	217	216	215	214	213	212	211	210	209	208	207	206	205	204	203	202	201	200	199	198	197	196	195	194	193	
TEMPERATURE	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	134.19	147.65	155.73	161.75	166.62	170.77	174.40	177.64	180.47	183.18	185.70	188.05	190.26	192.35	194.33	196.22	198.03	
LEVEL	255	254	253	252	251	250	249	248	247	246	245	244	243	242	241	240	239	238	237	236	235	234	233	232	231	230	229	228	227	226	225	

- 1

Table 3.1.1 level-temperature conversion table for IR-1 data

·-_-

19

	319.27	319.65	320.03	320.41	320.79	321.17	321.54	321.92	322.29	322.66	323.03	323.40	323.77	324.14	324.51	324.88	325.25	325.61	325.98	326.34	326.71	327.07	327.43	327.79	328.15	328.51	328.87	329.23	329.58	329.94	330.30	330.65
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	œ	7	9	ഹ	4	ę	2	1	0
	306.57	306.98	307.40	307.81	308.22	308.63	309.04	309.45	309.85	310.26	310.66	311.06	311.46	311.86	312.26	312.66	313.06	313.46	313.85	314.24	314.64	315.03	315.42	315.81	316.20	316.59	316.97	317.36	317.74	318.13	318.51	318.89
	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	292.57	293.03	293.49	293.95	294.40	294.86	295.31	295.76	296.21	296.66	297.11	297.55	298.00	298.44	298.88	299.32	299.76	300.19	300.63	301.06	301.49	301.92	302.35	302.78	303.21	303.63	304.05	304.48	304.90	305.32	305.74	306.15
	95	94	93	92	91	60	89	88	87	86	85	84	83	82	81	80	62	78	77	76	75	74	73	72	71	70	69	68	67	99	65	64
	276.74	277.27	277.79	278.32	278.84	279.36	279.88	280.39	280.91	281.42	281.93	282.43	282.93	283.44	283.94	284.43	284.93	285.42	285.91	286.40	286.88	287.37	287.85	288.33	288.81	289.28	289.76	290.23	290.70	291.17	291.64	292.10
	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101	100	66	8 6	97	96
	258.07	258.72	259.36	259.99	260.62	261.24	261.86	262.48	263.09	263.70	264.31	264.91	265.50	266.10	266.69	267.27	267.85	268.43	269.01	269.58	270.15	270.71	271.28	271.84	272.39	272.94	273.50	274.04	274.59	275.13	275.67	276.20
	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128
	234.27	235.14	236.00	236.85	237.69	238.52	239.34	240.15	240.95	241.74	242.53	243.30	244.07	244.83	245.59	246.33	247.07	247.80	248.53	249.25	249.96	250.67	251.37	252.06	252.75	253.44	254.12	254.79	255.46	256.12	256.77	257.43
	191	190	189	188	187	186	185	184	183	182	181	180	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164	163	162	161	160
	196.66	198.35	199.98	201.55	203.08	204.55	205.99	207.38	208.74	210.06	211.35	212.61	213.85	215.05	216.23	217.39	218.52	219.63	220.72	221.79	222.84	223.88	224.90	225.90	226.88	227.85	228.81	229.75	230.68	231.60	232.50	233.39
	223	222	221	220	219	218	217	216	215	214	213	212	211	210	209	208	207	206	205	204	203	202	201	200	199	198	197	196	195	194	193	192
LEVEL TEMPERATURE	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	135.12	146.04	153.34	158.97	163.62	167.63	171.18	174.38	177.30	180.00	182.50	184.86	187.08	189.18	191.17	193.08	194.91
LEVEL	255	254	253	252	251	250	249	248	247	246	245	244	243	242	241	240	239	238	237	236	235	234	233	232	231	230	229	228	227	226	225	224

- 1

_ _

Table 3.1.2 level-temperature conversion table for IR-2 data

	322.35	322.59	322.83	323.06	323.29	323.53	323.76	323.99	324.22	324.45	324.68	324.91	325.14	325.36	325.59	325.82	326.04	326.27	326.49	326.71	326.94	327.16	327.38	327.60	327.82	328.04	328.26	328.48	328.69	328.91	329.13	329.34
	31	30	29	28	27				23																		ഹ	4	ς,	2	1	0
	314.36	314.62	314.88	315.15	315.41	315.67	315.93	316.18	316.44	316.70	316.95	317.21	317.46	317.72	317.97	318.22	318.47	318.72	318.97	319.21	319.46	319.71	319.95	320.19	320.44	320.68	320.92	321.16	321.40	321.64	321.88	322.12
	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
	305.29	305.59	305.90	306.20	306.49	306.79	307.09	307.38	307.68	307.97	308.26	308.55	308.84	309.12	309.41	309.70	309.98	310.26	310.54	310.82	311.10	311.38	311.65	311.93	312.20	312.48	312.75	313.02	313.29	313.56	313.82	314.09
	95	94	93	92	91	06	89	88	87	86	85	84	83	82	81	80	62	78	77	76	75	74	73	72	71	20	69	68	67	99	65	64
	294.71	295.07	295.43	295.78	296.14	296.49	296.84	297.18	297.53	297.87	298.22	298.56	298.89	299.23	299.56	299.90	300.23	300.56	300.88	301.21	301.53	301.85	302.17	302.49	302.81	303.13	303.44	303.75	304.06	304.37	304.68	304.99
	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108	107	106	105	104	103	102	101	100	66	98	67	96
> 	281.76	282.22	282.67	283.11	283.56	284.00	284.43	284.86	285.29	285.72	286.14	286.56	286.98	287.39	287.80	288.21	288.61	289.01	289.41	289.80	290.20	290.59	290.97	291.36	291.74	292.12	292.50	292.87	293.24	293.61	293.98	294.34
	159	158	157	156	155	154	153	152	151	150	149	148	147	146	145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128
	264.49	265.14	265.77	266.40	267.02	267.63	268.24	268.83	269.42	270.00	270.58	271.14	271.70	272.26	272.81	273.35	273.88	274.41	274.94	275.46	275.97	276.48	276.98	277.48	277.97	278.46	278.95	279.43	279.90	280.37	280.84	281.30
	191	190	189	188	187	186	185	184	183	182	181	180	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164	163	162	161	160
	235.69	237.01	238.28	239.51	240.69	241.84	242.96	244.04	245.09	246.11	247.11	248.08	249.03	249.96	250.86	251.75	252.61	253.46	254.29	255.11	255.91	256.69	257.46	258.22	258.96	259.69	260.41	261.12	261.81	262.50	263.17	263.84
	223	222	221	220	219	218	217	216	215	214	213	212	211	210	209	208	207	206	205	204	203	202	201	200	199	198	197	196	195	194	193	192
TEMPERATURE	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	170.00	175.70	186.71	193.76	199.14	203.52	207.24	210.49	213.40	216.03	218.43	220.66	222.72	224.65	226.48	228.20	229.84	231.40	232.89	234.32
LEVEL '	255	254	253	252	251	250	249	248	247	246	245	244	243	242	241	240	239	238	237	236	235	234	233	232	231	230	229	228	227	226	225	224

Table 3.1.3 level-temperature conversion table for IR-3 data

21

Table 3.1.4 level-albedo calibration/conversion table for visible data

16 0.064500 32 17 0.072814 33 18 0.081633 34 19 0.081633 34 19 0.081633 34 20 0.100781 35 21 0.111111 37 22 0.121945 35 23 0.121945 38 23 0.121945 38 24 0.121945 38 23 0.133283 39 24 0.145125 40 25 0.157470 41 26 0.157470 41 27 0.183673 42 28 0.197531 42 29 0.211892 43 29 0.211892 45 29 0.226757 46	LEVEL	ALBEDO	LEVEL	ALBEDO	LEVEL	ALBEDO	LEVEL	ALBEDO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.00000	16	0.064500	32	0.258000	48	0.580499
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.000252	17	0.072814	33	0.274376	49	0.604938
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.001008	18	0.081633	34	0.291257	50	0.629882
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c,	0.002268	19	0.090955	35	0.308642	51	0.655329
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.004031	20	0.100781	36	0.326531	52	0.681280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ഹ	0.006299	21	0.111111	37	0.344923	53	0.707735
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	0.009070	22	0.121945	38	0.363820	54	0.734694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	0.012346	23	0.133283	39	0.383220	55	0.762157
0.020408 25 0.157470 41 0.025195 26 0.170320 42 0.030486 27 0.183673 43 0.030481 28 0.197531 44 0.036281 28 0.197531 44 0.042580 29 0.226757 46 0.049383 30 0.226757 46	æ	0.016125	24	0.145125	40	0.403124	56	0.790123
0.025195 26 0.170320 42 0.030486 27 0.183673 43 0.036281 28 0.197531 44 0.036281 29 0.197531 44 0.036281 29 0.211892 45 0.042580 29 0.226757 46 0.042580 21 0.226757 46	6	0.020408	25	0.157470	41	0.423532	57	0.818594
0.030486 27 0.183673 43 0.036281 28 0.197531 44 0.036280 29 0.197531 44 0.042580 29 0.211892 45 0.042580 29 0.226757 46 0.045580 21 0.226757 46	10	0.025195	26	0.170320	42	0.44444	58	0.847569
0.036281 28 0.197531 44 0.042580 29 0.211892 45 0.049383 30 0.226757 46 0.049383 21 0.226757 46	11	0.030486	27	0.183673	43	0.465860	59	0.877047
29 0.211892 45 30 0.226757 46 21 0.242126 47	12	0.036281	28	0.197531	44	0.487780	60	0.907029
30 0.226757 46	13	0.042580	29	0.211892	45	0.510204	61	0.937516
21 0 94019£ 47	14	0.049383	30	0.226757	46	0.533132	62	0.968506
071747 N IC	15	0.056689	31	0.242126	47	0.556563	63	1.00000

3.2 WEFAX

WEFAX is the analog facsimile image data processed from VISSR imagery at the DPC and made available for meteorological analysis in appropriate forms (e.g. addition of grid and coast line or polar-stereographic projection). WEFAX is disseminated via GMS for SDUS users hourly, 3-hourly or 12-hourly.

3.2.1 Classification of pictures

WEFAX has two projection types. One is four-sectorized earth disk pictures with overlapping borders. The other is a polar-stereographic projection picture covering the Far East area including Japan. These are:

• Four-sectorized earth disk pictures;

"A", "B", "C" and "D" pictures are in IR-1 (atmospheric window band: $10.5 - 11.5\mu$ m), "K", "L", "M" and "N" pictures are WV (water vapor band: $6.5 - 7.0\mu$ m).

Polar-stereographic picture;

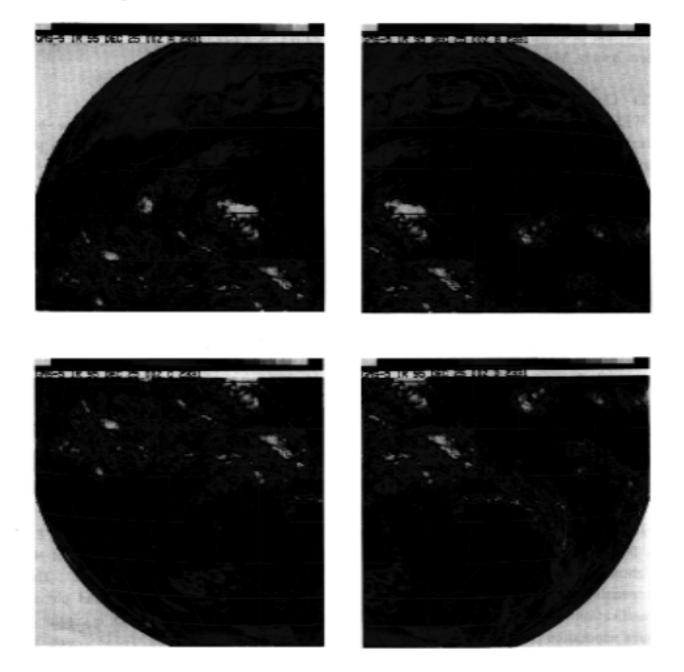
"H" is IRI,

"I" is VIS (visible band : 0.5 - 0.9 μ m),

"J" is the enhanced infrared (IR-1).

IR-2 (atmospheric window band for split window: $11.5 - 12.5 \mu m$) is not used for WEFAX. Examples of the above pictures are shown in Figure 3.2.1 through 3.2.3.

The schedule of WEFAX dissemination is described in "3.3 Schedule of Observation and Dissemination".


3.2.2 Data Format

SDUS specification are shown in Appendix B. WEFAX picture data consists of annotation code, gray scale, scale mark, annotation lines and image lines. One picture is composed of 800 lines and each line is composed of 1710 pixels, each of which conveys one of 64 levels.

The gray scale represents the 16 references from zero up to 60 in every four levels (0, 4, 8,..., 56, 60). The scale mark is put under the gray scale and indicates the boundaries of the brightness level in the gray scale. The annotation shows the image information. This information contains satellite name, distinction of channels, observation time and picture classification (H/I/J, A-D or K-N). The annotation code is serial bit data which is contained above annotation character into EBCDIC code for users.

3.2.3 Brightness Level Conversion

The brightness level conversion relates the energy of the VISSR and the WEFAX brightness level. VISSR data are converted to WEFAX image data according to the temperature or albedo conversion table shown in Table 3.2.1(1) through (6).

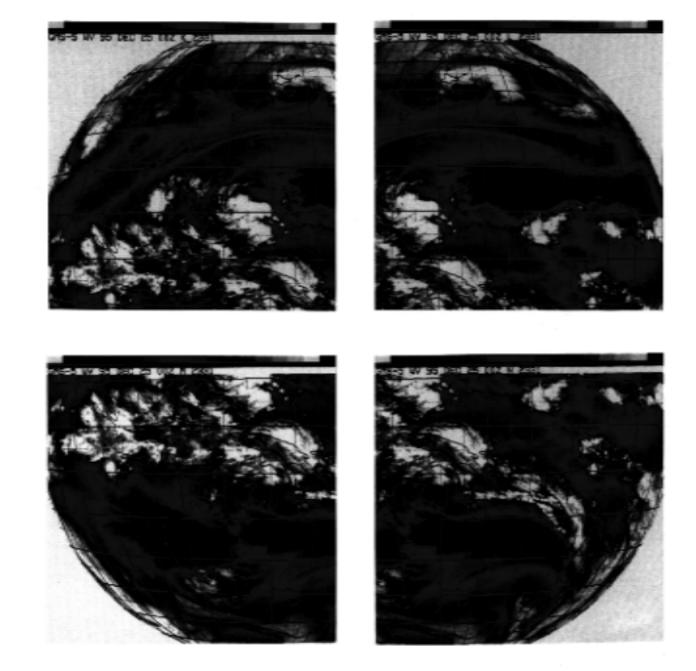
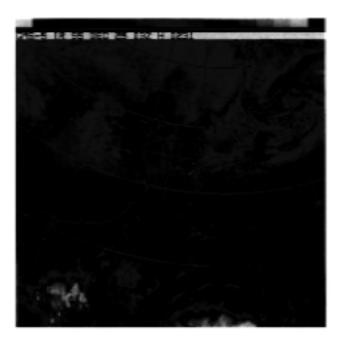
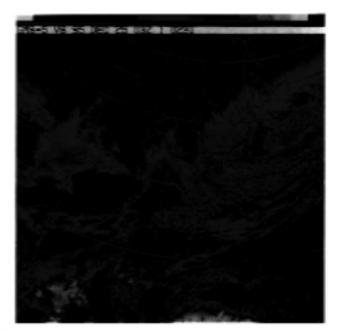




Fig.3.2.2 Water Vapor four-sectored disk pictures (K,L,M and N)

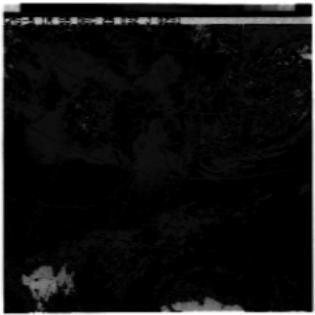


Fig.3.2.3 Infrared Polar - stereographic picture (H) (upper left), visible polar - stereographic picture (I) (upper right) and enhanced infrared polar-stereographic picture (J) (lower left). Table 3.2.1 WEFAX brightness level conversion table

(I) WEFA							
level	temperature (K)	level	temperature (K)	level	temperature (K)	level	temperature (K)
61	- 196.78	46	221.24 - 222.97	31	247.43 - 249.16	16	ı
60	196.79 - 198.53	45	222.98 - 224.72	30	249.17 - 250.91	15	.36 -
59	- 200.	44	I	29	250.92 - 252.66	14	277.11 - 278.85
а С	I	43	I	28	252.67 - 254.40	13	278.86 - 280.59
57	I	42	228.22 - 229.96	27	254.41 - 256.15	12	280.60 - 282.34
90	- 82	41	ł	26	256.16 - 257.89	11	282.35 - 284.08
	1	40	- 235	25	257.90 - 259.64	10	284.09 - 285.83
75	I	39	- 235.	24	ı	6	285.84 - 287.58
53	I	38	- 236	23	261.40 - 263.13	×	287.59 - 289.32
22	210.76 - 212.50	37	ı	22	.14 -	2	289.33 - 291.07
25	I	36	I	21	264.89 - 266.62	9	291.08 - 292.81
202	I	35	- 242	20	- 63	ഹ	292.82 - 294.56
40	ł	34	1	19	268.38 - 270.12	4	294.57 - 296.31
48	4	33		18	270.13 - 271.86	ŝ	296.32 - 298.05
47	- 221.	32	ł	17	271.87 - 273.61	2	298.06 -
(2) WEFA	VX visible image brightn	ess level /	WFFAX visible image brightness level / albedo conversion table				
_], ~ ≝	albedo (%)	level	albedo (%)	level	albedo (%)	level	albedo (%)
~	0.000 - 0.033	18	0.157 - 0.166	33	0.316 - 0.327	48	0.523 - 0.540
	I	19	I	34	0.328 - 0.339	49	0.541 - 0.561

						-									
albedo (%)	- 0.	- 0.	4	0.582 - 0.602	0.603 - 0.622	I	ł	0.669 - 0.699	I	0.731 - 0.760	Ι	ı	I		
level	48	49	50	51	52	53	54	55	56	57	58	59	60		
albedo (%)	- 0.	0.328 - 0.339	0.340 - 0.352	0.353 - 0.364	0.365 - 0.376	0.377 - 0.388	I	0.402 - 0.415	I	0.431 - 0.445	- 0,	0.462 - 0.476	0.477 - 0.491	- 0	0.508 - 0.522
level	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
albedo (%)	0.157 - 0.166	-	- 0	0.187 - 0.197	- 0	'	-	0.229 - 0.238	0.239 - 0.248	0.249 - 0.258	'	0.269 - 0.279	0.280 - 0.290	0.291 - 0.302	0.303 - 0.315
level	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
albedo (%)	0.000 - 0.033	Ι	ł	- 0	0 -	ı	I	0.087 - 0.095	ı	0.105 - 0.113	ı	I	ı	0.140 - 0.148	ì
level	ۍ ۲	4	, rè) y	2 L	. oc	6	10	11	12	13	14	12	16	17

27

Ī																		-																
iture (K)	- 290.25	- 290.77	- 291.30	- 291.82	- 292.35	- 292.88	- 294.64	- 297.64	- 300.64	- 303.64	- 306.64	- 309.64	- 312.64	1				temperature (K)	- 276.12	- 276.98	- 277.84	- 278.71	- 279.57	- 280.43	- 281.29	- 282.16	- 283.02	- 283.88	- 284.74	- 285.60	- 286.46	- 287.33	- 288.19	
temperature	289.73	290.26	290.78	291.31	291.83	292.36	292.89	294.65	297.65	300.65	303.65	306.65	309.65	312.65			arch)	tempers	275.27	276.13	276.99	277.85	278.72	279.58	280.44	281.30	282.17	283.03	283.89	284.75	285.61	286.47	287.34	
level	16	15	14	13	12	11	10	6	×	7	9	ດ	4	ო			ıber - 14 March)	level	17	16	15	14	13	12	11	10	6	œ	2	9	£	4	က	_
temperature (K)	- 281.82	- 282.35	- 282.88	- 283.40	- 283.93	- 284.46	- 284.98	- 285.51	I	- 286.56	- 287.09	- 287.61	- 288.14	- 288.67	I	- 289.72	temperature conversion table (Winter; 1 December	temperature (K)	- 262.33	- 263.19	-264.05	264.91	- 265.78	I	i - 267.50	- 268.36	- 269.22	- 270.09	0 - 270.95	I	- 272	1 - 273.53	- 274.40	
tempe	281.31	281.83	282.36	282.89	283.41	283.94	284.47	284.99	285.52	286.05	286.57	287.10	287.62	288.15	288.68	289.20	on table (W	temp	261.48	262.34	263.20	264.06	264.92	265.79	266.65	267.51	268.37	269.23	270.10	270.96	271.82	272.68	273.54	
level	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	e conversio	level	33	32	31	20	29	28	27	26	25	24	23	22	21	20	19	
rature (K)	- 273.40	- 273.93	- 274.46	- 274.98	- 275.51	- 276.04	- 276.56	- 277.09	- 277.61	- 278.14	- 278.67	- 279.19	- 279.72	- 280.25	- 280.77	- 281.30	/ temperatur	rature (K)	-248.53	- 249.40	- 250.26	- 251.12	- 251.98	- 252.85	- 253.71	- 254.57	- 255.43	- 256.29	- 257.16	- 258.02	- 258.88	- 259.74	- 260.60	
temper	271.82	273.41	273.94	274.47	274.99	275.52	276.05	276.57	277.10	277.62	278.15	278.68	279.20	279.73	280.26	280.78 -	tness level	tempei	247.68	248.54	249.41	250.27	251.13	251.99	252.86	253.72	254.58	255.44	256.30	257.17	258.03	258.89	259.75	
level	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	nage bright	level	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	
rature (K)	- 202.14	- 211.14	- 223,14	- 241.14	- 242.47	- 245.14	- 247.81	- 250.47	- 253.14	- 255.81	- 258.47	- 261.14	- 263.81	- 266.47	- 269.14	- 271.81	enhanced infrared image brightness level	rature (K)	- 218.19	- 223.19	- 228.19	- 233.19	- 238.19	- 239.05	- 239.91	- 240.78	- 241.64	- 242.50	- 243.36	- 244.22	- 245.09	- 245.95	- 246.81	
temperature		202.15	211.15	223.15	241.15	242.48	245.15	247.82	250.48	253.15	255.82	258.48	261.15	263.82	266.48	269.15		temperature		218.20	223.20	228.20	233.20	238.20	239.06	239.92	240.79	241.65	242.51	243.37	244.23	245.10	245.96	
level	60	40	20	ო	60	59	28	57	56	55	54	53	52	51	50	49	(4) WEFAX	level	60	46	32	18	ŝ	60	59	58	57	56	55	54	53	52	51	

3.3 Schedule of VISSR Observation and WEFAX Dissemination

After the observation by VISSR earth images are processed to WEFAX and are disseminated to users. These processes are carried out automatically according to the schedule. The schedule is based on hourly full-disk observation and can be modified according to the situation, i.e., the satellite eclipse and solar-interference, etc. The stretched VISSR data are disseminated simultaneously via GMS.

Schedule of observation and dissemination is shown in Appendix C (Fig.C.1 and Fig.C.2).

3.3.1 Regular Observation Schedule

The VISSR full-disk observation is carried out hourly. Additionally, 6-hourly full-disk observation is carried out 4 times for wind extraction. Pictures of hourly observation are called "Picture of 00UTC or 01UTC" etc. But they are actually observed from 2330 to 0000 UTC, from 0030 to 0100UTC, etc. And these times 00UTC,01UTC are called "Observation time." Hourly full-disk observation take 25 minutes and scanning starts ordinarily 28 minutes before the observation time. Observation at 05,11,17 and 23UTC start 35 minutes before the observation time, and observation for wind extraction starts 2 minutes after the observation time.

As for the WEFAX dissemination, pictures H and I(J at night) are disseminated hourly via GMS. Four-sectorized full-disk picture (picture A, B, C and D) are disseminated 3-hourly after the dissemination of picture H and I(J). In case of the observation for wind extraction (05,11,17 and 23UTC), only picture H is disseminated. Four-sectorized water vapor picture (picture K, L, M, and N) at 00 and 12UTC observation are disseminated at 0110 and 1310UTC.

3.3.2 Observation Schedule for the Satellite Eclipse Period

GMS enters the shade of the earth in the midnight for 45 days around the vernal equinox and the autumnal equinox. The periods of satellite eclipse are from late in February to early in April and from late in August to early in October. During these periods, the observations at 14 and 15UTC are stopped and the observation at 16UTC is delayed for 10 minutes. The WEFAX dissemination of 16UTC via GMS is also delayed for 10 minutes.

3.3.3 Observation Schedule at Solar-interference

When the sun, GMS and the antenna at CDAS are located all in a line, signal reception at CDAS is influenced by noise of the sun(solar-interference). Solar-interference continues about 6 days around the beginning of vernal eclipse period and the end of autumnal eclipse period. During these periods, the observation at 03UTC is stopped, and the dissemination of WEFAX at 03UTC(H,I,A,B,C,D) is carried out by using the image observed at 02UTC.

3.3.4 Typhoon Special Observation Schedule

In case of the typhoon special observation, observation at 04UTC for full-disk coverage is changed to the northern half-disk coverage, and additionally, other two northern half-disk observations are performed from 0345 to 0400UTC and 0400 to 0415UTC. The WEFAX dissemination of 04UTC is delayed for 15 minutes and only the image H is disseminated.

3.3.5 Observation Schedule for System Maintenance

In case of maintenance of the ground subsystem, observation at 02UTC for full-disk coverage is changed to the northern half-disk coverage. WEFAX dissemination at 02UTC may be canceled depending on the kind of system maintenance.

3.3.6 WEFAX MANAM(Manual Amendment) and Test Pattern

MANAM informs users of weekly WEFAX dissemination schedule and is disseminated according to the schedule shown in Appendix C (Fig.C.1). The contents of MANAM is updated at 08UTC on Thursday. An example of MANAM is shown in Appendix D (Fig.D.1).

WEFAX test pattern is disseminated at 02 and 08UTC on Sunday in place of MANAM.

3.3.7 S-VISSR MANAM

MANAM informs users of weekly S-VISSR dissemination schedule and is disseminated according to the schedule shown in Appendix C(Fig.C.1). The contents of S-VISSR MANAM is updated at 16UTC on Thursday. An example of S-VISSR MANAM is shown in Appendix D(Fig.D.2).

(Blank page)

- 1

SECTION 4 METEOROLOGICAL PRODUCTS

4.1 The outline of the product processings

The process flow in MSC to make products from VISSR image data observed by GMS-5 is shown in the outline figure of Fig.4.1.1. The derived products are disseminated to the JMA headquarters via ADESS, and some of those products, e.g., the Wind Vector, SAREP(WMO international code) for typhoon analysis are also disseminated to foreign meteorological organizations via GTS.

Products from VISSR image data are classified into following four categories by the kind of the used Basic Data (Basic Histogram Data, Cloud Grid Data, Image Data for display and Pre-processed Image Data), etc..

(1) The product processings from the Basic Histogram Data or 2-Dimensional Histogram Data

The Basic Histogram Data are the frequency distribution of pixels for brightness levels in each 0.25° latitude/longitude grid segment on each data of VIS, IR1 and WV channels and the data of the difference between IR1 and IR2 channels. The 2-Dimensional Histogram Data are made from the data of two channels, IR1 and WV, or of IR1 and IR2, in each 0.25° latitude/ longitude grid segment.

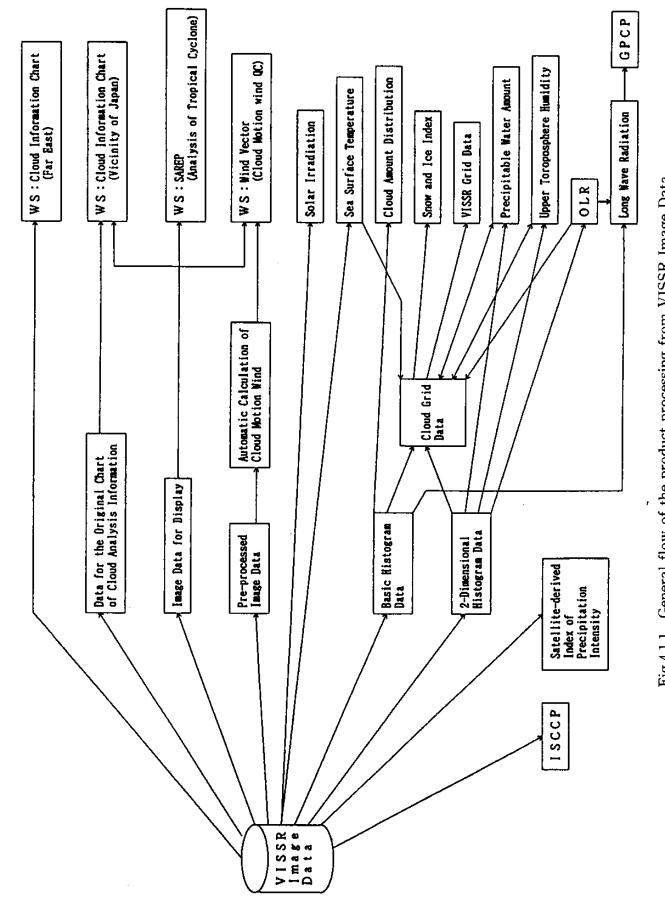
Products by using these data are the Longwave Radiation (mean brightness temperature), the Cloud Amount (for climatology), the OLR(Outgoing Longwave Radiation), the GPCP(Global Precipitation Climatology Project), the Precipitable Water Amount and the Upper Toroposphere Humidity. As regarding the Precipitable Water Amount and the Upper Toroposphere Humidity, the Cloud Grid Data are also used to identify the grid segments for the product processings. And the processed data for the Precipitable Water Amount, the Upper Toroposphere Humidity and the OLR are fed back to the Cloud Grid Data in addition to being saved in each accumulation file.

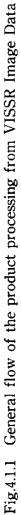
(2) The product processings from the Cloud Grid Data

The Cloud Grid Data are the grid data with 0.25° latitude/longitude resolution processed from the Basic Histogram Data or the 2-Dimensional Histogram Data. The Cloud Grid Data are the data base including not only the statistical data (the mean data, standard deviation, etc.) for the brightness temperatures and albedo about total pixels in each segment, the statistical data for those about the pixels considered as clouds in each segment, the cloud amount for each layer, etc., but also the data of the Precipitable Water Amount, the Upper Toroposphere Humidity, the OLR, the Sea Surface Temperature and the Convective Cloud Amount.

(3) The product processings by the use of the Pre-processed Image Data or the Image Data for display

The Pre-processed Image Data and the Image Data for display are made by being navigated and cut out from VISSR Image data in order to usefully image the data on man-machine interactive processings etc.. As regarding the Image Data for display, its file format is transformed to the one for the workstation.


SAREP (typhoon analysis), the Wind Vector and the Cloud Information Chart (Vicinity of


Japan) are made by the use of these data through man-machine processes in workstations. Besides, as regarding Cloud Information Chart (Vicinity of Japan), the data except these image data, which have been already processed in the host computer are also used.

(4) Product processings from VISSR Image Data

The ISCCP(International Satellite Cloud Climatology Project), the satellite-derived Index of Precipitation Intensity, the Solar irradiation, the Sea Surface Temperature and the Cloud Information Chart (Far East) are directly made from VISSR Image Data.

The Cloud Information Chart (Far East) is made in its exclusive workstations. The required VISSR Image Data for this product processing are automatically transported from the host computer.

4.2 Cloud Motion Winds

4.2.1 An outline

Cloud Motion Winds (CMWs) are the derived from displacement of cirrus and cumulus by using infrared (IR) and visible (VIS) images at 30- minute intervals.

VIS images are used to derive low- level winds in the daytime and IR images are used to derive high- level winds and low- level winds at night.

Derivation of CMWs is either automatic or manual (man-machine interactive) process.(see Fig.4.2.1) In the automatic process, clouds, which represent a flow of winds, are automatically selected and tracked by computers. In the manual process, CMWs are selected and tracked by an operator on Graphic Display (GDP) and Image Display (IDP).

After quality control for CMWs is performed automatically by computers, quality control by an operator on GDP and IDP is performed and unreliable CMWs are deleted.

Resultant CMWs which pass quality control are stored on magnetic tapes and disseminated.

4.2.2 Description

4.2.2.1 Routine operations

CMWs are derived four times a day, 00UT, 06UT, 12UT and 18UT by using three successive images at 30- minute intervals. The schedule of IR / VIS images taken at 06UT is shown in Fig.4.2.2. The three images in use are called image A, B and C, respectively.

In the automatic process, CMWs derivation procedures begin after image B is obtained. First, clouds are selected automatically on image B. Wind vectors are extracted between image A and B, and then between image B and C. A direction and a speed of CMW are extracted from the initial and the end positions of a wind vector. A height of CMW is assigned to a certain level, after Cloud Top Height (CTH) is extracted by using IR and water vapor (WV) images. Next, automatic (objective) quality control for CMWs is performed and CMWs of low quality are flagged.

Following the automatic process, a manual process is performed by an operator on GDP and IDP. Extraction of CMWs in the manual process is the same method as in the automatic process except for selecting clouds / selecting and tracking clouds. At the same time, an operator checks not only the flagged CMWs from the automatic process but also the others. Low quality CMWs are deleted.

CMWs which pass quality control are transmitted to the JMA Headquarters through ADESS and to worldwide users through GTS.

4.2.2.2 Automatic cloud selection procedure

Cirrus are selected in the high-level CMWs derivation procedure and cumulus in the lowlevel CMWs derivation procedure by a histogram analysis on IR image data. Moreover, cumulonimbus are checked and rejected as unsuitable clouds at each point except those points which are rejected by a histogram analysis.

(1) Points for cloud selection

The number of points provided at grid points with 1° intervals of latitude and longitude is 10000 to select clouds suitable to track between 50N to 49S in lat. and 90E to 171W in lon.

Each point is checked for whether the zenith angle of the satellite is lower than a preset value, whether points are in a land area, or the zenith angle of the sun is lower than a preset

value when VIS images are used in the daytime, and so on. Considering sufficient time for manual process, the number of points which are finally sent to the CMWs derivation procedure is 500 for high-level and 800 for low-level, respectively. Each point is checked in random order to uniformly select clouds in the observation area.

(2) Histogram analysis

Histogram analysis of IR data is made in an area centered at the point for cloud selection. IR data are analyzed on all kinds of parameters, for example, cloud top temperature, cloud amount, a range of temperatures which clouds can exist between, and so on. Then the points are decided whether they are suitable for tracking. Unsuitable points are not selected as points for cloud selection.

(3) Cumulonimbus

Cirrus are selected when high- level CMWs are derived. However it is impossible to reject cumulonimbus, which do not represent high-level CMWs, by the procedure based on histogram analysis of IR data only. This problem is solved in following way. The top of a well developed cumulonimbus reaches the tropopause. As there is very little water vapor between the cloud top and the satellite, IR brightness level is almost the same as WV brightness level. Therefore, when the difference between IR and WV brightness levels of a cloud is less than a preset value, the cloud is rejected as being cumulonimbus.

4.2.2.3 Wind derivation procedure

(1) Tracking (Matching)

Displacement of selected clouds is calculated by pattern matching by using cross- correlation techniques. Image B, on which clouds are selected, overlaps with image A and C. Then, a template area and a search area centered on the selected cloud are decided on image B and image A / C, respectively. The template area moves pixel by pixel on the lag area within a search area. At each position of lag area, a cross- correlation coefficient between the template area and the same size area in the search area is calculated. (see Fig.4.2.3) The position which has the largest cross- correlation coefficient is decided as the position to which the cloud displaces. An example of coefficient values calculated by the cross- coefficient technique is shown in Fig.4.2.4.

The positions of the selected and tracked cloud are transformed into latitude and longitude coordinates, based on information from the satellite orbit and attitude. Then, wind directions and wind speeds of CMWs are calculated.

(2) Height assignment

(a) Low-level CMWs

Heights of all low- level CMWs derived by tracking cumulus are assigned to 850 hPa as a represent height, because derived CMWs are best fitted to rawinsonde winds at this level, compared with rawinsonde winds.

(b) High- level CMWs

Heights of high- level CMWs derived by tracking cirrus are assigned to CTHs as a represent height. Moreover, in the case of semi- transparent cirrus, CTHs can be extracted accurately by using both the IR and WV channel data.

(3) Quality control in CMWs derivation process

In CMWs derivation process of routine operation, three successive images A, B and C are used. At image B, clouds are selected, and then wind vector Vab between image A and B and

wind vector Vbc between image B and C are derived. A difference between Vab and Vbc is checked. Further, a change between CTHs for derived wind vectors is checked, because a wind vector derived from a developing or decaying cloud is of low quality.

4.2.2.4 Automatic quality control procedure

High / low- level CMWs are compared with the neighboring same / different- level CMWs and NWP winds obtained from 12- or 18- hour forecasts of NWP. When a difference between them does not satisfy preset threshold values, they are flagged and then an operator checks, the quality control of CMWs in the manual quality control procedure described below.

4.2.2.5 CMWs derivation and quality control in manual process

(1) CMWs derivation procedure

In an area where CMWs of high quality can not be derived in the automatic process, CMWs are derived on GDP and IDP. There are two methods, that is to say, MM-1 method and MM-2 method. In MM-1 method, an operator selects clouds manually, and then CMWs are tracked and assigned to heights automatically. In MM-2 method, an operator decides the initial and the end position of cloud displacement, and then directions and speeds of CMWs are calculated automatically.

(2) Quality control procedure

An animation of three successive images is displayed on IDP and wind vectors are overlapped on the animation. An operator examines CMWs on their displacement, and then checks their height assignment, referring to rawinsonde winds and NWP winds which are displayed on GDP. CMWs of low quality are deleted, but CMWs of high quality are sent to output procedure.

4.2.2.6 Output procedure

CMWs considered reliable through automatic and manual quality control are coded into WMO format (SATOB) for transmission to worldwide users through ADESS and through GTS.

The derived winds are listed on NLP, are plotted in a map of mercator projection and are stored on archival data tape.

4.2.3 Remarks

For exchange of data decided at FGGE, wind data are also stored on archival data tape in the format. Wind data are also listed in "Monthly Report" (CD- ROM edition) issued by MSC.

To check the accuracy of CMWs, CMWs compared with rawinsonde winds are stored at every observation and are assessed for accuracy every month.

Results of comparison in 1996 are shown in Fig.4.2.5.

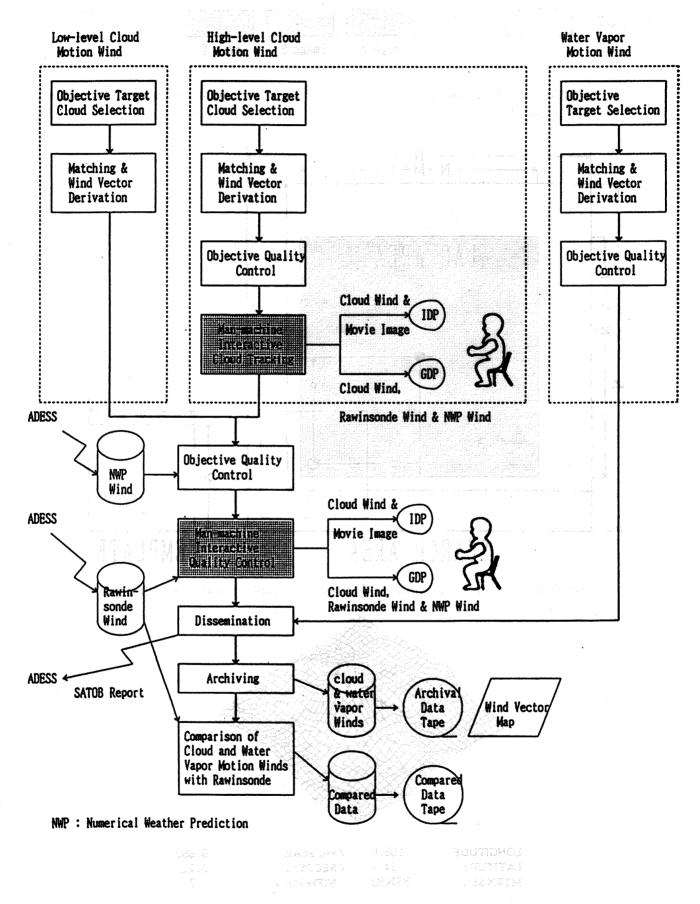


Fig.4.2.1 A flowchart of cloud and water vapor motion winds derivation system in MSC.

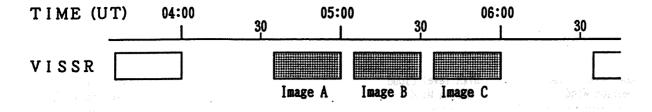


Fig.4.2.2 Selection of VISSR images which are used to derive cloud and water vapor motion winds at 06UT.

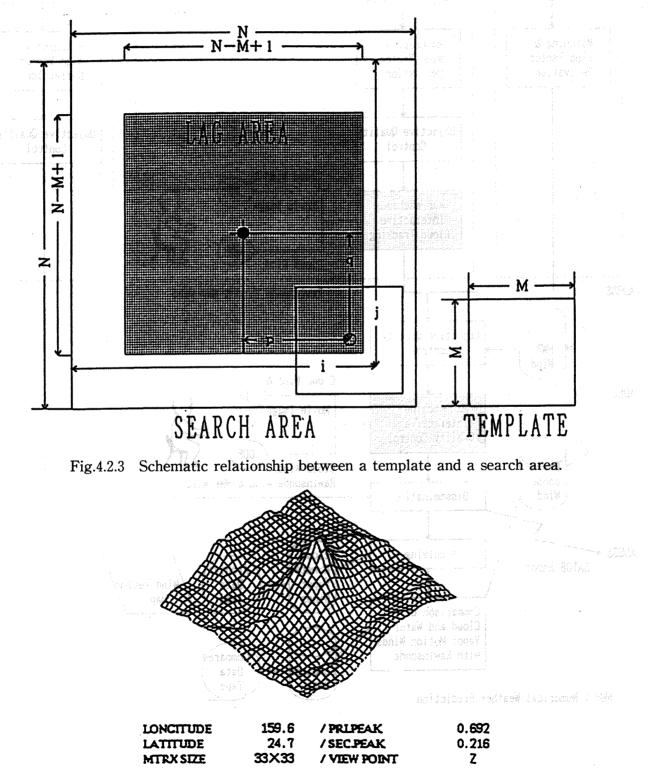


Fig.4.2.4 A3-dimensional display of a cross-correlation matrix.

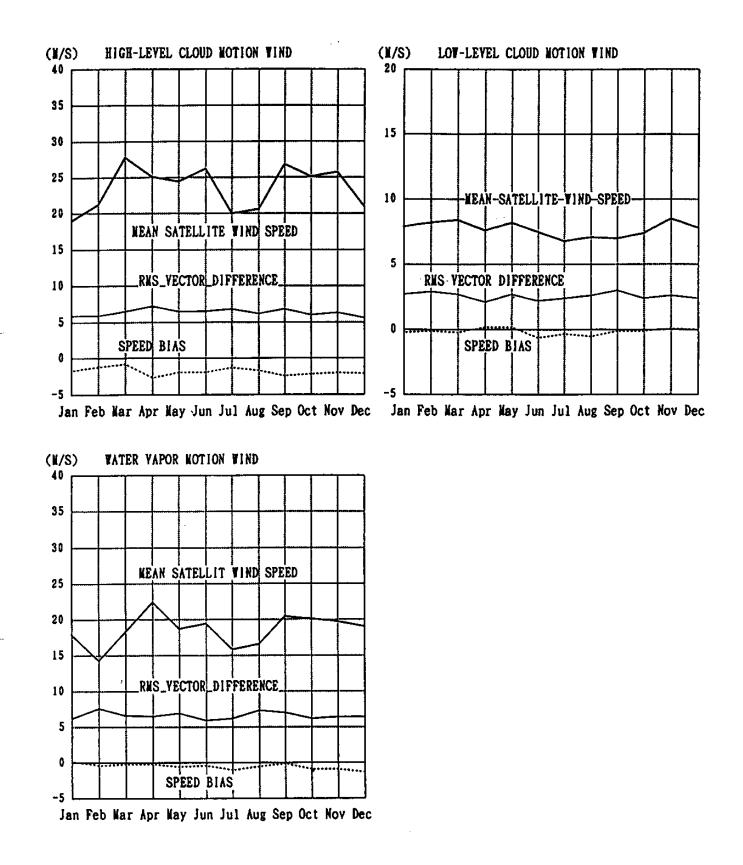


Fig.4.2.5 Comparison results of the CMWs and the WVMWs with rawinsonde winds in 1996.
Bold solid line : Mean CMWs/WVMWs wind speed
Solid line : RMS vector differences
Dashed line : Speed bias (CMWs/WVMWs wind speed - rawinsonde wind speed)

4.3 Water Vapor Motion Winds

4.3.1 An outline

MSC has operated GMS- 5 from June 1995 and, at the same time, derived Water Vapor Motion Winds (WVMWs). WVMWs are derived from displacement of water vapor (WV) distribution or cirrus in water vapor images in the WVMWs derivation process.

4.3.2 Description

All the procedures in this derivation process are performed automatically by computer.

The same algorithm of WVMWs as CMWs from selection of WV distribution or cirrus to automatic quality control is performed except using WV image data. The number of points which are sent to the WVMWs derivation procedure is 1000, after selection of WV distribution and cirrus.

Quality control for the WVMWs is only performed automatically. To automatically reject low- quality WVMWs, the homogeneity of the WVMWs is checked by comparison of the WVMWs with neighboring the WVMWs and NWP winds. If the WVMWs do not satisfy preset threshold values, they are decided to be WVMWs of low quality and rejected in this procedure.

Together with CMWs that pass quality control, the WVMWs that pass quality control are transmitted to the JMA Headquarters through ADESS and to worldwide users through GTS.

4.3.3 Remarks

The accuracy of the WVMWs is shown in Fig.4.2.3. There are the same problems in WVMWs derivation process as in CMWs.

4.4 Upper Troposphere Humidity

4.4.1 Outline

An Upper Tropospheric air Humidity (UTH), which is defined the relative humidity for a layer between 600 and 300 hPa (Poc et al., 1980), is retrieved from GMS-5 VISSR "water vapor" channel at 6.7 μ m band, designated WV, and "split window" channel at 11 μ m band, designated IR. This estimation scheme was developed by Schmetz et al. at the European Space Operations Center (ESOC) of the European Space Agency (ESA) as an operational algorithm from radiance measurements in the 6.3 μ m channel of the geostationary satellite METEOSAT (Schmetz and Turpeinen, 1988).

The physical retrieval method is based on an efficient radiative transfer scheme which uses the temperature forecast profiles from the Numerical Weather Prediction (NWP) of the Japan Meteorological Agency (JMA) as an ancillary data. Theoretical radiances for the given temperature

profile and a set of fixed upper tropospheric humidity are employed to relate the observed radiance to mean humidity for a layer between 600 and 300 hPa. The retrieval is confined to areas with neither medium- nor high-level clouds.

4.4.2 Description

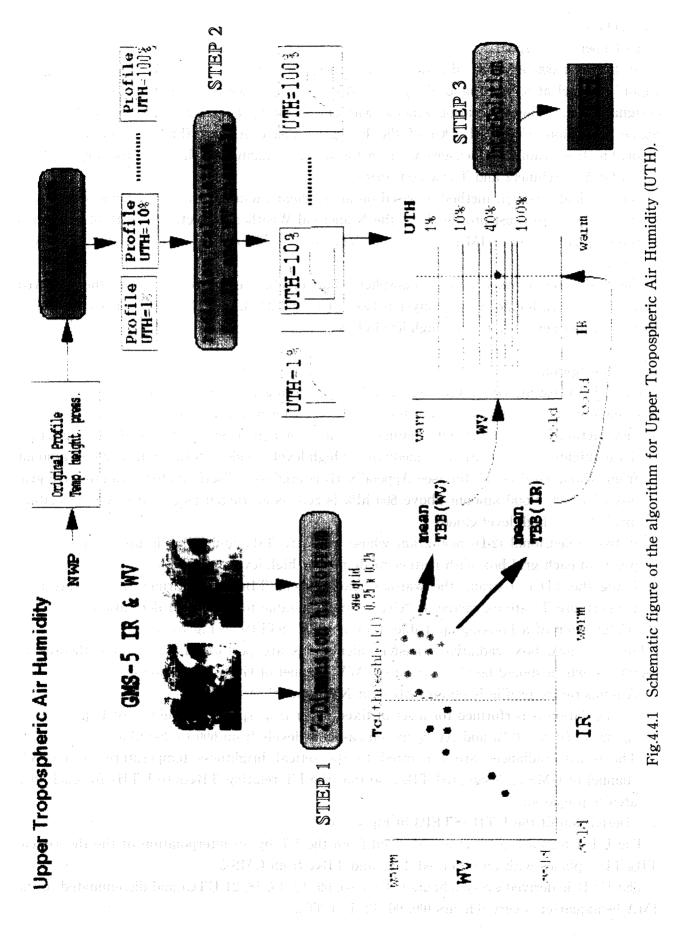
The UTH is estimated on 0.25×0.25 grid boxes covering 60 N - 60 S and 80 E - 160 W region. A schematic figure of the algorithm for the UTH is shown in Fig.4.4.1.

- (1) Extraction of grid boxes with neither medium- nor high-level clouds (STEP1 in Fig.4.4.1)
- -To eliminate contamination by medium- or high-level clouds, information on cloud amount from "Cloud Grid Data" file (see Appendix H) is used as a discriminator. An effective grid box of which cloud amount above 600 hPa is zero is extracted as a grid box with neither medium- nor high-level clouds.
 - -A two-dimensional (2-D) histogram whose axes are TB_{IR} and TB_{WV} is prepared using all pixels in each grid box with neither medium- nor high-level clouds.
 - -Using the 2-D histogram, the warmer pixels whose TB_{IRS} are warmer than a threshold temperature T_c are extracted as "clear" pixels suitable for the UTH derivation.
- (2) Calculation of a Looking-up Table (LT) of UTH (STEP2 in Fig.4.4.1)

For each grid box, radiative transfer calculations are performed to estimate theoretical radiances, which should be observed in the WV channel of GMS-5 as follows;

-A temperature profile is obtained from a NWP model of the JMA.

-A calculation is performed for a set of fixed upper tropospheric humidities of 1 %, 10 %, 20 %, 30 %, 50 %, 70 % and 100 % (seven cases) at levels from 600 to 300 hPa.


-Theoretical radiances are converted to theoretical brightness temperature in the WV channel of GMS-5, designated TB_{wv}, so that the LT relating TB_{wvs} to UTHs for each grid area is prepared.

(3) Derivation of the UTH (STEP3 in Fig.4.4.1)

The UTH for each grid area is derived from the LT by an interpolation of the theoretical TB_{IR} -TB_{wv} planes with an observed TB_{IR} and TB_{wv} from GMS-5.

The UTH is derived every 3-hours (00, 03, 06, 09, 12, 15, 18, 21 UTC) and disseminated to the JMA headquarters every 6-hours (00, 06, 12, 18 UTC).

43

4.4.3 Remarks

The GMS-5 IR-derived UTH is compared with radiosonde-derived "ground truth" data in the area of $80^{\circ}E - 160^{\circ}W$ and $60^{\circ}N - 60^{\circ}S$. An annual variation of the UTH evaluation in 1996 is shown in Fig.4.4.2. When using this data set, its bias should be taken into account, as much as 5 %, and RMS error, as much as 15 %, though there is no pronounced annual trend of difference between satellite estimation and radiosonde truth data.

Reference

Poc M.M., M. Roulleau, N.A. Scott and A. Chedin, 1980: Quantitative Studies of Meteosat Water- Vapor Channel Data, J. Appl. Meteor., 19, 868-876

Schmetz, J., and O.M. Turpeinen, 1988 : Estimation of the upper tropospheric relative humidity field from METEOSAT water vapor image data. J. Appl. Meteor., 27, 889-899

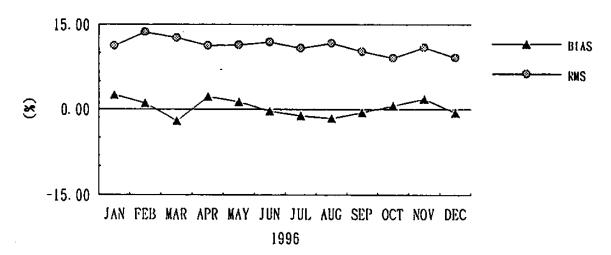


Fig.4.4.2 Annual variation of the Upper Tropospheric Air Humidity (UTH) evaluation with BIAS and RMS error in comparison with radiosonde-derived "ground truth" data in 1996.

4.5 Precipitable Water Amount

4.5.1 Outline

A Precipitable Water Amount (PWA) is defined as a mean column value of water vapor content of the lower troposphere. It is well correlated with the air temperature between 700 hPa and 920 hPa (Chesters, 1983) It is retrieved from a difference of radiance observed through GMS-5 VISSR "split window" channels at 11 and 12 μ m band, designated SP1 and SP2 respectively. This estimation scheme was developed by Chester et al. (1987) at the NASA Goddard Space Flight Center from radiance measurements in 11 and 12 μ m "split window" channels of the VISSR Atmospheric Sounder (VAS) on board the Geosynchronous Operational Environmental Satellite (GOES) of the U.S.A.

The PWA is calculated using a regression equation of brightness temperature (TB) observed in SP1 and SP2, and a temperature at 700 hPa from the Numerical Weather Prediction (NWP) of the Japan Meteorological Agency (JMA) as ancillary data. Coefficiencies of the equation were

empirically decided from collocated observations of GMS-5 and radiosonde. The retrieval is confined to areas under clear sky condition.

4.5.2 Description

The PWA is estimated on $0.25^{\circ} \times 0.25^{\circ}$ grid boxes covering the 60°N - 60°S and 80°E - 160°W region.

(1) Extraction of pixels in a grid area under clear sky condition

To eliminate contamination by clouds, information on cloud amount from "Cloud Grid Data" file (see Appendix H) is used as a discriminator. An effective pixel, of which cloud amount is zero is extracted as a grid area under clear sky conditions.

(2) Derivation of the PWA

For each grid area under clear sky conditions, PWA is calculated by using the following regression equation:

 $PWA = a_0 + a_1 * \cos \theta + a * (TB_{11} - TB_{12}) + a_3 * (TB_{11} - TB_{12}) * \cos \theta$ + $a_4 * \ln(TB_{11} - T_{700}) + a_5 * \ln(TB_{11} - T_{700}) * \cos \theta$ + $a_6 * \ln(TB_{12} - T_{700}) + a_7 * \ln(TB_{12} - T_{700}) * \cos \theta$

where:

PWA: precipitable water amount (mm)

TB₁₁ and TB₁₂: TBs observed in SP1 and SP2, derived from A two-dimensional histogram, respectively (K)

 T_{700} : Temperature at 700 hPa derived from the NWP of the JMA (K)

 θ : Satellite zenith angle (rad)

Coefficiencies of a_0 , a_1 , a_2 , ..., a_7 were empirically decided from collocated observations of GMS-5 and radiosonde in October 1995 as follows:

 $a_0 = -8.6077$ $a_1 = 53.561$ $a_2 = -19.078$ $a_3 = 47.651$ $a_4 = 149.24$ $a_5 = -202.27$ $a_6 = -151.38$ $a_7 = 193.16$

This equation was derived from the study of Chester et al. (1987) with some additional terms

experimentally decided for improving the precision.

The PWA is derived every 3-hours (00, 03, 06, 09, 12, 15, 18, 21UTC) and disseminated to the JMA headquarters every 6-hours (00, 06, 12, 18UTC).

4.5.3 Remarks

The GMS-5 IR-derived PWA is compared with radiosonde-derived "ground truth" data in the area $80^{\circ}E - 160^{\circ}W$ and $60^{\circ}N - 60^{\circ}S$. An annual variation of the PWA evaluation in 1996 is shown in Fig.4.5.1. When using this data set, its bias should be taken into account of its bias, as much as 5 mm, and RMS error, as much as 15 mm, though there is no pronounced annual trend of difference between satellite estimation and radiosonde truth data.

Reference

- Chesters, D., L.W. Uccellini and W.D. Robinson, 1983: Low-level water vapor fields from the VISSR atmospheric sounder (VAS) "Split Window" channels. J. Climate and Appl. Meteor., 22, 725-743
- Chesters, D., W.D. Robinson and L.W. Uccellini, 1987: Optimized Retrievals of Precipitable Water from the VAS "Split Window", J. Climate and Appl. Meteor., 26, 1059-1066

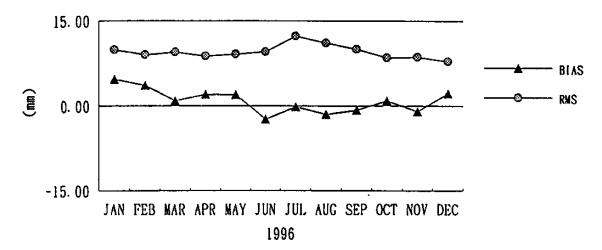


Fig.4.5.1 Annual variation of the Precipitable Water Amount (PWA) evaluation with BIAS and RMS in comparison with radiosonde-derived "ground truth" data in 1996.

4.6 Sea surface temperature

4.6.1 Outline

Sea surface temperatures(SSTs) are extracted from measurements of Visible Infrared Spin Scan Radiometer(VISSR) on Geostationary Meteorological Satellite(GMS). The SSTs are estimated every three hours. The area of SSTs estimation is from 50 degree North to 50 degree South and from 90 degree East to 170 degree West.

The SSTs estimation uses brightness temperature in the spectral band of 10.5-12.5 μ m that is practically transparent and is called the atmospheric window. However, satellite measured brightness temperatures of sea surface are slightly attenuated by the constituents of atmosphere. Therefore, correction to the atmospheric attenuation is necessary to extract SSTs from the satellite measurements.

4.6.2 Description

(1) Basic concept

Until 1995 the SST was calculated from a brightness temperature of atmospheric window-channel, 10.5-12.5 μ m, with a correction for atmospheric attenuation. The atmospheric correction was based on an empirical formula with climatological precipitable water amount or a radiative transfer model with the results of objective analysis.

Since GMS-5 is equipped with thermal infrared split-window channels: atmospheric window channel is divided into two, the SST has been calculated from two simultaneous brightness temperatures of split-window channels by using a linear regression equation. Recently using two or more simultaneous brightness temperatures in different spectral bands is a major means to correct for atmospheric attenuation. The brightness temperature differs for each window channel because of different absorption efficiencies for each spectral band, and an amount of attenuation of brightness temperature in one channel is a linear function of the brightness temperature different window channels.

(2) Processing method

The SSTs estimation consists of three processes: cloud filtering, SST retrival and statistics. Pixels (image-elements) of VISSR full-resolution data are discriminated into cloud free pixels or cloud contaminated pixels by a cloud filtering algorithm. The algorithm is based on threshold tests of reflectance, brightness temperature and brightness temperature difference of split-window channels.

The SST is calculated from two simultaneous brightness temperatures of split-window channels of cloud free pixel by using Multi-Channel SST(MCSST) retrieval algorithm. The algorithm is based on a linear regression equation and uses two or more simultaneous brightness temperatures in different spectral bands, because an amount of atmospheric attenuation of brightness temperature in one channel is a linear function of the brightness temperature difference of split-window channels. The equation is as follows:

 $SST = aT_{11} + b(T_{11} - T_{12}) + c(T_{11} - T_{12})(\sec \theta - 1) + d$

where T_{11} is brightness temperature in IR1, 10.5-11.5 μ m, T_{12} is brightness temperature in IR2, 11.5-12.5 μ m, θ is satellite zenith angle, a, b, c, and d are coefficients of the linear regression.

Coefficients are calculated by the linear regression method from a set of matches of satellite observations and measurements of drifting buoys and moored buoys located in GMS coverage. The calculated SSTs are compared to climatological values and unreasonable values are eliminated.

The mean is calculated from the reasonable values in the area with regular intervals of 0.25 degree latitude by 0.25 degree longitude, and is employed as the representative SST in the area. Daily mean SSTs with 0.5 degree latitude and longitude resolution are produced from a set of the mean SSTs with 0.25 degree latitude and longitude every three hours. Five-day mean, ten-day mean or monthly mean SSTs with one degree latitude and longitude resolution are produced from a set of the daily mean SSTs for five days, ten days or a month respectively.

Grid point values of daily mean SSTs are sent to Headquarters of JMA in GRIB code. Contour chart of five-day mean, ten-day mean and monthly mean SSTs are sent to the JMA Headquarters in G-III FAX. Grid point values of five-day mean SSTs are distributed to worldwide users in SATOB code through Global Telecommunication System(GTS).

4.6.3 Remarks

As a result of comparison between satellite SSTs and measurements of buoys located in GMS coverage, Root Mean Square difference of them is from 1.2 to 1.5 degree Kelvin.

4.7 Cloud Amount Distribution

4.7.1 Outline

The VISSR image data derived from observations by GMS(Geostationary Meteorological Satellite) are divided into small segments of 0.25° latitude/longitude grid. Cloud pixels are distinguished from clear sky pixels by some kinds of judgement tests in the histogram of the frequency distribution of pixels on brightness levels in a segment. Furthermore, each cloud pixel is assigned to one of five layers in height by its brightness temperature, using the vertical temperature profile.

After transferring 0.25° latitude/longitude grid to 1.0° one, the ratio of the number of cloud pixels to the number of total pixels is calculated as the total cloud amount, and the ratio of the number of cloud pixels in each layer to the number of total pixels is calculated as an each layer cloud amount. The upper cloud amount and the lower cloud amount are calculated with the boundary of 400 hPa.

The upper, lower and total cloud amount are made 3-hourly and furthermore processed statistically by units of 5-days, one month and 3-months, and disseminated to JMA headquarters in the forms of the contour maps or telegrams.

4.7.2 Description

(1) Data processing method

The VISSR image data derived from observations by GMS are divided into segments of 0.25° latitude/longitude grid in the area between 60.0°N and 60.0°S, 80.0°E and 160.0°W. For the histogram of pixels on the brightness level in a segment, the histogram shape tests and threshold tests about both visible and infrared data are performed, and the segments are classified into one of the groups of CLEAR(clear sky area existing), CLOUDY, FOG/STRATUS and UNDECIDED, based on combinations of results of those tests.

If a segment is classified into CLEAR(sky area existing) group, the clear sky brightness temperature (or the clear sky albedo) on the day is calculated by averaging a constant part of infrared histogram from high temperature side (or visible histogram from low albedo side). If not, the clear sky brightness temperature (or the clear sky albedo) is calculated by correcting the previous day's one. The derived clear sky radiance which is the clear sky brightness temperature and the clear sky albedo is used for the next day's clear sky area judgement.

The histogram shape test is performed, assuming that the histogram shape in clear sky area is characteristic for each place and time. The threshold test is to distinguish the clear sky area by an established threshold value, assuming that the cloud temperature is lower than the surface temperature and the cloud albedo is larger than the surface albedo. In the infrared threshold test, the threshold temperature is established at the proper temperature which is lower than the clear sky brightness temperature on the previous day, considering surface status feature at each place and each observation time, and the pixels with lower temperature than the threshold temperature are recognized as clouds.

By the threshold temperature used in the calculation of clear sky brightness radiance, which is described above, cloud pixels and clear sky pixels are distinguished. In the infrared histogram, the pixels with lower temperature than the threshold temperature are considered as clouds, and furthermore the cloud pixels are classified into five layers (surface - 700hPa, 700 - 600hPa, 600 - 500hPa, 500 - 400hPa and 400hPa -) by observed temperatures of pixels, based on

the vertical temperature profile data which are modified in response to the atmospheric temperature attenuation above the cloud top. Here, the pre-modified vertical temperature profile data is the 12-hour or 18-hour predicted the 2.5° grid point values by JMA's numerical prediction.

The 1.0° grid data consist of sixteen the 0.25° grid data. Total cloud amount is calculated as the ratio of the number of cloud pixels to that of total pixels. Furthermore, the cloud pixels are distinguished with the boundary of 400hPa and the ratio of the number of cloud pixels in each layer to that of total pixels is calculated as the upper cloud amount and the lower cloud amount.

This processing is performed 3-hourly, 8 times per a day and 3-hourly data are made. From 3-hourly data, one day mean cloud amount is derived. Furthermore, from one day mean cloud amount, 5-day and monthly mean cloud amount are derived. From monthly mean high cloud amount, 3-month mean high cloud amount is derived. As for high cloud amounts of the term not shorter than 5-day, the anomaly from the value of a normal year (for 13 years until 1990) derived from the observations by GMS is calculated. The statistics of mean or anomaly of the term not shorter than 5 day are disseminated for Climate Prediction Division in the headquarters of JMA in the forms of the contour maps or telegrams.

4.7.3 Remarks

The value of a normal year had been derived according to five-day mean cloud amount for 9 years (Feb. 1978-Feb. 1987) from Mar. 1987 to May 1995, and according to the data for 13 years (Feb.1978-1990) since Jun. 1995, and the anomalies for these data have been calculated.

The cloud amount had been derived only over the oceans in the area between 50.0°N and 49. 5°S, 90.5°E and 170.5°W from Apr. 1978 to Feb.1987, whereas it has been derived in the area between 59.5°N and 59.5°S, 80.5°E and 160.5°W since Mar. 1987. Monthly statistics had been derived by averaging six 5-day mean data (seven 5-day mean data only in August) until August 1993, but has been derived by averaging one-day mean data through the period of the almanac month since Sep. 1993.

The above cloud amount data are for climatology, and only infrared 1 and visible channels are used to make the data by the previous method in order to keep quality continuity of cloud amount data until GMS-5.

As the actual cloud emissivity varies from 0 to 1 by cloud kinds or status of the atmosphere, the brightness temperature sensed by the satellite represents the sum of the radiance from the high cloud, that from the low cloud and that from the underlying surface. Therefore, if it is assumed that the radiance comes from only one layer thick cloud, the guess errors of the cloud height may be caused and the errors of cloud amount of each layer classified by the height may be also caused, because the cloud altitude correction can not be performed with only infrared 1 and visible channels. Especially for high thin cirrus cloud this effect is larger, and cloud amount data (for climatology) should be used carefully. Besides, clouds smaller than one pixel covered area lead errors.

And as the variation of land surface status is larger than that of sea surface status, the error of clear sky temperature in land surface is larger. Furthermore, the error of cloud amount is larger than that in sea surface, and the data should be used carefully.

As a result of comparing the two total cloud amounts of the satellite observation and the surface observation in every month, satellite-derived one tends to be smaller than surface-

51

observation-derived one and to have smaller differences in larger cloud amounts.

Besides, as other data concerned with the cloud amount, the cloud amount (for numerical prediction) and convective cloud amount are produced 3-hourly as 0.25° latitude/longitude grid data and furthermore 6-hourly, the VISSR grid data are produced by transferring the grid interval from 0.25° to 0.5° latitude/longitude and disseminated for Numerical Prediction Division in the headquarters of JMA in a form of telegram.

On the cloud amount(for numerical prediction), the altitude correction of semi-transparency high cloud is performed, using water vapor channel data which came to be able to use from the operational start of GMS-5 in June 1995 in addition to visible and infrared 1 data processing until then, and the cloud amount is calculated more than that of GMS-4 and the previous ones.

And the convective cloud amount is the amount of cloud which is considered as convective cloud (cumulonimbus and cumulus) and is calculated, using the combination of infrared 1 and water vapor channels and the combination of infrared 1 and infrared 2 channels.

4.8 Outgoing longwave radiation and brightness temperature

4.8.1 Outline

The total amount of the radiation emitted from the earth-atmosphere system with a wavelength $3-100\mu$ m is called outgoing longwave radiation (OLR). The OLR flux is calculated from infrared 1 and water vapor channels data at the Meteorological Satellite Center. The OLR is an important variable, not only as a component of the radiation budget but also as an index representing variations of meteorological parameters. The brightness temperature can be meaningful since energy of the longwave radiation has a peak in the infrared 1 window of GMS-5. Although approximation of the OLR is now possible, the brightness temperature is also derived because of its continuity as a long-term environmental observation.

4.8.2 Description

(1) Processing method for the OLR

The OLR, which is the total amount of the longwave radiation, is calculated 3-hourly over the GMS-5 coverage ($60^{\circ}N - 60^{\circ}S$, $80^{\circ}E - 160^{\circ}W$) for every 0.25×0.25 degree latitude-longitude box. First of all, the two-dimensional histogram in each box, whose axes are the brightness temperature of infrared 1 and water vapor channels, is converted to radiance by looking up a calibration table. Then, these radiances are converted to the OLR by a multiple regression formula based on a radiative transfer model (LOWTRAN7). The LOWTRAN7 calculates atmospheric transmittance and background radiance for a given atmospheric path. The satellite zenith angle is also considered in the calculation. Subsequently, the OLR for every 0.5×0.5 degree box and every 2.5×2.5 degree box is calculated for dissemination.

(2) Processing method for the brightness temperature

The brightness temperature is produced 3-hourly over the GMS-5 coverage ($60^{\circ}N - 60^{\circ}S$, $80^{\circ}E - 160^{\circ}W$). First of all, every 0.25×0.25 degree latitude-longitude box data of the IR1 VISSR histogram is transformed into 2.5×2.5 degree box histogram data. Every brightness level is transformed into a brightness temperature by referring to the calibration information, which shows the relation between brightness level (0-255) and brightness temperature. Then, the brightness temperature histogram data is produced, using a temperature table.

(3) Data sequence

For each five day period, both three-hourly data of the OLR and the brightness temperature are averaged to take away the influence of the difference in observation times in five days(e.g. missing observations). In addition to that, five-day, monthly and past three-months average data are derived based on the five-day average. The results and three contour maps of these periods are produced and disseminated to JMA headquarters.

4.8.3 Remarks

The brightness temperature has been produced since March 1987. The OLR has been produced since GMS-5 become operational in June, 1995.

4.9 solar irradiation

4.9.1 Outline

The visible channel equipped on GMS-5 observes solar energy that is reflected from the earth's and clouds' surface or diffused by mixed gas and aerosol in the atmosphere. Taking advantage of this property, it is possible to estimate solar irradiation observed on the earth's surface from the visible channel data indirectly.

JMSC estimates solar irradiation from visible channel VISSR data for the GMS-5 coverage area (from 60 degrees N to 60 degrees S, from 80 degrees E to 160 degrees W) at every 0.25 degrees latitude/longitude grid.

4.9.2 Description

(1) Basic concept

Solar irradiation is estimated hourly from visible channel VISSR data for the time period 21 to 09 UTC, for each 0.25 degrees by 0.25 degrees grid. The region for the estimation is below :

latitude direction : from 60 degrees N to 60 degrees S

longitude direction: from 80 degrees E to 160 degrees W

In estimation, the following radiative transfer model is adopted. First, under clear sky conditions, solar irradiation is modeled as follows:

$$\mathbf{E} = \mathbf{E}_0 \mathbf{d}^{-2} \cos(\mathbf{q}) \mathbf{T}(\mathbf{q}) \tag{1}$$

where E: hourly solar irradiation (hourly solar net flux) (MJ/m^2) , E₀: solar constant (hourly solar net flux) (4.923 MJ/m²), d: the ratio of actual to mean sun-earth distance, q: sun zenith angle, T(q): transmittance of the atmosphere.

Secondly, we consider a cloudy scattering atmosphere with no absorption and molecular scattering and we assume isotropy of the radiance reflected by the cloud layer and the earth's surface. Then the planetary albedo A is given by

$$A = A_{c} + (1 - A_{c})^{2} A_{s} / (1 - A_{c} A_{s})$$
(2)

where A_c is the cloud albedo, A_s the earth's albedo. In this model, solar irradiation at the earth's surface expressed without A_c is given by

$$E = E_0 d^{-2} \cos(q) (1 - A) / (1 - A_s)$$
(3)

Thirdly, the atmospheric transmission effect in eq.(1) and cloud effects in eq.(3) are combined to give the equation for estimating solar irradiation at the earth's surface is derived.

$$E = E_0 d^{-2} \cos(q) T(q) (1 - A) / (1 - A_s)$$
(4)

(2) Data processing method

In the operational estimation process, d is estimated from the satellite observation time, and T(q) is estimated taking account of absorption due to absorbing gases, Rayleigh and Mie scattering, scattering due to mixed gas, and multiple scattering in the atmosphere. For A_s, the

3 hourly minimum albedo from 1987 to 1991 for each grid is prepared in advance. It is interpolated to hourly data, and regarded as hourly surface albedo for each grid. For A, the average albedo observed by GMS-5 for each grid (this value is expressed as 'L' below) is corrected for sun zenith angle, and obtained. In a short enough sun zenith angle interval, A is assumed to be proportional to L and expressed as follows:

$$A = aL/\cos(q) + b \tag{5}$$

where a is the correlation coefficient computed with weight least regression of satellite estimates against pyranometer measurements obtained from the JMA observation network, and b is bias. The sets of a and b are calculated every 0.5 degrees sun zenith angle interval. Using eq.(5), eq.(4) is reformed as follows:

$$E = E_0 d^{-2} \cos(q) T(q) (1 - aL/\cos(q) + b)/(1 - A_s)$$
(6)

Using eq.(6), JMSC estimates solar irradiation hourly from 21 to 09 UTC for each grid, and accumulates it with the average albedo and cosine of the sun zenith angle that are used in the estimation. The solar irradiation is disseminated to JMA headquarters.

4.9.3 Remarks

The rms of errors obtained from comparison of satellite estimates with pyranometer measurements is about $0.4(MJ/m^2)(Jun.-Dec. 1996)$. This error is mainly due to the assumption of isotropy in the theory. Therefore, the error becomes greater when sun zenith angle is large and scattered cloud exists in the object grid. As the earth's surface albedo (A_s) takes larger value in some cases(for example, snow/ice cover), the error of estimation becomes greater, too. User should pay attention to these points in using these data.

4.10 Snow-ice index

4.10.1 Outline

The visible channel on GMS-5 observes the short-wave radiation reflected by the earth's surface. Snow/ice has a large reflecting property in this wavelength region. Taking advantage of it, JMSC estimates an index about the earth's surface status of snow/ice cover (snow-ice index) from visible channel VISSR data for GMS-5 coverage area (from 60 degrees N to 20 degrees N, from 80 degrees E to 160 degrees W) at every 0.25 degrees latitude/longitude box once a day.

4.10.2 Description

(1) Basic concept

The visible channel observes short-wave radiance reflected by the earth's surface. It becomes greater if the earth's surface is covered with snow/ice. Taking advantage of it, it is possible to monitor snow/ice cover by using the snow/ice index (SI) defined in eq.(1).

$$SI = A_s - A_{min} \tag{1}$$

where A_s : the earth's surface albedo of the day of estimation, A_{min} : the minimum albedo of the earth's surface in a time series long enough. A_s is the albedo that indicates the earth's surface status of the day of estimation, on the other hand, A_{min} is the albedo under the least snow/ice cover condition. A_s becomes greater as snow/ice covers the earth's surface while A_{min} remains a constant. Then SI becomes greater as the snow/ice covers the earth's surface.

Using eq.(1), JMSC estimates snow/ice index(SI) once a day at every 0.25 degrees latitude/ longitude box for GMS-5 coverage area (from 60 degrees N to 20 degrees N, from 80 degrees E to 160 degrees W).

(2) Data processing method

The operational estimating process is as follows.

At first, A_{min} is prepared in advance. It is obtained from the visible channel data for five years (from 1987 to 1991).

Next, A_s is extracted. Albedo becomes larger when cloud exists in the object grid because cloud reflects short-wave radiance strongly. To avoid this cloud's influence, the minimum value among albedo data for the last fifteen days is extracted. Moreover, albedo is very sensitive for the angle of incident energy, generally. In this estimation, albedo for the small solar zenith angle (two data per day) is selected. After all, A_s is the smallest value among thirty data.

Then SI is the difference between A_s and A_{min} . SI is estimated once a day, and it is accumulated with A_s and the cosine of the solar zenith angle which are used in the estimation. The snow/ice index is disseminated to JMA headquarters.

4.10.3 Remarks

This index is used to distinguish snow/ice cover. The probability of snow/ice cover becomes larger when this index takes large value. But it varies with each grid's surface property, matter, and season. So the user must judge snow/ice cover from this index for each grid. And

when cloud has existed in the same grid for more than fifteen days, this index becomes larger than that under cloudless conditions. Users should pay attention to these points in using this index.

 $\sim_{\rm b}$

-

4.11 Cloud Information Chart

4.11.1 Outline

The purpose of the Cloud Information Chart is to provide local weather services the information extracted from the data observed by GMS-5 so that they can make use of it for weather watch and forecasting. It contains information about vertical/horizontal cloud distribution in the atmosphere obtained from observed data, and also contains information which is added by the analyst about synoptic and meso scale atmospheric conditions and disturbances.

4.11.2 Description

The Cloud Information Chart is a polar-stereo graphic projection chart centered on Japan with a scale of 1:21,300,000. Standard longitude is 140E, the south-west end is at (15N, 117E) and the north-east end is at (54.9N, 173.4E). The Cloud Information Chart is produced every 3 hours and distributed within 30 minutes after observation time. An example of a Cloud Information Chart is shown in Fig.1.

Contents of the cloud information chart are as follows:

(1) Cloud types

Cloud types are shown by hatched patterns corresponding to each cloud type. Cloud types are automatically classified by using an algorithm that makes use of the multi-spectral data of GMS-5 together with NWP data. The following seven cloud types are classified, i.e. Cumulonimbus, Cumulus congestus, cumulus, upper level cloud, middle level cloud, fog, and dense cloud. Multi layered cloud is indicated by the overlap of patterns.

Automatically classified cloud types are quality controlled by an analyst through man machine interaction.

(2) Isotherms of TBB and the dark area of water vapor image

The water vapor field in the upper and middle troposphere is observed by the water vapor channel of GMS. Low TBB areas in a water vapor image correspond to moist areas and high TBB areas correspond to dry areas. When upper dry air (high TBB) covers lower warm moist air, it is known that potential instability is intensified and Cb development may be prompted. It is useful to recognize these upper dry areas for short range forecasting. Isothermal lines of TBB are drawn on the chart every 10°C, and the dry areas where TBBs are warmer than -20°C are shown as dark area.

(3) Analytic information

Some kinds of cloud patterns are closely related to significant meteorological phenomena such as cloud vortices, convective cloud line, cirrus streaks etc. These cloud patterns are recognized by the man-machine interactive procedure and displayed on the chart by symbolic marks. Upper level jet streams and troughs, which are recognized in water vapor image, are also added. Symbols are shown in Table 4.11.1.

If significant trends and features about these cloud patterns are recognized, alphabetical marks are attached to the cloud patterns, and the corresponding information is tabulated in the description columns on the left side of the chart. The column consists of the location,

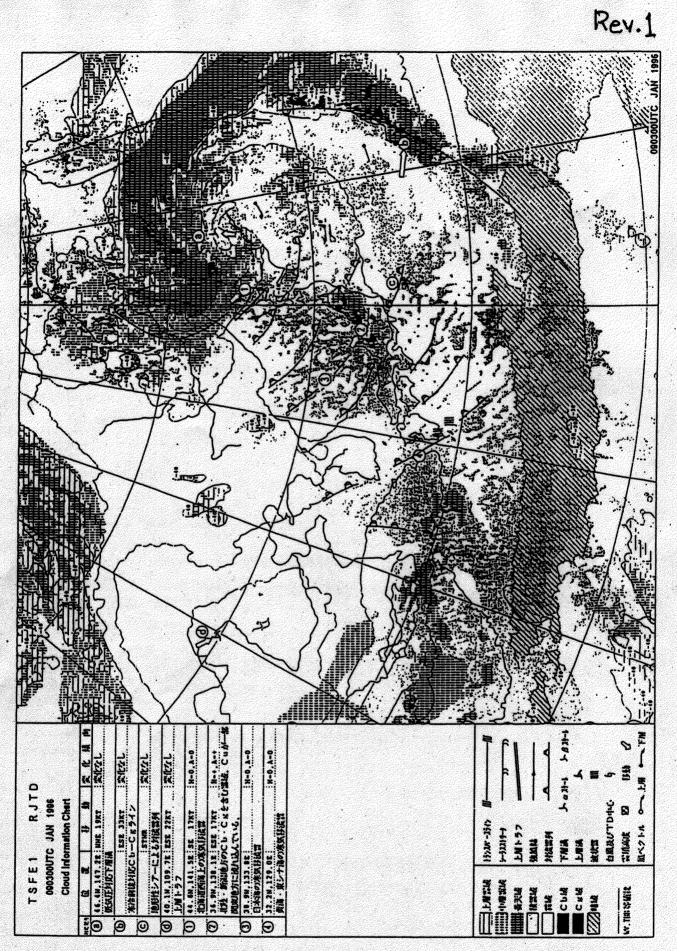


Fig. 1. Cloud Information Chart

propagation speed, developing/weakening trend, and comment.

Significant cloud areas are marked in the chart, and also interpreted in the columns. Significant cloud areas include active convective region, cloud areas which suggests fronts or centers of disturbances, rapid darkening areas in water vapor image etc.

(4) Satellite cloud drifting wind vector and cloud height

Two kinds of values are measured and put on the chart, satellite cloud drifting vector which is derived from the motion of upper level cirrus and low level cumulus, and cloud top height calculated from TBB. They are shown by each mark (Table 4.11.1). For semi-transparent cirrus, cloud top height is estimated by infra-red and water vapor data.

Satellite Cloud Information Chart (Far East)

The Satellite Cloud Information Chart (Far East) is the meteorological product which shows distribution of clouds classified by altitude and active convective cloud areas. It is based on GMS Image data displayed on Mercator chart for aviation weather forecasting. A cloud top height in this chart is expressed in feet unit. Its spatial resolution and area covering are 0.25 degree in latitude and longitude and a box of 60.0N- 0.0N and 90.0E- 170.0W respectively. This product is disseminated hourly to JMA headquarter.

A subsection of the AMM state basis graph of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997) and the Ammerican Structure (1997).
 A subsection of the Ammerican Structure (1997).

Macht Brief

	, and the end of the end of the first the first the decay the standard structure in the standard state 0.0027×10^{10}
	engine politika elektronomia a constructiva elektronomia. Providente elektronomia elektronomia elektronomia ele
$\sqrt{1} \left(\frac{1}{2} \right) < 0$	2. [74] An object of the second se
111	and the second
	الم المحمولة المحمولية المحمول المحمد التي يتما والمحمول المحمولية في المحمولية والمحمولية والتي في ا
	energy waar wijzer par galtig op were een op at die eerste
	egyptetti el l'el 1990 a l'estre el contre el code a l'activitatione de la comparte de
· :	and the first second
n abortation	and a second device of the second
er etterne i i	z_{ij} and z_{ij} is the end of the end of the structure of the end of Z_{ij} of Z_{ij} ,
	and the second
· · ·	and the state of the second
	and an an an an an ann an an an an an an an
	1.1. Additional accessible of additional data and the contract of the second s second second s Second second se
. ··	and the configuration of general sectors and the construction of t

.

the same share the second second second

- 1

(Symbol)	(Article)		
<u>ب</u>	(Low Level Cloud Vortex)		
- 43	(Upper Level Cloud Vortex)		
\$	(Center of Typhoon)		
	(Cirrus Streak)		
<u> </u>	(Transverse Line)		
	(Convective Cloud Line)		
ــــــــــــــــــــــــــــــــــــــ	(Meso- β Scale Cloud Vortex)		
	(Wave Cloud)		
	(Jet Streak)		
	(Upper Level Trough)		
0-m	(Upper Level Cloud Motion Wind)		
	(Lower Level Cloud Motion Wind)		
R	(Cloud Top Level)		
P	(System Propagation)		

.

.

.

Table 4.11.1 Additional information and symbols

4.12 Typhoon Information

4.12.1 Outline

MSC analyzes the location, movement, intensity and size of tropical cyclones using GMS images throughout the cyclone's life cycle. All analyses are carried out by man-machine interactive operation on the work stations. Enhanced images and time lapse movie loops are used to determine the location, movement and cloud system size of the tropical cyclone. Intensity (CI number) of the tropical cyclone is estimated by Dvorak's method based on the enhanced infrared images. The results of the analyses are disseminated as SAREP to the Typhoon Committee Members' countries and the domestic forecast centers. The summary of SAREP for the users is as follows.

4.12.2 Description

(1) SAREP contents

SAREP (WMO international code FM 85-IX) is the name of the code for reporting synoptic interpretation of cloud data obtained by a meteorological satellite. Part A of the SAREP, which deals with information on tropical cyclones, is disseminated from MSC on the Global Telecommunication System (GTS) when a tropical cyclone is located in the region between 100° E and 180° E in the northern hemisphere. Information on the location, movement, and cloud system size of the tropical cyclone is disseminated 3-hourly (00, 03, 06, 09, 12, 15, 18, 21 UTC) under the heading TCNA20 RJTD and information on the tropical cyclone's intensity in addition to the above mentioned data is disseminated 6-hourly (00, 06, 12, 18 UTC) under the heading TCNA21 RJTD.

CODE FORM

TCNAjj RJTD YYGGgg (BBB) CCAA YYGGg IIiii [Name of cyclone] [Common No.] ntntLaLaLa 1LoLoLoLo 1AtWrattm 2StSt // 9dsdsfsfs =

TCNAjj = TCNA20 : Location, accuracy, movement, and cloud system size are transmitted.
TCNA21 : Information of intensity are added to TCNA20
RJTD Identification code of JMA
YYGGgg : Observed time, i.e. day, hour, minute by UTC (gg is '00' always)
BBB Correction code. Only in case of correction, first CCA, next CCB, CCC,CCZ
CCAA : This indicates a report from a land station and part A of the SAREP
YYGGg : Observed time, i.e. day, hour, minute by UTC (g is '0' always)
IIiii : Station code number (47644)
[Name of cyclone]: Name of the tropical cyclone whenever it is known
[Common No.]: Number assigned to the typhoon whenever it is known
n _t n _t : Number assigned to the tropical cyclone
$L_aL_aL_a$: Latitude of geographical cyclone center in 0.1 degree
$L_0L_0L_0L_0$: Longitude of geographical cyclone center in 0.1 degree
A_t : Accuracy of the estimated cyclone position (shown in Table 4.12.1)
W_t : Size of the cyclone cloud system (shown in Table 4.12.2)

- at Previous 24-hour trend of cyclone intensity (shown in Table 4.12.3)
- t_m : Time interval of movement (shown in Table 4.12.4)
- S_tS_t : Intensity of the cyclone (CI-number) (shown in Table 4.12.5)
- d_sd_s : Direction of movement of the tropical cyclone center in 10 degrees
- fsfs : Movement speed of the tropical cyclone center in knots

*Note 1. If speed is less than 3kt, $d_sd_s=00$, $f_sf_s=00$.

If speed is undetermined, $t_m = /$, and $9d_sd_sf_sf_s$ group is omitted.

 When two or more cyclones exist, the groups 'n_tn_tL_aL_aL_a 1L_oL_oL_oL_oL_o 1A_tW_{fat}t_m 2S_tS_t // 9d_sd_sf_sf_s' shall be repeated for each cyclone, preceded by the name whenever it is known.

(2) Accuracy of the estimated cyclone position (A_t)

Accuracy is classified into 5 levels in the code (shown in Table 4.12.1). There are some error factors such as that the systematic error of location determination of GMS images is about 0.1 degree and that there is parallax of tall clouds being seen farther than actual from the direction of the satellite. It is necessary to pay attention to those errors.

(3) Size of the cyclone cloud system (W_f)

Size of the cyclone cloud system is defined as the average diameter of the dense and almost circular cloud area which surrounds the cyclone's center. In the case of no Cbs near the center, like in the shear type, the system size will be undetermined (i.e. $W_t = /.$ shown in Table 4.12.2).

(4) Intensity of the cyclone and the trend of intensity (S_tS_t, a_t)

Dvorak's methods are used to estimate the intensity of tropical cyclones from satellite images. This method estimates the intensity by the cloud pattern of the tropical cyclone. MSC adopts and uses this method and disseminates the result by SAREP. In this method, the most important index is the Current Intensity number (CI number). The CI number is the index representing the cyclone's cloud system, considering the intensity trend. It is determined by 0.5. The previous 24-hour trend of the cyclone intensity is coded according to Table 4.12.3. The relations between the CI number and the central pressure are shown in Table 4.12.5. (valid only for the cyclones in western North Pacific Ocean)

(5) Time interval for determination of movement (t_m)

Movement speed is calculated by comparing the present observation with the observation 6 hours before. However, if the movement speed is very slow or very quick, the time intervals are set to longer or shorter than 6 hours respectively (shown in Table 4.12.4).

Table 4.12.1 A_t : Accuracy of the estimated cyclone position

code figure	meanings
0	cyclone center within 10 km of the transmitted position
1	cyclone center within 20 km of the transmitted position
2	cyclone center within 50 km of the transmitted position
3	cyclone center within 100 km of the transmitted position
4	cyclone center within 200 km of the transmitted position
5	cyclone center within 300 km of the transmitted position
/	cyclone center undetermined

- 1

~

Table 4.12.2 $\ W_{t}\colon$ Size of the cyclone cloud system

code figure	size (latitude/longitude)		
0	less than 1°		
1	1° — 2°		
2	2° — 3°		
3	3° — 4°		
4	4° — 5°		
5	5° — 6°		
6	6° — 7°		
7	7° — 8°		
8	8° — 9°		
9	over 9°		
/	undetermined		

code figure	meaning	CI-number change in previous 24 hours	
0	rapidly weakening	-1.5 or less	
1	weakening	-1.0 to -0.5	
2	no change	0.0	
3	developing	0.5 to 1.0	
4	rapidly developing	g 1.5 or more	
9	no previous observation		
/	undetermined		

- 1

Table 4.12.3 at: Previous 24-hour trend of cyclone intensity

Table 4.12.4 t_m : Time interval of movement

_

code figure	time	interval		
0	less th	an 1 hour		
1	1≦	2 hour		
2	2≦	3 hour		
3	3≦	6 hour		
4	6≦	9 hour		
5	9≦	12 hour		
6	12≦	15 hour		
7	15≦	18 hour		
8	18≦	21 hour		
9	21≦	30 hour		
/	movement i	s not contained		

Code figure	Current intensity (CI number)	Maximum sustained wind speed (knots)	Central pressure (hPa)	
00	Decaying			
15	1.5	25		
20	2.0	30	1000	
25	2.5	35	997	
30	3.0	45	991	
35	3.5	55	984	
40	4.0	65	976	
45	4.5	77	966	
50	5.0	90	954	
55	5.5	102	941	
60	6.0	115	927	
65	6.5	127	914	
70	7.0	140	898	
75	7.5	155	879	
80	8.0	170	858	
99	Becoming extratropical cyclone			
11	Undetermined			

- 1

Table 4.12.5 StSt: Intensity of the cyclone (CI-number)

Note: The procedures for determining the Current Intensity (CI) Number from satellite imagery are in publication WMO. NO. 305 —Guide on the Global Data-processing System.

.

4.13 ISCCP DATA

4.13.1 Outline

The operational data collection phase of the International Satellite Cloud Climatology Project (ISCCP) began on 1 July 1983 as the first element of the World Climate Research Program (WCRP). Since then, visible and infrared images from the international network of operational geostationary and polar orbiting meteorological satellites (GOES-E, GOES-W, METEOSAT, GMS and NOAA/TIROS-N) have been routinely processed to develop a global data set of calibrated radiances and to derive cloud parameters for climatological research.

4.13.2 Description

In the ISCCP, the MSC provides the observation and distributes the image data. Three types (AC, B1 and B2) of image data set are produced from the observation data of GMS and sent to a few processing centers.

The general flow of data processing is shown in Fig.4.13.1

4.13.2.1 AC data

AC data are sector image data of full resolution covering an area that is around sub-satellite point (SSP) and is coincident with the orbital swath of the polar orbiting satellite. The data are produced five times a month and are sent to the Satellite Calibration Center (SCC) at Lannion, France, for determination of inter-satellite normalization parameters.

4.13.2.2 B1 data

B1 data are image data of reduced resolution (around 10km) over the full GMS coverage area. The data are produced every three hours and are sent to ISCCP Central Archive (ICA) at Washington, U.S.A.

4.13.2.3 B2 data

B2 data are image data of reduced resolution (around 30km) over full GMS coverage area. The data are produced every three hours and are sent to the Global Processing Center (GPC) at New York, U.S.A.

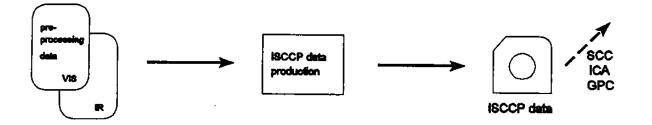


Fig.4.13.1 The general flow of data processing

4.14 Global Precipitation Climatology Project (GPCP) Data Set

4.14.1 Outline

It has been recognized that latent heat with condensation of water vapor plays an important role in large scale atmospheric circulations. The Global Precipitation Climatology Project (GPCP) has been planned as a part of the World Climate Research Program (WCRP) of World Meteorological Organization (WMO) / International Council of Scientific Union (ICSU) in 1984. It aims to estimate the spatial and temporal average of global precipitation.

MSC has been producing histogram data sets of infrared (IR) brightness temperature (TB) derived from GMS IR window channel and their statistics on an operational basis since March 1984 and has been providing those data to the GPCP on a routine basis since March 1987. The data are sent to the Geostationary Satellite Precipitation Data Center (GSPDC) of the GPCP to calculate the monthly global precipitation.

4.14.2 Description

The function of MSC at the GPCP data processing center for GMS is as follows;

- (1) Acquire IR TB data in the area between 40° N and 40° S, and 90° E and 170° W, 3-hourly (nominally at 00, 03, 06, 12, 15, 18 and 21 UTC).
- (2) For each data, assign picture elements (pixels) to 2.5°×2.5° (latitude/longitude) "boxes" and compute the following statistics for each "box": sixteen class histogram (class limits are shown in Table 4.14.1), mean value and variance.
- (3) For each five day period (pentad), aggregate the statistical information to produce the following quantities for each 3-hourly time: sums of the histogram class, averages of the mean values and averages of the variances.
- (4) For every three months, the data set for the past three months (18 pentads) is accumulated on a magnetic tape and sent to GSPDC.

This procedure will be continued until 2000.

4.14.3 Remarks

Produced global merged data sets of 5-day infrared statistics and accumulated 5-day and pseudo-monthly rainfall estimates from GMS, GOES-USA and METEOSAT-EUMETSAT are recorded and archived on magnetic tapes.

Class	Temperature Limits (K)
1	270.5 < T
2	$265.5 < T \le 270.5$
3	$260.5 < T \le 265.5$
4	$255.5 < T \le 260.5$
5	$250.5 < T \le 255.5$
6	$245.5 < T \le 250.5$
7	$240.5 < T \le 245.5$
8	$235.5 \le T \le 240.5$
9	$230.5 < T \le 235.5$
10	$225.5 < T \le 230.5$
11	$220.5 < T \le 225.5$
12	$215.5 < T \le 220.5$
13	$210.5 < T \le 215.5$
14	$200.5 < T \le 210.5$
15	$190.5 < T \le 200.5$
16	T≤190.5

Table 4.14.1 GPCP IR histogram class boundaries.

.

.....

(Blank page)

· · · •

.

- 1

.

5 GMS DATA COLLECTION SYSTEM

5.1 General Description

The Data Collection System(DCS) is the system that collects environmental data from Data Collection Platforms(DCPs) and distributes them for users.

DCPs are automatic environmental data observation systems. They may be installed isolated islands, mountains, ships, buoys or aircrafts. In all cases, observed data are transmitted from them to the Meteorological Satellite Center (MSC) via GMS. Then, the data are reformatted and distributed to users over the Global Telecommunications System (GTS).

5.1.1 Data Collection Platforms

There are two types of DCPs as follows;

- a) International DCPs (IDCPs) are mobile platforms that move from the telecommunications field of view of one geostationary satellite to another.
- b) Regional DCPs (RDCPs) are fixed platforms that have telecommunications with a particular geostationary satellite only.

All RDCPs in the GMS coverage area currently are the self-timed type one. They transmit messages to GMS at fixed times.

5.1.2 Radio Frequency Specification

The radio frequency specifications are as follows;

Up-Link						
Frequency bands allocated	402.0 - 402.1 MHz	(IDCP)				
	402.1 - 402.4 MHz	(RDCP)				
Number of channels	33	(IDCP)				
	100	(RDCP)				
Bit rate	100 bit/sec.					
Power (EIRP)	43 - 46 dBm					
Type of modulation	PCM - PSK (± 60)	")				
Down-Link						
Frequency bands allocated	1694.3 - 1694.4 MH	Iz (IDCP)				
	1694.4 - 1694.7 MHz (RDCP)					
Bit rate	100 bit/sec.					
Power (EIRP)	34 dBm					
Type of modulation	PCM - PSK (± 60)	')				

5.2 DCPs Data Processing

The main functions of the DCPs data processing system are as follows;

- a) DCPs reports collection,
- b) collected data verification,

-whether the data received have errors such as parity error or not

-the data are formatted in a standard WMO code

-DCP address is registered in data base of the DCPs data processing system

-the observation time in the data agrees with the preset slot time

-the number of words that constitute the data is 649 or under

If the results of verification as above are not acceptable, the data are not distributed.

c) an exclusive header appendix to the reports,

d) the reports distribution to users through GTS on a real - time basis.

The DCPs reports are primarily formatted in a standard WMO code by each DCP. However, if the data is raw, it is formatted at the DCPs Data processing system.

Users are able to discriminate the DCP report that is needed by referring to the to refer a header appended to the report.

5.2.1 Report Format

The DCPs report consists of the following elements. (See Figure 5.1)

-an unmodulated carrier for 5 seconds,

-a 250 bit alternate "0","1" preamble,

-a 15 bit Maximal Linear Sequence (MLS) code synchronization word,

-the DCP address that is 31 bit Bose-Chaudhuri-Hocquenghem (BCH) coded word,

-the environmental data that is a maximum of 649 words, each word being 8 bits longs,

-the 31 bit End of Transmission (EOT) sequence.

Refer to "Technical Requirement of Data Collection Platform (DCP)" for further details.

unmodulated carrier	preamble	sync	address	environmental data	E.O.T.
5 second	250 bits	15 bits	31 bits	649 (max) words of 8 bits	31 bits

Fig.5.1 : DCP Report Format

6 Data Archives

6.1 Type and Period of Data Archives

The type and Period of meteorological Satellite data archives at the MSC are shown in Table 6.1.1

Manegement of these data for users is carried out at the System Engineering Division, Data processing Department, MSC (tel: 0424-93-1111).

6.2 Monthly Report of the Meteorological Satellite Center

The Monthly Report of the Meteorological Satellite Center has been published on a CD-ROM since January 1996. Previously it was published as a printed report. Image data have been changed to CD-ROM since July 1996.

Contents and forms of observational monthly report are described in appendix I.

Type of Data	media	retention period	Data period (*1)
Picture data			
Original negative film	Film	10yr.	Apr.1978
Printed positive picture	Picture	5yr.	ditto
Microfilm	Film	Permanent	ditto
16mm animation film	Film	10yr.	Apr.1978-Mar.1990
VTR tape	Video Tape(VHS)	30yr.	Nov.1978
Digital image data(VISSR archive d	lata) (*2)		
IR data	MT	10yr.	Mar.1981-Feb.1987
	СТ	ditto	Mar.1987-May.1995
	CMT	ditto	Jun.1995.
WV data	CMT	ditto	Jun.1995-
VIS data	MT	ditto	Mar.1981-Feb.1987
	СТ	ditto	Mar.1987-May.1995
	CMT	ditto	Jun.1995-
Extracted data			
VISSR histogram data(IR)	MT		Jun.1982-Oct.1982
			Jan.1984-Feb.1987
	СТ	ditto	Mar.1987-May.1995
	CMT	ditto	Jun.1995-
VISSR histogram data(VIS)	CMT	ditto	ditto
Cloud grid point data	ditto	ditto	ditto
Cloud amount	MT	ditto	Feb.1978-May.1995
	CMT	ditto	Jun.1995-
Sea surface temperature (SST)	MT	10yr.	Feb.1978-May.1995
	CMT	ditto	Jun.1995-
Brightness temperature distribution	MT	ditto	Mar.1987-May.1995
	CMT	ditto	Jun.1995-
Cloud motion wind	MT	ditto	Apr.1978-May.1995
	CMT	ditto	Jun.1995-
ISCCP data (B1)	MT	ditto	Jun.1983-May.1995
	CMT	ditto	Jun.1995-
ISCCP data (B2)	MT	30yr.	Apr.1988-May.1995
	CMT	ditto	Jun.1995-
GPCP data	MT	ditto	Jan.1986-May.1995
	CMT	ditto	Jun.1995-
SEM data	MT	ditto	Apr.1978-May.1995

Table 6.1.1 Data archives

- 1

a. Geostationary Meteorological Satellite

Type of Data	media	retention period	Data period (*1)
Contour chart, etc.			
Cloud amount	chart	5yr.	Jan.1991-
Sea surface temperature (SST)	ditto	ditto	ditto
Brightness temperature distributio	on ditto	ditto	ditto
Cloud motion wind	ditto	ditto	ditto
SCIC (Vicinity of Japan) (*3)	ditto	3yr.	ditto
SCIC (Far East area) (*3)	ditto	ditto	ditto
b. Polar Orbiting Satellite (NOA	A)		
Digital data			
HRPT data	СТ	5yr.	Mar.1987-May.1995
	CMT	5yr.	Jun.1995-
Extracted data			
TOVS data	MT	10yr.	Nov.1980-May.1995
	CMT	ditto	Jun.1995-
NOAA surface temperature data	MT	ditto	Jan.1981-May.1995
	CMT	ditto	Jun.1995-
Ozone data	CMT	ditto	Jun.1995-
c. Publication			
Title			retention
Monthly Report of Meteorologica	1 Satellite Cen	ter	Permanent
Technical Report of Meteorologic	al Satellite Ce	enter	ditto
All publications published by MSC	C		ditto

Table 6.1.1 Data archives

(*1) Data archiving period. The archive data out of retention period might be discarded without announcement.

(*2) Format of these data is described in Appendix F.

(*3) Style is modified since Jun.1995.

(Blank page)

.

MDUS SPECIFICATIONS

MDUS receives the Stretched VISSR (S-VISSR) signal which is transmitted via GMS.

1. Stretched VISSR Transmission

The S-VISSR are transmitted by each scan at 14 Mbps within approximately 50 mS and processed to reduce at 660 Kbps and edited into the S-VISSR data format at the CDAS. It is accompanied by dummy data to modulate the up-link carrier continuously white raw data are transmitted within this time slot.(see Fig.A.1) S-VISSR data are relay during the remainder time of the on board S-band transponder and coincidentally with the VISSR operational mode of the GMS-5.

2. Stretched VISSR Data Format

The S-VISSR of each satellite spin-scan (line) are edited into sectors of the S-VISSR data of the line. A sync code is leading each S-VISSR data for acquisition and decoding at MDUSs. Transmission sequence of the sectors are shown in Fig.A.2.

2.1 SYNC Code

SYNC code is transmitted to allow bit and frame SYNC by demodulators and decommutators at user sites. This code consists of 20,000 bits of a Pseudo-Noise (PN) code of Maximal Length Sequence (MLS) generated by means of a 15 digits serial shift register. The PN sequence begins with the fixed pattern (010001001100001) at a timing of every satellite spin.

A 15 digits local serial shift register is necessary for SYNC with the incoming S-VISSR data stream at the user site and SYNC is established as follows.

Any 15 consecutive bits in the detected bit stream are loaded into the local shift register and then the shift register starts to generate a bit stream of MLS PN pattern. This PN pattern is locally generated and the incoming bit pattern is continuously compared with this locally generated pattern. When a bit stream of SYNC code comes in, both bit patterns will be satisfactory coincident indicating SYNC. SYNC will be maintained unless any error occurs in the input bit stream. Otherwise, this procedure has to be repeated until satisfactory matching can be obtained. In this way, the user station can acquire the start point of the information sectors.

This bit stream is also necessary in order to descramble the information sector's bit stream.

2.2 Information Sectors

There eight information sectors , which consist of :

-the documentation (DOC) sector

⁻three infrared image (IR) data sectors

-four visible image (VIS) data sectors

The DOC sector and each IR sector contain 2,293 eight bit words and each VIS sector contains 9,166 six bit words. Besides every sector has also 16 bits of the Cyclic Redundancy Check (CRC) code and 2,048 bits filled with logic zeros (Filler). The filler provides approximately 3 msec of buffer time for data acquisition by a computer system of a user station.

2.2.1 Documentation Sector

This sector is divided into nine information blocks:

-sector ID block
-spacecraft (S/C) and CDAS status block
-simplified mapping block 1
-sub-commutation ID block
-simplified mapping block 2
-orbit and attitude information block
-MANAM block
-Calibration data block
-spare block

The block format is shown in Fig.A.3.

The parameters block for simplified mapping, orbit and attitude data block and the MANAM block are sub-commutated into 25 groups due to the data volume. Each group is repeatedly transmitted on 8 consecutive scan lines to reduce the errors. Thus the complete documentation text is received every 200 scan lines with redundancy of 7 lines.

(1) Sector ID block

This block contains 2 words (16 bits), all logic zeros, and is used to identify the documentation sector.

(2) S/C and CDAS Status block

This block contains 126 words (1,008 bits). This information is provided to process S-VISSR image data. Details are shown in Table.A.1.

(3) Simplified Mapping block 1(constants)

This block consists of 64 words (512 bits). The data in this block is used for simplified mapping together with the data in the parameters block. Details are shown in Table.A.2. This block is inserted into each line.

(4) Sub-Commutation ID block

This block consists of 4 words (32 bits). The first counter (194th word from top of the DOC) is the repeat counter indicating the sub-commutation ID and increments from 0 to 24 for the 25 documentation text groups. The second counter (196th) is also the repeat counter and

increments from 0 to 7 for each repeated line of a group. The most significant words of each counter (193th and 195th) are always zero. Recovery of a whole information block containing the parameters block for simplified mapping, orbit and attitude data and MANAM, requires 200 lines.

(5) Simplified Mapping block 2 (parameter table)

This block consists of 2,500 words. 100 words are contained in each line. The same data (100 words) are repeated for 8 lines to avoid missing (so there are 25 sub-commutations in the block). Thus 200 lines are needed to acquire all the information of this block. Details are shown in Table.A.3.

(6) Orbit and Attitude Data block

This block consists of 3,200 words and is used for mapping on the received image data by means of a large scale computer system. 128 words (1,024 bits) are contained in each line. The same data (128 words) are repeated for 8 lines to avoid missing. Thus 200 lines are needed to acquire all the information in this block. Details are shown in Table.A.4,A.5 and A.6.

(7) MANAM block

This information is provided to notify users of the GMS operational schedule. The block is made of 10,250 words. 410 words (3,280 bits) are continued in each line. The same data (410 words) are repeated for 8 lines to avoid missing. Thus 200 lines are needed to acquire all the information of this block.

Data in the MANAM block is coded as ASCII characters. One set of characters consist of 80 alpha-numeric characters, CR and LF (82 bytes in total), so 5 sets of character based information are included in a line. Thus a complete MANAM block would consist of 125 sets of characters (5 sets/line by 25).

Users are able to directly obtain up to 125 lines of MANAM information on a line printer.

(8) Calibration data block

Information to convert the level value of S-VISSR into a reflection quantity black body brightness temperature of emission. Details are shown in Table.A.7.

(9) Spare block

This block contains 1,203 words (9,624 bits) and is filled with zeros. The block is provided for future expansion.

2.2.2 Infrared Image Data Sectors

Each IR data sector consists of 2 words (16 bits) of sector ID code, 2,291 words of IR image data, 16 bits of CRC code and 2,048 bits of Filler.

The first IR sector contains the observed image data. The rest are reserved for future use and are filled with logic zeros. IR sector 1 contains 2,291 pixels of image data derived from one VISSR scan. Each pixel of data is thermally calibrated and represented in an eight bit word. It corresponds to the VISSR Instantaneous Field of View (IFOV) for 140 μ rad sampling with a resolution of 5 km around the SSP.

IR sector code

Each IR data sector consists of 2 words (16 bits) and is used to identify the IR sectors. The following list shows the code assignments.(refer to Fig.A.4)

2.2.3 Visible Image Data Sectors

Each visible (VIS) image data sector consists of 2 words (12 bits) of sector ID code, 9,164 words of VIS image data, 16 bits of CRC code and 2,048 bits of filler.

The four VIS sectors contain the observed image data of the four visible detectors from one VISSR scan. Each sector contains 9,164 pixels of data and represented in a six bit words. It corresponds to the visible IFOV for 35 μ rad sampling with the resolution of 1.25 km at the SSP.

VIS sector ID code

This code consists of 2 words (12 bits) and is used to identify the VIS sectors. The following list shows the code assignments. (refer to Fig.A.5)

2.3 Dummy Data

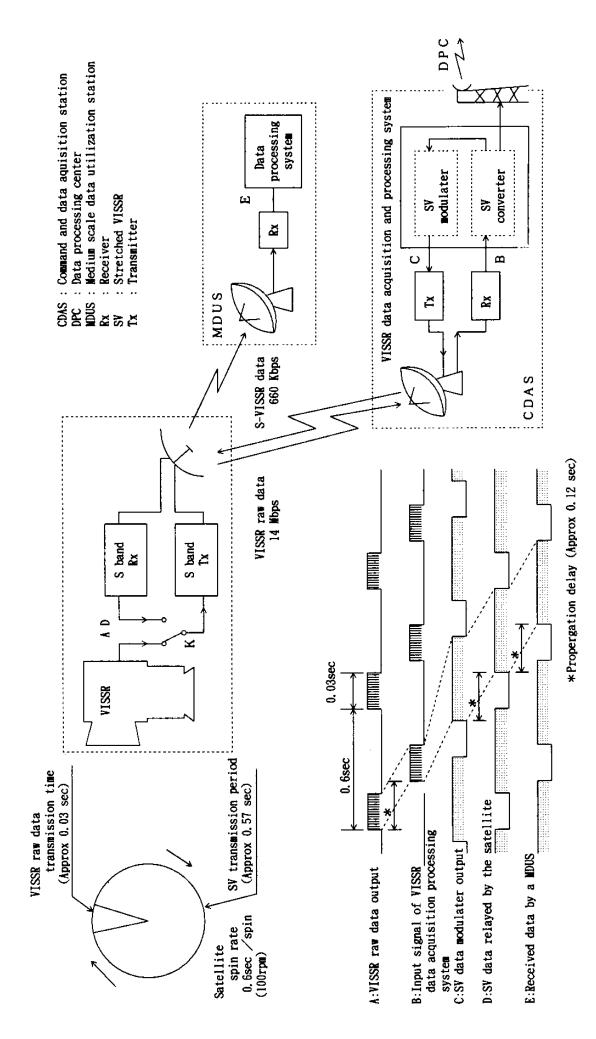
S-VISSR data is transmitted sharing time with the raw VISSR transmission during one satellite spin.

Time available for relaying the S-VISSR signal and raw VISSR signal varies around 600 msec in proportion to the satellite spin rate which will be maintained within 100 ± 1 RPM. Accordingly, transmission time of S-VISSR data (SYNC code and Information sectors) is fixed as 500 msec (329,872 bits/660 Kbps). Otherwise, dummy data is transmitted during the rest period of one satellite spin (approximately 100 msec). Dummy data will be interrupted by transmission of raw VISSR signal for approx. 42 msec. This data is filled with all logic O bits.

3. Coding Scheme

The transmitted S-VISSR data is modulated by two stages of coding in order to distribute more equally the RF signal spectrum and to maintain sync-lock of users demodulator. As the original data could contain some length of logic zeros or logic ones, it would cause false synchronization of the demodulator.

3.1 Byte Complementing


The first stage of coding is started at the beginning of the information sectors. The contents of the every other eight bits (even bytes) are complemented and this process continues up to just before the commencement of SYNC code. Note the SYNC code is not complemented.

3.2 PN Scrambling

The second stage of coding involves the output bit stream from the SYNC code generator described in 2.1.

The bit stream from the byte complementing process and the output of the PN code generator enter an exclusive OR gate. Resulting output is transmitted through the S-VISSR PSK modulator at the CDA station for transmission by GMS.

For descrambling the incoming bit stream at user stations, the incoming bit stream and the output of the local PN code generator shall be passed through an exclusive OR gate.

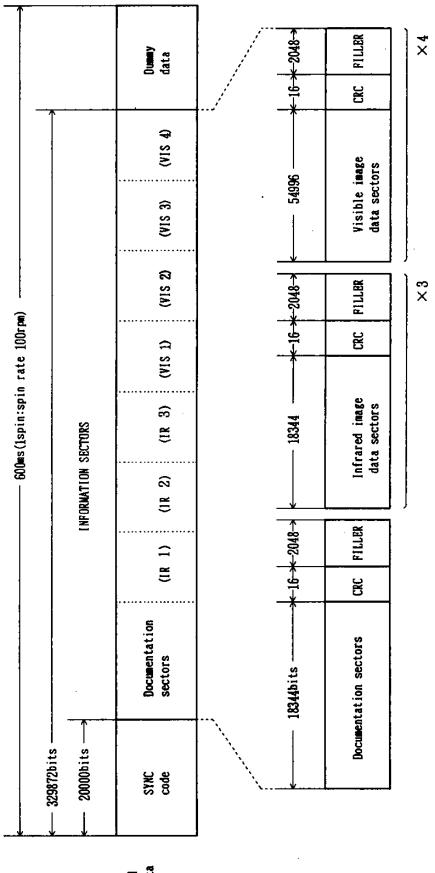
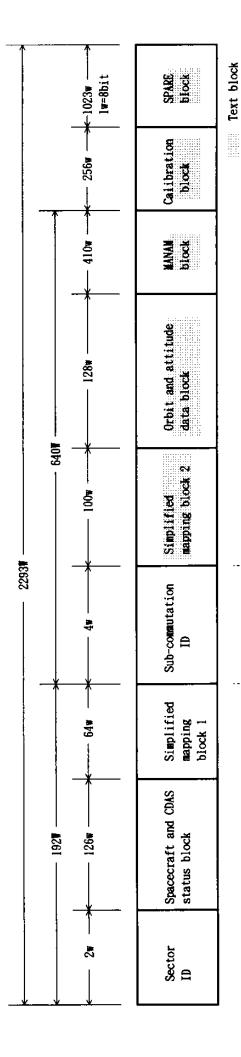
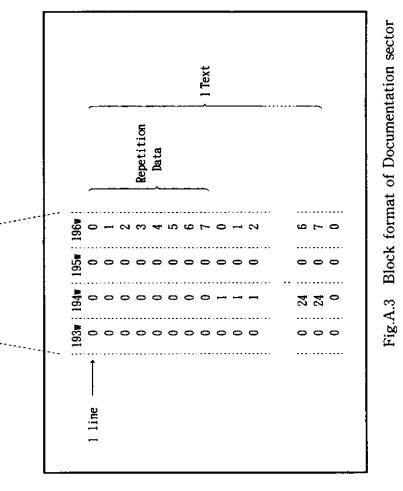




Fig.A.2 Stretched VISSR data format

Stretched VISSR data

Rev. 1

	(Type)	[*]	[*]	I * 1 -	I * 1	BCD * 2	BCD * 2	BCD * 2	1 * 2	I * 2	1 * 1	1 * 2
s)			h) h) pin) per spin)					***	WSB: 11ward b. LSB: 12ward b.	MSB: 13ward b ₄ LSB: 14ward b ₁		WSB: 16word be LSB: 17word be
& CDAS documentation block (126 word	Contents	Scan Mode 00 ((*) : Pull frame observation OP ((*) : Observation of the preset scan lines PP ((*) : VISSR Observation without mirror stepping	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FR (14) : Signification Data 00 (14) : Insignification Data	PP (18) : Signification Image 00 (18) : Insignification Image	Line Number of that Picture Flag on In Normal Scan : Bquator Scan Count-1145 In Limited Scan : LSS In Single Scan : 0000(BCD)	Line Number of that Picture Flag off In Normal Scan : Equator Scan Count+1145 In Limited Scan : LES In Single Scan : 0000(BCD)	Scan Count	1	Pixel count of IR1 data at the Earth edge (12 bit binary) In no detection or Q/D error : FFFF (16)	Error information of Tracking 00 (18) : Mormal operation FP (18) : Some defective detected	Bit Error Count in SYNC code of the VISSR minor frame In Q/D error : FFFP ₍₁₊₎ 13 bit binary
Table. A. 1 S/C &	l t e n	Scan Node Normal Scan Limited Scan Single Scan	Scan Status	Frame Flag	Picture Plag	Picture Flag Set Line Number	Picture Flag Reset Line Number	Scan Count (1)	Mest Horizon Point	East Horizon Point	Sync lock Q/D	Bit Error Count
	Mord ŘQ.	1	N	e	4	5~6	7~ 8	$9 \sim 10$	$11 \sim 12$	13 ~ 14	15	$16 \sim 17$

ont inu

~ _

L	Year
tth (01~12)	Konth
/ (01~31)	Day
ır (00~23)	Hour
Minute (00~59)	
Second (00~59)	Se
1/100 second (00~99)	[7
Calibration Table ID (16 bit binary)	Cal
MANAM Revision Number (16 bit binary)	NAN
PF ₍₁₀₎ : Operation Data OO ₍₁₀₎ : Test Data	
PF (16) : Primary Scan Mirror Drive-1 F0 (16) : Primary Scan Mirror Drive-2 00 (16) : Redundant Scan Mirror Drive-1 OF (16) : Redundant Scan Mirror Drive-2	
Raw Binary Scan Count from S/C In Q/D Error : FFFF (18)	Raw
WSB be by be bs be	X
(1:Primary 0:Redundant)	

Word NO,	l te n	Contents		(Type)
69	Sensor Patch	Indicates which VIS sensor's data inserted in each VIS sector b_{\bullet} b_{\bullet} b_{\bullet} b_{\bullet} b_{\bullet} b_{\bullet} b_{\bullet} b_{\bullet} b_{\bullet} v_{1} v_{1} : 00 v_{2} : 01 v_{4} v_{3} v_{2} v_{1} v_{4} : 11 v_{4} v_{3} v_{2} v_{1} v_{4} : 11		
70 ~ 72	Beta Count	Sun-Barth angle counted by reference 20 MHz clock(ref.clock)(µrad) MSB: 70word 24 bit binary	 ā.ā.	I * 3
73 ~ 75	Spin Period Count	Spacecraft spin period counted by ref.clock MSB: 73word 24 bit binary LSB: 75word		1 * 3
76~78	Scan SYNC Detect Angle	Deference between predicted and detected line SYNC code, counted by ref.clock 24 bit binary In Q/D Brror : RFRPFF (10)		ი *
18 ~ 6/	S/C Clock	Raw VISSR data bit rate counted by ref.clock 24 bit binary In Q/D Brror : FFFFF (18)	79word b. I 81word b. I	°° *
82 ~ 84	Earth Pulse Angle (1)	Deference between predicted Sun Pulse and detected Leading Edge of Earth pulse, counted by Ref. clock(only Earth Pulse Tracking) 24 bit binary 1n Q/D Error : FFFFF ₍₁₅)		I * 3
85 ~ 87	Earth Pulse Angle (2)	Deference between predicted Sun Pulse and detected Trailing Edge of Earth pulse, counted by Ref.clock(only Earth Pulse Tracking) 24 bit binary in Q/D Error : PRFRFF (18)		I * 3
8	Resampling Node	Interpolation mode taken when resampling Raw VISSR Data MSB b. b. b. b. 0 0 0 0 0 b. b. In Nearest Neighbor : 1 b. 1 Linear Divided 8 : 1 b. b. all"0"		*

Rey.1

84

• •

Mord NO.] t e s	Contents	(Type)
89	PLL Status	PLL mode and bandwidth for tracking S/C spin rate (each 4 bit binary) Lower 4 bit : Tracking Mode 1 : SSD Tracking (auto) 2 : Analog Sun Pulse Tracking (auto) 3 : Barth Pulse Tracking (auto) 4 : SSD Tracking (Manual) 5 : Analog Sun Pulse Tracking (Manual) 6 : Earth Pulse Tracking (Manual) lipper 4 bit : Time Constant	*
90	s/c ID	s/C ID (8 bit binary) 4 : GMS-4 5 : GMS-5	1*1
$91 \sim 93$	Analog Sun Pulse Angle	Deference between predicted Analog Sun Pulse and detected Precision Sun Pulse, counted by Ref. clock, (20MHz) 24 bit binary In Q/D error : FPPFFF (16)	1 * 3
94 ~ 96	PLL Brror	Tracking error of Spin Tracking Loop, counted by Ref.clock (20MHz) 24 bit binary MSB: 94word b. LSB: 96word b.] * 3
6	Scanner Expanded Mode	Scanner Expanded Mode 00 : Normal Mode F0 : North Expanded Node OF : South Expanded Mode FF : North and South Expanded Mode	[*]
38	Bit and Frame SYNC 1D	Bit and Frame SYNC ID LSB NSB LSB 0 0 0 0 0 b b b b b b b b b b b b b b b	1*1
99 ~126	Spare		

Rev.1

(constants) (64 words) block mapping Simplified \$ Table, A.

Word No.I tem1 ~ 4Earth Radius5 ~ 8Satellite Elevation9 ~ 12Stepping Angle13 ~ 16Sampling Angle13 ~ 16Sampling Angle17 ~ 20Latitude of Sub Satellite Point21 ~ 24Longitude of Sub Satellite Point23 ~ 28Line Number of Sub Satellite Point29 ~ 32Pixel Number of Sub Satellite Point33 ~ 36Ratio of Circumference37 ~ 40Concealment Quantity of VIS Line41 ~ 44Concealment Quantity of VIS Line45 ~ 48Concealment Quantity of IR 2 Line49 ~ 52Concealment Quantity of IR 2 Line		
23 48 47 40 33 33 75 50 12 13 ⁹⁶ 1 7	Contents	Type
23 48 47 40 33 33 75 50 12 9	Equatorial Radius of the Earth (m)	I * 4
23 48 47 40 38 38 37 50 19 1 3	Satellite Elevation (m)	I * 4
23 48 47 40 38 38 38 39 19	Stepping Angle for IR Sensor (nrad)	1 * 4
22 43 44 40 33 33 57 30	Sampling Angle for IR Sensor (nrad)	1 * 4
22 48 47 40 33 33 7 3	e Point Latitude of Sub Satellite Point (mdcg)	I * 4
22 48 47 40 38 33	te Point Longitude of Sub Satellite Point (mdeg)	I * 4
22 48 47 40 3 3	lite Point Line number of 1k 1 Sensor of Sub Satellite Point	1 * 4
22 48 47 40 3 8	Pixel number of IR I Sensor of Sub Satellite Point	I * 4
22 48 44 40	Ratio of Circusference (π)	R*4.7
	The concealment quantity that converts line number of IR 1 sensor into line number of VIS sensor (χ_1) $L_{vis} = (L_{vis}-1) \times 4+2, 5+X_i$ $L_{vis} = (1, \pi_{i-1}) \times 4+2, 5+X_i$ $L_{vis} = 1$ ine number of VIS sensor $L_{vis} = 1$ ine number of IR1 sensor In case of minus number = First bit of MSB "ON" (1'B)	R*4.2
	The concealment quantity that converts pixel number of IR 1 sensor into pixel number of VIS sensor (Y_1) $P_{vis} = (P_{ix_1}-1) \times 4+2.5+Y_1$ $P_{vis} : pixel number of VIS Sensor$ $P_{ix_1} : pixel number of IR1 Sensor$ A quantity of minus number = Pirst bit of MSB "ON" (1'B)	R*42
	IR 2 Line The concealment quantity that converts line number of IR 1 sensor into line $L_{1R2} = L_{1R1} + X_2$ Line $L_{1R2} = L_{1R1} + X_2$ Line number of IR2 sensor	R*42
	The concealment quantity that converts pixel number of IR 1 sensor into pixel number of IR 2 sensor (Y_2) $P_{1x_2} = P_{1x_1+Y_2}$ $P_{1x_2} : P_{1x_1} = P_{1x_1} + P_{2x_2}$	R * 4. 2

Rev.1

Mord No.	I t e a	Contents	Type
53 ~ 56	Concealment Quantity of 1R 3 Line	The concealment quantity that converts line number of IR 1 sensor into line number of IR 3 sensor (X_) LIRS = LIRI+XS LIRS : line number of IR3 sensor	R * 4. 2
$57 \sim 60$	Concealment Quantity of IR 3 Pixel	The concealment quantity that converts pixel number of IR 1 sensor into pixel number of IR 3 sensor (Y ₃) Pixa = Lixi+Y ₃ Pixa : Pixel number of IR3 sensor	R*4.2
$61 \sim 64$	Spare		

-

Rev.1

87

0 words)	Type	I * 2	I * 2	I * 2	I * 2	I * 2	I * 2		I * 2	I * 2	I * 2	1 * 2		I * 2	1 * 2	1 * 2	I * 2
Simplified mapping block 2 (parameters) (2500	Contents	Line aumober in IRI sensor of 60 ° N , 80° E .	Pixel number in IRI sensor of 60 * N , 80* E.	Line number in IRI sensor of 60 * N , 85 ° E.	Pixel number in IR1 sensor of 60 * M , 85* E .	Line number in IRI sensor of 60 * M, 90* B.	Pixel number in IRI sensor of 60 ° N , 90° E .	·	Line number in IR1 sensor of 55 ° N, 80° B.	Pixel number in IRI sensor of 55 * N , 80* E.	Line number in IRI sensor of 55 * N , 85* E.	Pixel number in IR1 sensor of 55 ° N , 85° E .	,	Line number in [R] sensor of 60 * S ,165* W.	Pixel number in IR1 sensor of 60 * S,165* M.	Line number in IRI sensor of 60 * S, 160* W.	Pixel number in IR1 sensor of 60°S, 160°M.
Table. A. 3	t e =	Line number of 60°N, 80°E	Pixel number of 60°N, 80°E	Line number of 50°N, 85°E	Pixel number of 60° N, 85° B	Line number of 60°N, 90°B	Pixel number of 60° N, 90° B	>	Line number of 55°K, 80°E	Pixel number of 55°N, 80°E	Line number of 55°N, 85°E	Pixel number of 55°N, 85°E	• ••• •	Line number of 60 * S, 165* M	Pixel number of 60 °S, 165°M	Line number of 60°S, 160°W	Pixel number of 60°S, 160°W
	Mord No.	1 . 2	3 . 4	5.6	7 . 8	9.10	11 , 12		101 , 102	103 , 104	105 . 106	107 . 108		2493 , 2494	2495 , 2496	2497 , 2498	2499 , 2500

Rev.1

R*4 10 R*4 10 R * 4 0 R *** 4** 8 R*40 R *6.8 R * 4. 8 R * 4_0 R * 4. 4 R*4.4 R * 4. 4 R * 4. 4 Type Words 3200 Contents VIS channel center pixel number of VISSR frame IRI channel center pixel number of VISSR frame IRL channel center line number of VISSR frame VIS channel center line number of VISSR frame VIS channel total line number of VISSR frame VIS channel sampling angle along pixel (rad) lk channel sampling angle along pixel (rad) VIS channel stepping angle along line (rad) (R channel stepping angle along line (rad) Number of sensors of VIS channel Number of sensors of IR channel Scheduled start time imaging VIS channel Center Line Number lten Observation Start Time Sampling Angle Sampling Angle Stepping Angle Stepping Angle

\$

attitude data block Orbit and Table . A. 4

ഗ

ł 2 2 2 ł ł

Word No.

ľ 2

> 11 5 61 ន 5

13

ື

ន ജ

IR channel total line number of VISSR frame Number of Sensors of VIS channel Number of Sensors of IR channel VIS channel Center pixel Number IRl channel Center pixel Number IR1 channel Center Line Number

fotal Pixel Number Potal Pixel Number Fotal Line Number Potal Line Number 54 \$ ß ജ 83 2 ł 2 ł 2

VISSR Misalignment X-axis VISSR Misalignment Y-axis VISSR Misalignment Z-axis

99

2 2

ន 6

2

74

ł

2

5 З 23

89

2 4

2 2

拀 Ř (4

ž

2

31

ł

Rev. 1

R*4 10 R*4_10 R ★ 4 10

VISSR misalignment angle around X-axis in the VISSR coordinate system (rad)

-around Y-axis -around Z-axis

VIS channel total pixel number of VISSR frame

IR channel total pixel number of VISSR frame

R * 4_0 R*4.0 R * 4.0

0 Continue		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ХХХХ ** *** *** *** **	RRRRR * 4 4 6 * 4 4 6 * 4 4 10 * 4 4 10 * 4 9 8 8 8 8 9 8	దదదదదదదద * * * * * * * * * * ఇద్దంద్రంత్రంత్రంత్రంత్రంత్రంత్రంత్రంత్రంత్రంత
	Contents	Element of VISSR Misalignment Matrix on row 1 and column 1 - row 2 and column 1 - row 3 and column 2 - row 2 and column 2 - row 3 and column 2 - row 3 and column 3 - row 3 and column 3 - row 3 and column 3 - row 3 and column 3	VISSR flame center line number of IR 2 channel VISSR flame center line number of IR 3 channel VISSR flame center pixel number of IR 2 channel VISSR flame center pixel number of IR 3 channel	Ratio of Circumference : π Ratio of Circumference : π 180 / Ratio of Circumference Equatorial Radius of The Earth (m) Oblateness of The Earth Eccentricity of The Earth Eccentricity of The Earth Angle between the VISSR and the view direction of the Sun Sensor : β bias	Epoch Time of Orbital Parameters (MD) Semi-major axis Eccentricity Orbital Inclination Iongitude of Ascending Node Argument of Perigee Mean Anomaly Sub-Satellite East Longitude Sub-Satellite North Latitude (deg)
	I t e B	VISSR Misalignment Matrix	Center line number Spare	Constants	Orbital Parameters
	Vord No.	$\begin{array}{c} 75 \\ 73 \\ 83 \\ 83 \\ 83 \\ 83 \\ 83 \\ 83 \\ 83$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.

	R * 6. 8	R * 6. 8	R * 6. 15	R * 6 , 11	R *6. 15	R * 6. 8				R * 6. 8	R * 6, 8	R*6.8	1 * 2	R *6.8	R *6.8	R *6.8	1 * 2	3
Contents	Epoch time of attitude parameters (NJD)	Angle between Z-axis and Satellite spin axis projected on YZ-plane in inertia coordinate system α r (rad)	Change-rate of <i>c</i> rr (rad/sec)	Angle between Satellite spin axis and YZ-plane in inertia coordinate system δ r (rad)	Change-rate of & r (rad/sec)	Daily mean of Satellite spin rate (rpm)		Attitude prediction data sub-blocks 1 through 10 (10 similar attitude prediction data sub-blocks are repeated - for details see Table.A.5)	Orbit prediction data blocks 1 through 8 (8 similar orbit prediction data sub-blocks are repeated - for details, see Table A.6)	Time of the first attitude prediction data (NJD)	Time of the last attitude prediction data (MJD)	Interval time of attitude prediction data (NJD)	Number of attitude prediction data	Time of the first orbit prediction data (MJD)	Time of the last orbit prediction data (MJB)	Interval time of orbit prediction (NJD)	Number of orbit prediction data	
l tea	Attitude Parameters	аг(αr]	ð r ()	ðr 1	Spin Rate	Spare	Attitude Prediction Data Sub-Blocks	Orbit Prediction Data Sub-Blocks	Attitude Prediction Parameters				Orbit Prediction Parameters				Spare
Mord No.	$211 \sim 216$	217 ~ 222	$223 \sim 228$	$229 \sim 234$	$235~\sim~240$	$241 \sim 246$	247 ~ 256	257 ~ 896	897 ~2944	2945 ~2950	2951 ~2956	2957 ~2962	2963 ~2964	2965 ~2370	2971 ~2976	2977 ~2982	2983 ~2984	2985 ~3200

Rev.1

Table.A.5Contents of attitude prediction data sub-block (64 words)(Position means a relative address in the block.)

Ford NO.	Item		Contents		(Type)
1~6	Prediction Time	UTC	UTC represented in MJD		R * 6. 8
$7 \sim 12$		QV	Anno Domini represented by BCD (YYMNDDHHmmSS;Year, Wonth, Day, Hour, Minute, Second)	econd)	BCD *6
$13 \sim 18$	ar 0		Same as that of Attitude Parameters	(rad)	R *6.8
$19 \sim 24$	õr 0		Ditto		R * 6. 11
$25 \sim 30$	<i>B</i> Angle		Dihedral Angle between the sun and the earth measured clockwise seeing from north	(rad)	R * 6.8
$31 \sim 36$	Spin Rate		Spin speed of the satellite	(rpa)	R * 6.8
$37 \sim 42$	Right Ascension		Right ascension on the satellite orbit plane coordinate system at the attitude epoch	(rad)	R * 6. 8
$43 \sim 48$	Declination		Declination and otherwise same as above	(rad)	K #0.0
$49 \sim 64$	Spare				

prediction data sub-block (256 Words) means a relative address in the block.) of orbit (Position Contents ç Table, A.

			ļ
Word NQ.	I t e a	Contents	(Type)
1~6	Prediction Time UTC	UTC represented in MJD	R * 6, 8
$7 \sim 12$	AD	Anno Domini represented by BCD (YYMMDDRHmmSS;Year, Wonth, Day, Hour, Minute, Second)	BCD + 6
$13 \sim 18$	Satellite Position and Speed X1	X component of satellite position in the 1950.0 mean coordinate system (m)	R*6.6
$19 \sim 24$	Ιλ	Y component of satellite position in the 1950.0 mean coordinate system (m)	R*6.6
$25 \sim 30$	12	Z component of satellite position in the 1950.0 mean coordinate system (m)	R * 6. 6
$31 \sim 36$	Vx1	X component of satellite velocity in the 1950.0 mean coordinate system (m/sec)	R*6.8
$37 \sim 42$	Vy1	Y component of satellite velocity in the 1950.0 mean coordinate system (m/sec)	R*6.8
$43 \sim 48$	Vz1	Z component of satellite velocity in the 1950.0 mean coordinate system (m/sec)	R*6.8
$49 \sim 54$	Satellite Position and Speed X2	X component of satellite position in the earth-fixed coordinate system (m)	R * 6. 6
$55 \sim 60$	۲2	Y component of satellite position in the earth-fixed coordinate system (m)	R * 6, 6
$61 \sim 66$	22	Z component of satellite position in the earth-fixed coordinate system (m)	R*6.6
$67 \sim 72$	Vx2	X component of satellite velocity in the earth-fixed coordinate system (m/sec)	R*6.10
$73 \sim 78$	YY2	Y component of satellite velocity in the earth-fixed coordinate system (m/sec)	R*6.10
¥8 ~ 62	V22	Z component of satellite velocity in the earth-fixed coordinate system (m/sec)	R * 6, 10
$85 \sim 90$	Greenwich Sidereal Time	Greenwich sidereal time in true of date system (deg)	R * 6.8
$91 \sim 96$	Sun Direction	Right ascension from the satellite to the sun in the 1950.0 mean coordinate	R*6.8
97 ~102		system (deg) Declination and otherwise same as above	R*6.8
$103 \sim 108$		Right ascension from the satellite to the sun in the earth-fixed coordinate	R*6.8
109 ~114		system (deg) Declination and otherwise same as above	R*6.8

Rev. 1

Rev.1

.

Word NO,	l t e u	Contents	(Type)
$\begin{array}{c} 115 & \sim 128 \\ 115 & \sim 128 \\ 135 & \sim 134 \\ 141 & \sim 140 \\ 141 & \sim 146 \\ 153 & \sim 152 \\ 153 & \sim 158 \\ 153 & \sim 158 \\ 151 & \sim 170 \\ 171 & \sim 170 \\ 171 & \sim 182 \end{array}$	Spare Precession and Nutation Matrix	Blement of nutation and precession matrix -row 1 and column 1 -row 2 and column 1 -row 2 and column 2 -row 2 and column 2 -row 3 and column 3 -row 3 and column 3 -row 3 and column 3 -row 3 and column 3 -row 3 and column 3	ККККККККК * * * * * * * * * ссссссссссс 5144255555
$183 \sim 188$	Sub-Satellite Point	North Latitude (deg)	R * 6, 8
189 ~194	Sub-Satellite Point	Bast Longitude (deg)	R * 6. 8
195~200	Satellite Height	Height of the satellite above the earth surface (m)	R *6.6
201~256	Spare		

Table. A. 7 Calibration data block (6400 words)

Mord NO,	l t e m	Contents	(Type)
1~4	Calibration Table []	Calibration Table ID	I * 4
$5 \sim 10$	Data Generated Time	Data generated time (YYYYMMDDHHmm;Year,Wonth,Day,Kour,Winute)	BCD * 6
11	Sensor Selection	Sensor selection : 1-Primary, 2-Redundant	[*]
$12 \sim 56$	Coefficient Table for IR1 Radiance Estimates	Coefficient table for IR1 radiance estimates	
	n : Number of Valid β_{i}	r = 955 + r · + r	I * 1
	B. : Factor 1		R*4.6
	B : Factor 2		R ★ 4, 6
	B_2 : Factor 3		R * 4.6
	B. : Factor 4	C : Level	R*4.6
	β_4 : Factor 5	R : Radiant Quantity (W/cm ² sr · , , , , , , , , , , , , , , , , , ,	R * 4.6
	Bs : Factor 6		R ★ 4.6
	B. : Factor 7		R*4.6
	G : Gradient		R * 4.6
	Vo : Intercept		R*4.6
	Co : level Bias		R*4.6
<u>.</u>	Spare		
57~101	Same Above but IR 2	Same above but IR 2	
$102 \sim 146$	Same Above but IR 3	Same above but IR 3	
147 ~256	Spare		

Rev.1

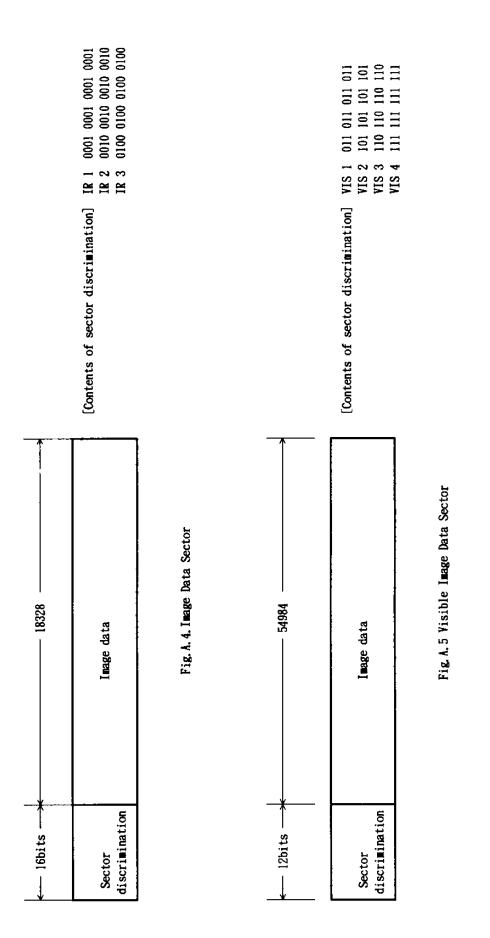
Rev. 1

-

Word ND,	i t e m	Contents	(Type)
257 ~512	VISI Level Albedo Conversion Table	VISI Level Albedo Conversion Table albedo of O level	R * 4.6 ×64
513 ~768	Same Above but VIS 2	albedo of 63 level Same as above but position	R*46
769 ~1024	Same Above but VIS 3	Same as above but position	×64 R * 4_6
1025~1280	Same Above but VIS 4	Same as above but position	×64 R*4.6
1281~2304	IR1 Level Temperature Conversion Table	IR] level temperature conversion table temperature of () level	×04 R * 4, 3 ×256
		temperature of 255 level	
2305~3328	Same Above but IR 2	Same as above but position	R*4.3
3329~4352	Same Above but IR 2	Same as above but position	X256 R * 4.3
4353~6400	Spare		907X

.

۹


Rev. 1

- 1

	LSB $=$ 19.73 LSB $=$ 0.0001973 LSB $=$ 0.131.11362 LSB $=$ -131.11362	11676	nary 9765
<pre>n:word number (8 bit/word) m:Decimal point following digit number significant bit 0 : + 1 :</pre>	MSB LSB 0000000 0000000 00000111 10110101 MSB LSB 00000000 0000000 00000111 10110101 MSB LSB 10000000 11001000 00010000 01000010	n:word number (8 bit/word) MSB LSB 00101101 10011100 = 1	n:word number 4 bit binary NSB LSB 3 7 1001 0111 0110 0101 = 97
1. R*n.m. most :	Example R*4.2 R*4.7 R*4.5	2, 1 *n Example 1 *2	3. BCD *n Example BCD *2

Explanation about type

.

3. MDUS Specifications

S-VISSR image format and line budget example are shown in Fig.A.6*1) and Table.A.8.

- 3.1 Construction of MDUS The construction of MDUS is shown in Fig.A.7.
- 3.2 Receiving System

3.2.1 Antenna

(1) Function

- a. Gain and C/N : Sufficient gain and C/N are required to receive the S-VISSR signal from GMS.
- b. Polarization Adjustment : The rotation of the primary radiator is available to adjust the plane of beam polarization.
- c. Antenna support structure : The direction of the antenna can be adjustable.

(2) Characteristics

a.	Receive frequency	1687.1 MHz
b.	Polarizations	Linear
c.	Antenna diameter	4.0 m ø
d.	Gain	34.8 dB or more
e.	Beam width	Approx.3°
f.	Mounting system	AZ,EL semi-fixed
g.	Adjustable range of direction	$\pm 5^{\circ}$
h.	Adjustable range of polarization	92°or more
i.	Receptacle	N-R

3.2.2 RF unit

- (1) Function
 - a. The RF unit performs the low noise amplification by using a parametric amplifier.
 - b. The down converter included in RF units changes the radio frequency signal to the intermediate frequency signal.

(2) Characteristics

a.	Input frequency	1687.1 MHz
b.	Noise figure	1.7 dB or less
c.	Gain	35 dB or more
d.	Band width	10 MHz or more (-3 dB)

- e. Output frequency
- f. Local frequency
- g. Input-output receptacle

60 MHz band, IF 1657.1 MHz±20 KHz N-R

- 3.2.3 Main Receiver
- (1) Function
 - a. Main receiver consists of an IF amplifier, a PSK demodulator and a Bit Synchronizer.
 - b. It amplifies the intermediate frequency signal from RF unit and detects the NRZ-M signal by making a PSK detection. Then the NRZ-M signal converts to the NRZ-L signal by Bit Synchronizer. Thus the Bit Synchronizer generates the bit clocks at 660 kbps. The NRZ-L and the bit clocks signal are supplied to the processing system after amplification.
 - c. AGC functions are incorporated.
 - d. Receiving level is indicated to control the necessary receiving operation.

(2) Characteristics

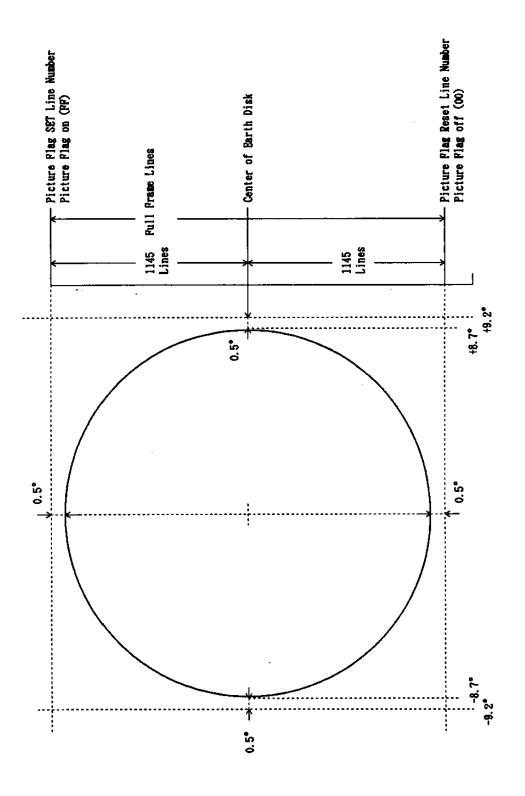
a.	Input frequency	60 MHz band, IF
b.	Input signal	BPSK,NRZ-M
c.	PCM signal bit rate	660 Kbps
d.	Output signal	S-VISSR PCM serial data and clock
e.	Input receptacle	N-R
f.	Output receptacle	BNC-R

3.2.4 Decoder and Processor

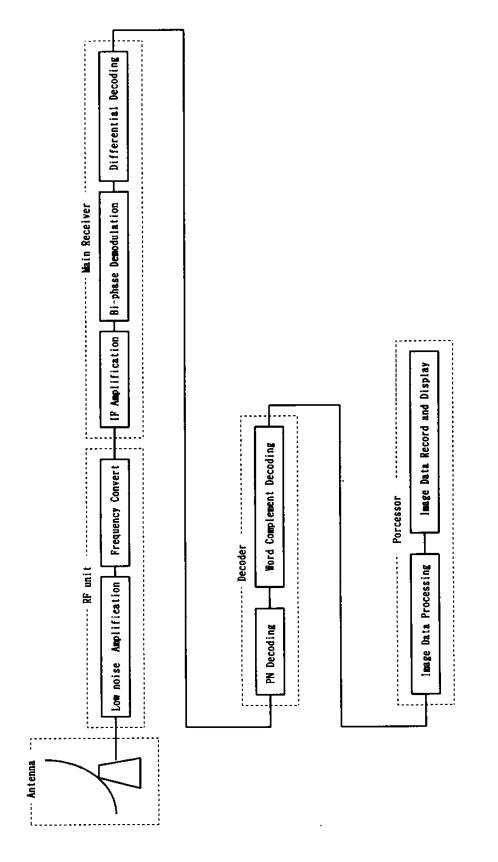
The decoder performs PN decoding and word complement decoding. The PN pattern generator circuitry is shown in Fig.A.8.

3.2.5 Processor

Users apply the processor to carry out the effective meteorological analysis and processing, using documentation information data.


Remarks: *1)

The picture flag of S-VISSR image is turned off when the scanning line number reaches at the Picture Flag Reset Line Number. However, it is sometimes observed that the Picture Flag is not turned off even after the scanning is completed. The phenomenon is explained as follows.


- 1. Solid lubricant is applied to the driving part of the scanning mirror of GMS. In order to avoid building-up of the lubricant at the ends of the scanning range in the long run, scanning operations are made in several scanning ranges.
- 2. On the other hand, the lines where the Picture Flag is turned on or off are determined from the center position of the Earth that is calculated from the position and the attitude of the

spacecraft so that the whole Earth and some marginal lines are contained in the range between these lines (image frame). The determination is made independently of the scanning range as mentioned in the previous paragraph.

- 3. When the imagery of the Earth shifts towards the southern boundary of the scanning range, the southern end of the image frame may exceed the southern end of the scanning range of the mirror. In that case, the mirror begins rapid reversing when it reaches the end of the scanning range while the Picture Flag is still on.
- 4. In case of these situations, when four consecutive rapid reverse lines are detected, the Frame Flag and the Picture Flag are automatically turned off. In such circumstances, as many as four lines in the rapid reverse operation may be transmitted.

Fig.A.7 MDUS Configuration Diagram

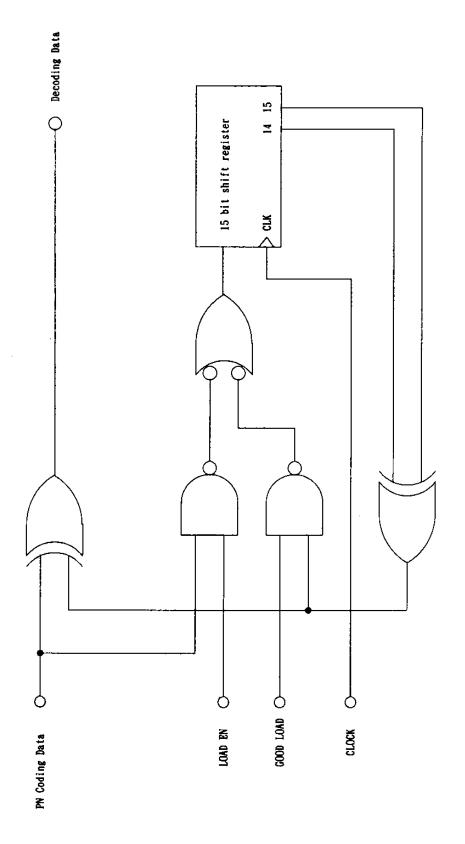


Fig.A.8 PN Decoding Circuit Example

Parameters

(1)	S/C EIRP	54.5 dBm (Worst value at elevation angle 20°)		
(2)	G/T	 10.4 dB/K (Ground station) Antenna gain (4m\$\phi\$) Low noise amplifier noise temperature Antenna noise temperature Feeder loss 	34.7 130 80 0.5	dB K K dB
(3)	Required C/N₀	 71.6 dB·Hz : Bit rate (660 Kbps) Eb/N₀ (2PSK) for 10⁻⁶ Demodulater loss Deferential loss S/C loss 	58.2 10.6 2 0.3 0.5	dB dB/Hz dB dB dB dB

- 1

Parameters expected above are estimated as the worst case.

Link budget

PARAMETER	GMS→MDUS	
FREQUENCY	(MHz)	1687.1
EIRP	(dBm)	54.5
T-ANTENNA TRACKIN	IG LOSS(dB)	-0.7
FREE SPACE LOSS	(dB)	-189.5 (39500 km)
R-ANTENNA TRACKIN	G LOSS(dB)	-1.5
G/T	(dB/K)	10.4
BOLTZMANN CONSTA	NT (dB/K)	-198.6
C/N ₀	(dB/Hz)	73.1
TOTAL C/No	(dB/Hz)	73.0
REQUIRED C/No	(dB/Hz)	71.6
MARGIN	(dB)	1.4

Table.A.8 MDUS Link Budget example

APPENDIX B

SDUS SPECIFICATIONS

The SDUS is the ground station to receive the GMS weather facsimile (WEFAX) signal and to produce the photographic imagery and/or computer-processed data from it for the use of meteorological analysis and forecasting.

B.1 WEFAX SIGNAL

B.1.1 Signal format

The signal and frame format of WEFAX are shown in Fig.B.1 and B.2 respectively. Its characteristics are summarized as follows:

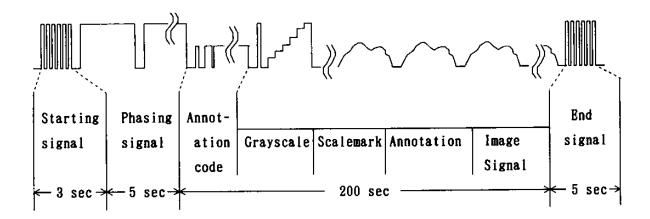


Fig.B.1 WEFAX signal format

	Phasing signal (20 lines)
	Annotation code (4 lines)
<u>, 1</u>	Gray scale (22 lines)
	Scale mark (12 lines)
	Annotation (20 lines)
	Earth image data (742 lines)

Fig. B. 2 WEFAX frame format 106

- (1) The signal modulated by the black level (0 volt DC) is transmitted for 60 seconds at the every beginning of the series of frames.
- (2) The start signal modulated by 300 Hz wave is transmitted for 3 seconds and then the phasing signal which is the pulse modulated signal with the duty cycle of 0.95 in a line is transmitted for 5 seconds (20 lines). These signals are transmitted at the beginning of every frame and may be used to start the recorder automatically and to achieve the horizontal synchronization.
- (3) Annotation code, gray scale, scale mark, annotation and the earth image are transmitted for 1 second (4 lines), 6 seconds (24 lines), 3 seconds (12 lines), 5 seconds (20 lines) and approx. 3 minutes (800 lines) respectively in sequence.
- (4) The end signal composed of the signal modulated by 450 Hz wave and the signal modulated by the black level (0 volt DC) are transmitted for 5 seconds and 10 seconds respectively. This signal is transmitted at the end of every frame and may be used to stop the recorder automatically.
- (5) Number of frame transmitted changes according to the dissemination schedule.

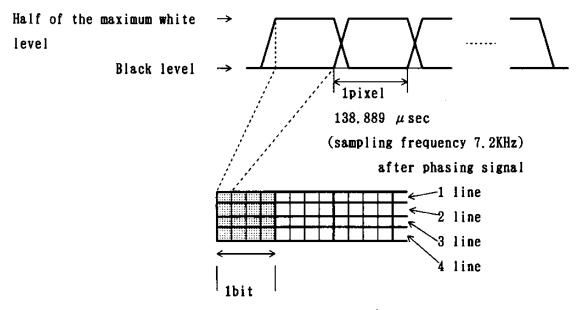
B.1.2 Annotation Code

Annotation code is inserted at the head of scanning lines of the gray scale by the EBCDIC type bits sequence. It is repeated four times to recover some missing lines.

-satellite name	(GMS-5)
-kind of image data	(IR or VIS)
-picture time	(UTC)
-picture name	(A/B/C/D, H/I/J or K/L/M/N)
-started time of VISSR observation	(UTC)
By the use of annotation code, WEFAX u	sers can recognize the image information

easily.

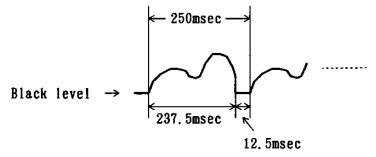
The signal details are shown in Fig.B.3.

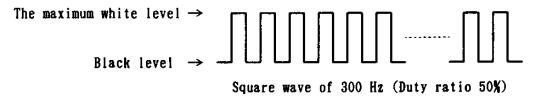

Annotation code includes the following information.

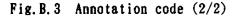
a. Start signal (3 sec)

The maximum white level \rightarrow Black level \rightarrow Black level \rightarrow

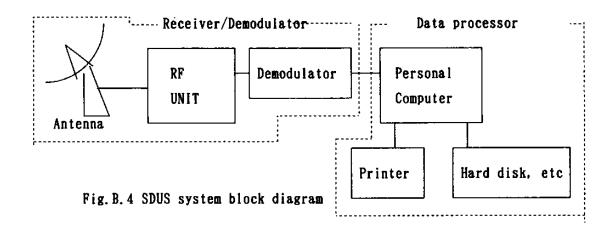
300Hz Square wave (Duty ratio 50%)


- b. Phasing signal (20 lines, 5 sec) The maximum white level → Black level → 237. 5msec 12. 5msec
- c. Annotation code


1 bit consists of 4 lines \times 4 pixel (4 lines repetition)


Fig. B. 3 Annotation code (1/2)

d. Image Signal (796 lines)


e. End signal (5 sec)

B.2 Configuration

System block diagram an example of functional block diagram of SDUS.

B.3 Receiving System

B. 3.1 Antenna

(1) Function

- a. Gain & C/N: A sufficient gain and C/N are required to receive the WEFAX signal from GMS. The link budget is calculated with 2.5 mø parabolic antenna. However this specification is required G/T greater than 3 dB, and it is able to estimate to use about 1.3 mø antenna with advanced lownoise amplifire.
- b. Polarization Adjustment: The rotation of the primary radiator is available to adjust the plane of beam polarization.
- c. Antenna support structure: The direction of the antenna can be adjustable.
- (2) Characteristics

a.	Receiving frequency	1691.0 MHz
b.	Polarization	Linear
c.	Antenna diameter	2.5 m ¢
d.	Gain	30 dB or more
e.	Mounting system	AZ, EL semi-fixed
f.	Adjustable range for antenna direction	±5°
g.	Adjustable range for polarization	92° or more
h.	Interconnecting cable	1 a or more (Loss: 0.5 dB)
i.	Receptacle	N-R

B.3.2 RF Unit

(1) Function

- a. RF unit consists of a preamplifier and a down converter. Preamplifier performs the low noise amplification by using a transistor amplifier.
- b. Down converter changes the radio frequency signal to an intermediate signal.
- (2) Characteristics

a.	Input frequency	1691.0 MHz
b.	Noise figure	3.4 dB or less
c.	Gain	34 dB or more
d.	Band width	20 MHz(-3 dB)
e.	Local frequency	1553.5 MHz \pm 20 KHz
f.	Output frequency	137.5 MHz
g.	Input-output receptacle	N-R

B.3.3 Main Receiver

(1) Function

.

· - - - -

Main Receiver amplifies the intermediate frequency signal from RF unit and detects the sub-carrier signal by making an FM detection. The sub-carrier signal (AM modulated signal) is supplied to the processing system.

(2) Characteristics

a. Input frequency	137.5 MHz, AM-FM
b. Noise figure	13 dB or less
c. Band width	260 KHz
d. Output signal	2.4 KHz AM
e. Output level	0 dBm(75 ohm)
f. Input receptacle	N-R
g. Output receptacle	BNC-R

B.4 Link Budget

SDUS link budget is as shown in Table.B.1.

Table. B. 1 WEFAX Link budget (down link)

WEFAX link Budget					
Frequency	(MHz)	1691.00			
EIRP	(dBm)	54.5 *1			
Free space loss	(dB)	188.93 (39,500Km)			
Antenna tracking l	oss (dB)	-0.7			
G/T	(dB/K)	3.00 *2			
Total C/No	(dB /Hz)	66. 41			
Reoquired C/N.	(dB /Hz)	63.1 \$3			
Margin	(dB)	3. 3			

*1 EIRP elevation angle 20 °

‡2 Antenna gain	30dB
System noise temperature	500k
\$3 Frequency bandwith (260KHz)	54.1dB
Threshold level	9. OdB

These parameters are estimated as the worst case.

	APPENDIX C
	SCHEDULE OF OBSERVATION AND DISSEMINATION
UTC	b 10 20 30 40 50 6 b city of backtonic the state of the second
00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
03	01 10 MI-MA (HM 3 (6) 28 32 (2019) 21 JUGAL 6 57 H · I - 3 A · B · C · D - 3
04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
05	02 27 32 V 6 V 6 V 6 V 6 V 6 V 6 V 6 V 6 V 6 V
06	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
08	01 10 15 9-028 32 1000000000000000000000000000000000000
09	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
11	02 27 32 57 W12 W12 W12 W12 W12 W12 W12 W12 W12 W12
12	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
14	01 10 32 57
15	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
16	01 10 25 50 54 59
17	
18	
19	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
20	$\begin{array}{c c} \hline 1 & 1 \\ \hline 0 \\ \hline 1 & 1 \\ \hline \end{array}$
21	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
22	01 10 25 50 54 59
23	02 27 32° signs additivele 9813 it 57
L	TO A SUBJECT OF A
ABBRE	VIATIONS 2012 400 200 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 2012 400 200 200 200 200 200 200 200 200 20
	R OBSERVATION WEFAX DISSEMINATION n 1000 A~D : IR 4-sectorized picture of full-disk image
	IR. VISSR observation for wind extraction H~J : IR. VIS and enhanced IR polar-stereographic picture covering the far east area
	K~N : Water vapor 4-sectorized picture of full-disk image Manual amendment (MANAN) 92011 T : Test pattern
	T : Test pattern Fig.C.1 Normal operation schedule

In case of eclipse operation, schedule of 13~17UTC will be changed as follows.

UTC	b	10	20	30	40	1.1.1 1.1.1	i 0	0 6
13	$\begin{array}{ c c c } 01 \\ \hline H \cdot J - 1 & 3 \end{array}$	10 K·L	• M • N - 1 2	28	e	45	ECLIP	SE
1,4				ECLIPSE				
15			ECLIPSE	61 -93603D61	40 42	qobs al d:	V 1 6	E E
16	07	$\begin{array}{c} 11 \\ \hline H \cdot J - 1 \end{array}$	20 2 3E	5 	V17		50 54	59 H-17

ln case of solar-interference (spring) operation, schedule of 02~ 04UTC will be changed as follows.

UTC	ט <u>10</u>	20	30	40	50	60
02	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$A \cdot B \cdot C \cdot D - 2$	28	40		60
03	10 M	15 T]	$\dot{x} = \alpha + \beta \dot{x} + \beta \dot{x}$	7	: 74 - 19 - 19 - 19 - 19 - 19 - 19 - 19	St. Constitute

In case of solar-interference (autumn) operation, schedule of 02~ '04UTC will be changed as follows."

UTC))	nin in the second second	2.0	30	40	, 5	0 - 1	60
02	01 H - H - I -	10 -2 A-	15 20 • 2	SOLA	R		• C • D+ 2	59
03	Lo Arren . por 10	10 M/	15 T		32	V4	57	

In case of TYPHOON special observation, schedule of 03-05UTC will be changed as follows.

i		20	
03	$\begin{array}{c c}1 & 10\\ H \cdot 1 - 3 \end{array}$	$A \cdot B \cdot C \cdot D - 3$	
04	02 12 WT 2 WT 2		25 50 54 59 $H-5$

in case of system maintenance. schedule of 01-03UTC will be changed as follows.

UTC	0		2002 1.4380-0544	20	30		40	50		6
01	01	1 H····································		<u>M·N-n</u>		2 2	42	45	FNANCE	
02	01	10 H · I - 2		- These WEFA	X may be cance	eled dependi	ng on the	type of maintenanc	and the second	7
·····		MA I.N	TENANCE	(hill of the	es là tại l	MARCH MARCA		V3 KONG	Serence in	

ABBREVIATIONS

SOLAR SOLAR	:	Solar-interference operation
NUMBER OF A STREET STREET		VISSR observation for wind estimation in typhoon area
MAINTENANCE	:	System maintenance

Fig.C.2 Special operation schedules

MANUAL AMENDMENT(MANAM)

(4) 日本語業者の表示、日本、多くの意味者のものできたものです。

MANAM of WEFAX and S-VISSR are shown in Figs.D.1 and D.2 respectively. Universal time coordinated is adopted. Circle (O) indicates that the dissemination will be carried out and cross (X) indicates that the dissemination will be canceled. The reason of cancellation is noted in NOTE.

《张氏书台编》》 医尿磷酸化物学 医低下口 计计算数字 机名人

evolipt he begreds ad f

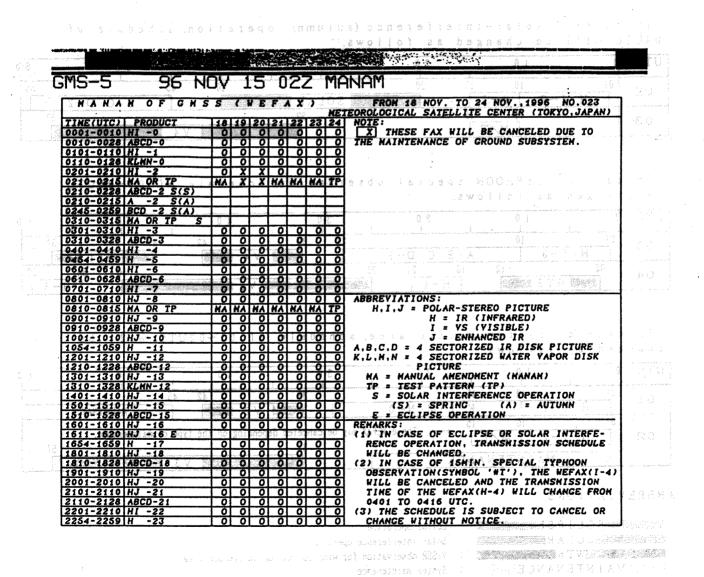


Fig.D.1 MANAM of WEFAX

TINC (UIC) : VISSR : CONNENTS 2) IN CASE OF 15 MIN. SPECIAL IYPHOON OBSCRVATIONS, THE SCHEDULE WILL BE CHANGED, DESCRIBED ABOVE.
3) IN CASE OF SOLAR-INTERFERENCE OPERATION, THE OBSCRVATION (V-3) WILL DE 1) IN CASE OF ECLIPSE OPERATION OR SYSTEM MAINTEMANCE, THE SCHEDULC WILL THE 15HIM. SPECIAL TYPHOON OBSERVATION SCHEDULE CEASED ON 141H MOV FULL - FULL DISK DBSCRVAIIDN N - MAINFCMANCC DFCRAIIDN North - Northerm Nemisphere Dbscrvation E - Eclipse Dperaiidn OBSERVATION(Y2H) DUE TO THE MAINTEMANCE OF CROUND SUBSYSTEM. 4) THE SCHEDULE IS SUBJECT TO CANCEL OR CHANCE VITHOUT MOTICE. THIS DBSERVATION VILL DE CHANGED FOR MORTHRM HEMISPMERE 2032 - 2057 : V-21 FULL : D : D : D : D : D : D : D : D : . 2132 - 2157 : V-22 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 2225 - 2250 : V-23 FULL : 0 : 0 : 0 : 0 : 0 : 0 IN CASE OF 15 MIN. SPECIAL TYPHOON DASERVALION 2 0332 - 0342 : V-4 NORIN : 0347 - 0357 : VT-1 NORTH : 0402 - 0412 : VI-2 NORTH : (REMARK 2) ABBREVIATIONS: BE CHANGED. CANCELED. : RENARKS: . KO := NO TE : 1 1542 - 1607 : V-16E FULL : : : : : : : ECLIPSE DFERATION : 1 0137 - 0147 : V-7N NONIN I ONI ONI ONI I I I I SYSTEM MAINTEMANCE I JAPAN NEIEOROLOGICAL AGENCY (IOKYO,JAPAN) FROM 18 NOV. TO 24 NOV., 1996 CONNENTS HETEOROLOGICAL SATELLITE CENTER MAMAM OF GMS+5 (DISSEMIMATION SCHEDULE OF STRETCHED VISSR DATA) : 1732 - 1757 : Y-14 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 18: 19: 20: 21: 22: 23: 24: : 0032 - 0057 : A-1 full : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0832 - 0857 : V-9 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1025 - 1050 : V-11 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1432 - 1457 : V-15 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : : 1532 - 1557 : A-16 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1832 - 1857 : V-19 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : : 2332 · 2357 : V-O full : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : : 1102 - 1127 : V-12 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : - 1157 : V-12 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : : 2302 - 2327 : V-0 FULL : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : : IIME(UIC) : VISSR

Fig.D.2 MANAM of S-VISSR

..................

1132

..................

0502 - 0527 : V-6

0732 - 0257 : V-3 0132 - 0357 : V-4

...

: 0632 - 0657 : Y-7 1 0732 - 0757 1 V-8

S-VISSR Mapping

1. Introduction

Image mapping is used to process Visible and Infrared Spin Scan Radiometer (VISSR) image data, i.e., each pixel of the VISSR image data must correspond to its respective position on earth, thus making it necessary to transform between geodetic and VISSR frame coordinates. Coordinate transformation allows converting the geodetic coordinates (latitude, longitude, height) to VISSR frame coordinates (line, pixel) and vice versa. This report describes a coordinate transformation method that uses orbit and attitude prediction data to determine the position on the earth which corresponds to a VISSR image pixel. On the other hand, it can also be conversely used to determine the VISSR image pixel which corresponds to a position on earth.

Another significant feature of the presented transformation method is that it calculates important information which can be utilized in other digital processing techniques, e. g., infrared (IR) digital image processing requires the satellite zenith distance, and visible (VIS) digital image processing uses the sun zenith distance, distance to the sun, and sun glint imformation. This information can easily be supplied because the positions of the sun, satellite, and earth reference point are all calculated with this coordinate transformation process.

The applicable theory and sample coordinate transformation programs are presented. These programs were designed for a small-scale computer system which can utilize VISSR archive data that is stored at the Meteorological Satellite Center (MSC), and also Stretched-VISSR (and HiRID: High Resolution Imager Data) data that is broadcasted via satellite. This appendix is the latest version of "A Mapping Method for VISSR Data" (Kigawa: 1991, Meteorological Satellite Center Technical Note, No. 23).

2. Coordinate Transformation Theory

All parameters used for the VISSR image coordinate transformation are defined in Table E. 1 whereas Fig. E.1-1 to E.1-4 show applicable transformation flow charts.

The transformation consists of three stages: (1) The transformation from geodetic to VISSR coordinates, (2) The transformation from VISSR to the geodetic coordinates, and (3) The subsequent computation of information required for digital image processing. The information necessary for digital image processing is the sun and satellite zenith distances, sun and satellite azimuth angles, distances to the sun and satellite, satellite-sun digression, and sun glint data. The transformation from the geodetic to the VISSR coordinates (Fig. E. 1-2) necessitates a calculation reiteration because the scanning time corresponding to a point on the earth is unknown.

2.1 Geodetic to Earth-fixed Transformation

The transformation from geodetic (ϕ , λ , h) to earth-fixed coordinates (X_e, Y_e, Z_e) is given by

$$X_{e} = (R_{N} + h)\cos\phi\cos\lambda$$

$$Y_{e} = (R_{N} + h)\cos\phi\sin\lambda$$

$$Z_{e} = \{R_{N}(1 - e^{2}) + h\}\sin\phi$$
(1)

where

$$R_{\rm N} = \frac{R_e}{(1 - e^2 \sin^2 \phi)^{0.5}}$$
(2)

- ϕ : geodetic latitude, with north (+) and south (-)
- λ : longitude, with east (+) and west (-)

h : height

with flattening of the earth f being related to eccentricity e by the below relation.

 $e^2 = 2f - f^2$ (3)

2.2 Scanning Time

Scanning time of a picture element (I, J) is given by

$$t_{IJ} = \frac{[(I-1)/n] + QJ/2\pi}{1440\omega} + t_s$$
(4)

where t_{IJ} is the scanning time represented in Modified Julian Date (MJD), I and J are line and pixel number of the point of interest, and [] denotes Gauss' notation.

2.3 Satellite Position and Attitude at Scanning Time

The orbit and attitude prediction data (α_r , δ_r , β , X, Y, Z, θ_g , α_s , δ_s) is interpolated to obtain values which correctly correspond to the scanning time. Interpolation is not necessary to determine the nutation and precession matrix (N_P), thus prediction times occurring just prior to the scanning time can be employed.

Any parameter W of the orbit and attitude prediction data at time t_{IJ} is interpolated as follows,

$$W = W_0 + \frac{W_1 - W_0}{t_1 - t_0} (t_{1J} - t_0)$$
(5)

where W_0 , W_1 are 5-min data prediction intervals, and t_1 , t_0 are the prediction times represented in MJD.

2.4 Mean of 1950.0 to True of Date Transformation

The transformation from the mean of 1950.0 coordinates X_M to the true of data coordinates X_T is given by

$$\mathbf{X}_{\mathrm{T}} = (\mathbf{N}_{\mathrm{P}}) \cdot \mathbf{X}_{\mathrm{M}} \tag{6}$$

where (N_P) is the nutation and precession matrix.

2.5 True of Data to Earth-fixed Transformation

The true of data coordinates X_T are transformed into the earth-fixed coordinates X_E as

$$\mathbf{X}_{\mathrm{E}} = [\mathbf{B}] \cdot \mathbf{X}_{\mathrm{T}} \tag{7}$$

where

$$[\mathbf{B}] = \begin{bmatrix} \cos\theta_{g} & \sin\theta_{g} & 0\\ -\sin\theta_{g} & \cos\theta_{g} & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(8)

with θ_9 being the true Greenwich sidereal time.

2.6 Axis Direction Unit Vectors of Satellite Angular Momentum Coordinates

Figure E.2 shows the satellite's angular momentum coordinates, with the origin representing the satellite's center of gravity, the x-axis the direction of the vector which is rotated $S_{s'}$ around the z-axis to obtain the β angle ($S_{s'}$ is the sun direction vector projected onto the z-axis vertical plane), the y-axis which is used to form a right-handed coordinate system, and the z-axis which indicates the direction of the angular momentum vector.

The x, y, and z direction unit vectors of the satellite angular momentum coordinates which are transformed into the earth-fixed coordinates are defined as

z-axis, S_P :

$$\mathbf{S}_{\mathbf{P}} = [\mathbf{B}] \cdot [\mathbf{N}_{\mathbf{P}}] \cdot \begin{bmatrix} \sin \delta_{\mathbf{r}} \\ -\cos \delta_{\mathbf{r}} \cdot \sin \alpha_{\mathbf{r}} \\ \cos \delta_{\mathbf{r}} \cdot \cos \alpha_{\mathbf{r}} \end{bmatrix}$$

(9)

(11)

x-axis, S_x :

$$\mathbf{S}_{\mathbf{X}} = \frac{\mathbf{S}_{\mathbf{P}} \times \mathbf{S}_{\mathbf{S}}}{|\mathbf{S}_{\mathbf{P}} \times \mathbf{S}_{\mathbf{S}}|} \sin\beta + \frac{\mathbf{S}_{\mathbf{P}} \times \mathbf{S}_{\mathbf{S}}}{|\mathbf{S}_{\mathbf{P}} \times \mathbf{S}_{\mathbf{S}}|} \times \mathbf{S}_{\mathbf{P}} \cos\beta$$
(10)

y axis, $\mathbf{S}_{\mathbf{y}}$:

$$\mathbf{S}_{y} = \mathbf{S}_{P} \times \mathbf{S}_{X}$$

where \mathbf{S}_s is the vector from the satellite to the sun.

$$\mathbf{S}_{s} = \begin{bmatrix} \cos \delta_{s} \cdot \cos \alpha_{s} \\ \cos \delta_{s} \cdot \sin \alpha_{s} \\ \sin \delta_{s} \end{bmatrix}$$
(12)

2.7 View Vector

The view vector X_E is directed from the satellite (X, Y, Z) to the point of interest (X_e, Y_e, Z_e) in the earth-fixed coordinates, and is expessed as

$$\mathbf{X}_{E} = \begin{bmatrix} \mathbf{X}_{e} - \mathbf{X} \\ \mathbf{Y}_{e} - \mathbf{Y} \\ \mathbf{Z}_{e} - \mathbf{Z} \end{bmatrix}$$
(13)

2.8 Earth-fixed to VISSR Frame Transformation

Line number I and pixel number J of the point of interest in the VISSR frame coordinates are given by

$$\theta_{\rm L} = \cos^{-1} \frac{\mathbf{X}_{\rm E} \cdot \mathbf{S}_{\rm P}}{|\mathbf{X}_{\rm E}| |\mathbf{S}_{\rm P}|} \tag{14}$$

$$\mathbf{I} = \frac{(\pi/2 - \theta_{\rm L}) - \mathbf{M}_{\rm y}}{\mathbf{P}} + \mathbf{I}_{\rm c} \tag{15}$$

$$\mathbf{V}_{\mathsf{A}} = \mathbf{S}_{\mathsf{P}} \times \mathbf{X}_{\mathsf{E}} \tag{16}$$

$$\mathbf{V}_{\mathsf{B}} = \mathbf{S}_{\mathsf{y}} \times \mathbf{V}_{\mathsf{A}} \tag{17}$$

$$\theta_{\rm P} = \cos^{-1} \frac{\mathbf{S}_{\rm y} \cdot \mathbf{V}_{\rm A}}{|\mathbf{S}_{\rm y}| |\mathbf{V}_{\rm A}|} \tag{18}$$

$$\mathbf{T}_{\mathbf{F}} = \mathbf{S}_{\mathbf{P}} \cdot \mathbf{V}_{\mathbf{B}} \tag{19}$$

if $T_F < 0$ then $\theta_P = -\theta_P$

$$J = \frac{\theta_{\rm P} + M_z - (\pi/2 - \theta_{\rm L}) \tan M_x}{Q} + J_c$$
⁽²⁰⁾

2.9 VISSR Frame to Satellite Angular Momentum Transformation

The vector X_s is directed from the satellite to the point of interest in the satellite angular momentum coordinates, and is expressed as

$$\mathbf{X}_{s} = \begin{bmatrix} \cos Q(J - J_{c}) & -\sin Q(J - J_{c}) & 0\\ \sin Q(J - J_{c}) & \cos Q(J - J_{c}) & 0\\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} M \end{bmatrix} \cdot \begin{bmatrix} \cos P(I - I_{c}) \\ 0\\ \sin P(I - I_{c}) \end{bmatrix}$$
(21)

where I and J are line and pixel number of the point of interest in the VISSR frame coordinates.

2.10 Satellite Angular Momentum to Earth-fixed Transformation

The sattellite angular momentum coordinates X_s are transformed into the earth-fixed coordinates X_E as follows

$$\mathbf{X}_{E} = \begin{bmatrix} \mathbf{u}_{\mathbf{x}} \\ \mathbf{u}_{\mathbf{y}} \\ \mathbf{u}_{\mathbf{z}} \end{bmatrix} = [S] \cdot \mathbf{X}_{S}$$
⁽²²⁾

where

$$[S] = [S_x, S_y, S_P]$$

а

2.11 View Vector to Point on the Earth

The point interest on the earth is computed by the unit view vector \mathbf{X}_{E} and satellite position (X, Y, Z) in the earth-fixed coordinates.

The view vector directed from the satellite to the point of interest is

$$\mathbf{X}_{E} = \begin{bmatrix} \mathbf{u}_{x} \\ \mathbf{u}_{y} \\ \mathbf{u}_{z} \end{bmatrix}$$

$$\mathbf{k} = \frac{-b \pm (b^{2} - ac)^{0.5}}{(25)}$$

where

$$\begin{array}{l} a = (1-f)^{2}(u_{x}^{2}+u_{y}^{2})+u_{z}^{2} \\ b = (1-f)^{2}(Xu_{x}+Yu_{y})+Zu_{z} \\ c = (1-f)^{2}(X^{2}+Y^{2}-R_{e}^{2})+Z^{2} \end{array}$$
(26)

Among the two solutions for k, the smaller absolute value is employed.

If the value of b^2-ac is negative, the view vector does not cross the earth surface, thus the point of interest in the earth-fixed coordinates is given by

$$\begin{array}{l} X_{e} = X + ku_{x} \\ Y_{e} = Y + ku_{y} \\ Z_{e} = Z + ku_{z} \end{array}$$

$$\begin{array}{l} (27) \\ \end{array}$$

2.12 Earth-fixed to Geodetic Transformation

The transformation from the earth-fixed (X_e, Y_e, Z_e) to the geodetic coordinates (ϕ , λ) is given by

$$\phi = \tan^{-1} \left[\frac{Z_{e}}{(1-f)^{2} (X_{e}^{2} + Y_{e}^{2})^{0.5}} \right]$$

$$\lambda = \tan^{-1} \left[\frac{Y_{e}}{X_{e}} \right]$$
(28)

2.13 Zenith Pointing Vector

The unit vector pointing to the zenith at subject H is given by

$$\mathbf{H} = \begin{bmatrix} \cos\phi\cos\lambda \\ \cos\phi\sin\lambda \\ \sin\phi \end{bmatrix}$$
(30)

where the subject is defined by the point of interest on the earth (Fig. E.3).

(23)

2.14 Satellite Zenith Distance

The satellite zenith distance at the subject, Z_{SAT} , is computed by the vector **H** and the vector from the subject to the satellite V_{SAT} .

$$Z_{SAT} = \cos^{-1} \frac{\mathbf{H} \cdot \mathbf{V}_{SAT}}{|\mathbf{H}| |\mathbf{V}_{SAT}|}$$
(31)

2.15 Distance to the Sun

The distance from the earth to the sun is given by

$$A_{M} = 315.253^{\circ} + 0.98560027^{\circ} t_{IJ} R_{SUN} = 1.00014 - 0.01672\cos A_{M} - 0.00014\cos^{2} A_{M}$$
(32)

where t_{IJ} is the scanning time represented in MJD, and R_{SUN} is expressed in astronomical units.

2.16 North Pointing Vector

The vector in the horizontal plane that points north at the subject N is given by following equations (Fig. E.4).

$$\begin{cases} \phi_{N} = 90^{\circ} - \phi \\ \lambda_{N} = \lambda - 180^{\circ} \end{cases} \phi \ge 0 \tag{33}$$

if $\lambda_{\rm N} \leq -180^\circ$ then $\lambda_{\rm N} = \lambda_{\rm N} + 360^\circ$

$$\mathbf{N} = \begin{bmatrix} \cos\phi_{\mathrm{N}}\cos\lambda_{\mathrm{N}} \\ \cos\phi_{\mathrm{N}}\sin\lambda_{\mathrm{N}} \\ \sin\phi_{\mathrm{N}} \end{bmatrix}$$
(35)

2.17 Sun Zenith Distance

The sun zenith distance at the subject, Z_{SUN} , is computed by the vector **H** and the vector from the subject to the sun, V_{SUN} .

$$Z_{SUN} = \cos^{-1} \frac{\mathbf{H} \cdot \mathbf{V}_{SUN}}{|\mathbf{H}| |\mathbf{V}_{SUN}|}$$
(36)

2.18 Sun/Satellite Azimuth Angle

Azimuth angle A of a vector A at the subject is computed by the vector pointed to zenith H and the vector pointed north N at the subject (Fig. E.5(a)-(c)). The vector A is either V_{SUN} or V_{SAT} .

$$\mathbf{B} = \mathbf{N} \times \mathbf{H} \tag{37}$$

 $\mathbf{C} = \mathbf{A} \times \mathbf{H} \tag{38}$

$$\theta_1 = \cos^{-1} \frac{\mathbf{B} \cdot \mathbf{C}}{|\mathbf{B}| |\mathbf{C}|} \tag{39}$$

$$\mathbf{D} = \mathbf{B} \times \mathbf{C} \tag{40}$$

$$\theta_2 = \cos^{-1} \frac{\mathbf{H} \cdot \mathbf{D}}{|\mathbf{H}| |\mathbf{D}|} \tag{41}$$

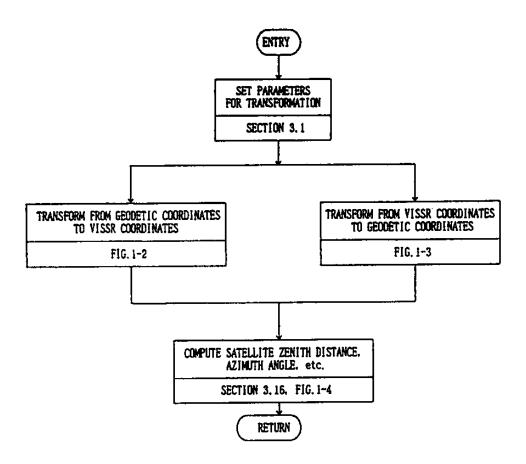
and

if $\theta_2 = 0^\circ$ then $A = 360^\circ - \theta_1$ if $\theta_2 = 180^\circ$ then $A = \theta_1$

2.19 Sun Glint Angle

The sun glint angle, G (Fig. E.6) is defined as the angle between the vector of the sun's rays reflected at the subject and the vector from the subject to the satellite, being given by

$$\theta_{\rm s} = \cos^{-1} \frac{\mathbf{H} \cdot \mathbf{V}_{\rm SUN}}{|\mathbf{H}| |\mathbf{V}_{\rm SUN}|} \tag{42}$$

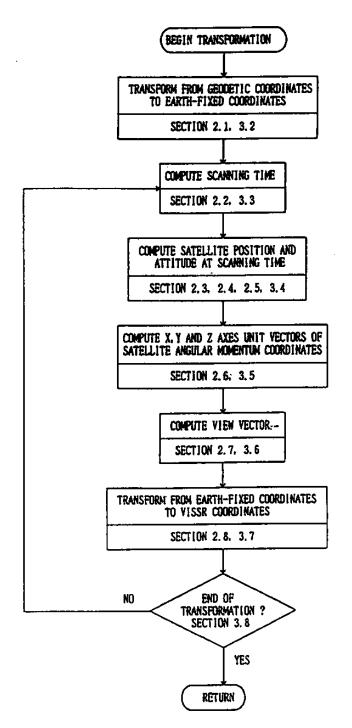

$$\mathbf{S}_{G} = \mathbf{H}\cos\theta_{S} - \frac{\mathbf{H} \times \mathbf{V}_{SUN}}{|\mathbf{H} \times \mathbf{V}_{SUN}|} \times \mathbf{H}\sin\theta_{S}$$
(43)

$$G = \cos^{-1} \frac{\mathbf{S}_{G} \cdot \mathbf{V}_{SAT}}{|\mathbf{S}_{G}| |\mathbf{V}_{SAT}|}$$
(44)

3. Sample Programs

Sample programs are presented which are represented in FORTRAN (FORTRAN 77), and are applicable for both VISSR archive data that is stored at the MSC and S-VSSR (and HiRID) data that is broadcasted via satellite.

- a. Coordinate Transformation Parameters
 - t_s : Observation start time (UTC represented in MJD)
 - P : Stepping angle along line (rad)
 - Q : Sampling angle along pixel (rad)
 - I_c : Center line number of VISSR frame
 - J_c : Center pixel number of VISSR frame
 - n : Number of sensors
 - M_x : VISSR misalignment angle around x-axis (rad)
 - M_Y : VISSR misalignment angle around y-axis (rad)
 - M_z : VISSR misalignment angle around z-axis (rad)
 - [M] : VISSR misalignment matrix (3×3)
 - R_e : Equatorial radius of the earth (m)
 - f : Flattening of the earth
- b. Attitude Parameters (33 sets at 5-minute intervals)
 - t_n : Prediction time (UTC represented in MJD)
 - α_r : Angle between z-axis and satellite spin axis projected on yz-plane in mean of 1950.0 coordinates (rad)
 - δ_r : Angle between satellite spin axis and yz-plane (rad)
 - β : β -angle (rad), i.e., angle between the sun and earth center on the z-axis vertical plane
 - ω : Spin rate of satellite (rpm)
 - c. Orbital Parameters (9 sets at 5-minute intervals)
 - t_n : Prediction time (UTC represented in MJD)
 - $X \stackrel{:}{\to} X$ component of satellite position in the earth-fixed coordinates (m)
 - $Y \stackrel{:}{\to} Y$ component of satellite position in the earth-fixed coordinates (m)
 - Z = Z component of satellite position in the earth-fixed coordinates (m)
 - θ_{9} : True Greenwich sidereal time (rad)
 - a_s : Right ascension from satellite to the sun in the earth-fixed coordinates (rad)
 - δ_s : Declination from satellite to the sun in the earth-fixed coordinates (rad)
 - $[N_P]$: Nutation and precession matrix (3×3)



- 1

· . -

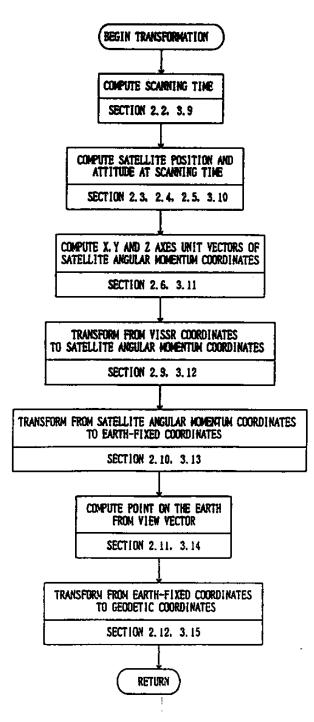
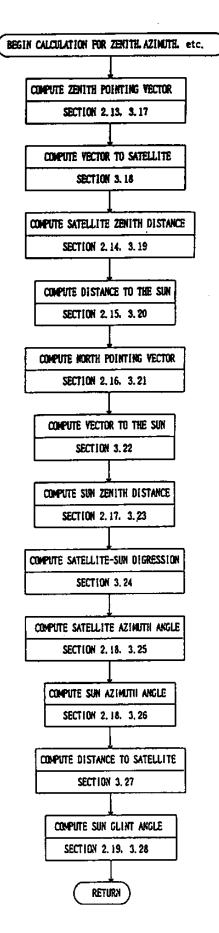
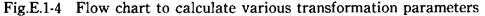

.

Fig.E.1-1 Flow chart of coordinate transformation


.


Fig.E.1-2 Flow chart of transformation from geodetic to VISSR coordinates

.

Fig.E.1-3 Flow chart of transformation from VISSR to geodetic coordinates

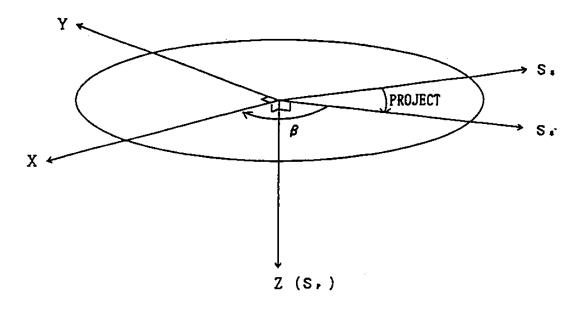


Fig.E.2 Satellite angular momentum coordinates

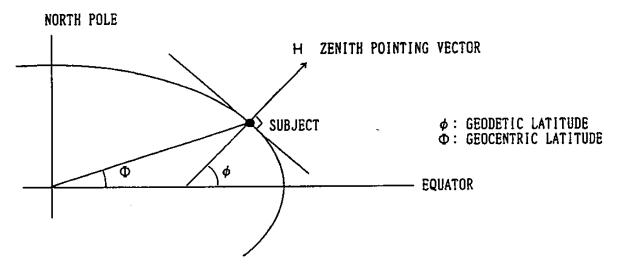
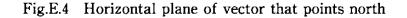



Fig.E.3 Subject zenith pointing vector along the geodetic vertical

 ϕ : Geodetic latitude

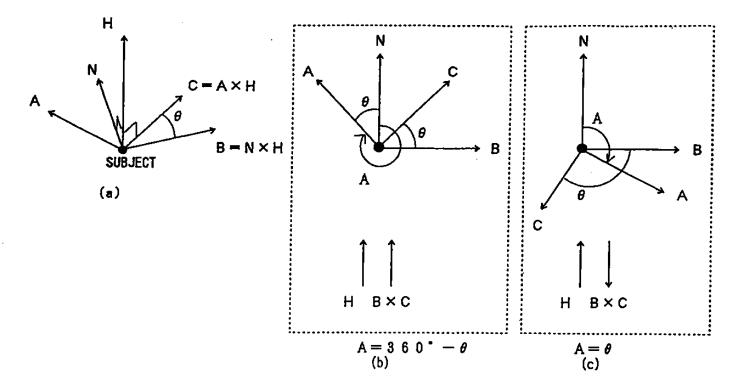


Fig.E.5 Azimuth angle calculation.

- (a) \mathbf{A} : vector to the sun or satellite
 - \mathbf{H} : zenith pointing vector
 - \mathbf{N} : north pointing vector
- (b) Azimuth angle A of the vector A is $360^{\circ} \theta$ in the case where H and $B \times C$ are in the same direction.
- (c) Azimuth angle A of the vector A is θ in the case where H and $\mathbf{B} \times \mathbf{C}$ are in opposite directions.

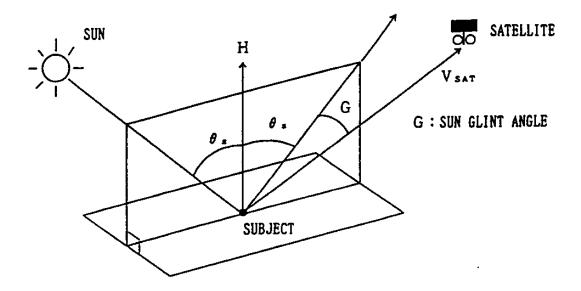


Fig.E.6 Sun glint angle, i.e., the angle between the vector of the sun's rays reflected at the subject and the vector from the subject to the satellite.

SAMPLE PROGRAMS

C terrenet to to the second to the second terret of the second terret terret terret terret terret terret terret te	2000 CONTINUE
t======t t====t BLOGK LENGTH : C 1 S-VISSR 1 <i 1="" 9174="" bytes="" c<="" data="" s-vissr="" td=""><td>C</td></i>	C
! NAV. ! ++ (FIXED LENGTE) C	C -GET ORBIT/ATTITUDE -TABLE
1 DATA 1 UNIT-10 (DISK) C	CALL SV0300 (COBAT, JSHT)
I CIRECK 1 1 C +	C +EXAMPLE POSITION ELAT = 35.00
I LISTING 1 <i 1="" <5000001="" c<="" td=""><td>RLon = 140.00</td></i>	RLon = 140.00
tt tt C	C +GET LINE & PIXEL
INIT=6 C	CALL HGIVSR (1, RPVIS, RLVIS, RLON, RLAT, 0.0, RINF, DSCT, JR)
+ +	CALL MGIVSR (2, RPIR1, RLIR1, RLON, RLAT, 0.0, RIMF, DSCT, JR)
1 1 I DOCUMENTATION SECTOR DATA / 1 C	CALL HGIVSR (3, RPIR2, RLIR2, RLON, RLAT, 0.0, RINF, DSCT, JR)
1 1 1 111, 112, 113 DATA 1 C t t	CALL NGIVSR(4, RPWV, RLAV, RLON, RLAT, 0.0, RINF, DSCT, JR) +OUTPUT LINE & PIXEL
	WRITE(6, *) 'VISIBLE LINE & PIXEL : ', RLVIS, RPVIS
łł C	WRITE(6.+) 'IRI(IRA) LINE & PIXEL : '. PLIRI. RPIRI
1 SCAN LINE 3 1 VIS 2 DATA 1 C =>> 5 BLOCKS ++ C	MRITE(6.•) 'IR1(IR4) LINE & PIXEL : ', RLIR1, RPIR1 MRITE(6.•) 'IR2 LINE & PIXEL : ', RLIR2, RPIR2
==> 5 BLOCKS ++ C	WRITE (6, +) 'WY (IR3) LINE & PIXEL : ', RLWY , RPWY
1 4 1. VIS 3 DATA 1 C	C CLOSE FILE
	8000 CONTINUE CLOSE (UNIT=10)
I 5 I VIS 4 DATA I C	9000 CONTINUE
<9174 BYTES> C	STOP
C	EXD
C	SUBROUTINE SV0100 (INORD, IPOS, C, R4DAT, R8DAT)
PROGRAM SV0000	C TYPE CONVERT ROUTINE (R-TYPE)
GNS-5 S-VISSR AND MISAT HIRID NAVIGATION	INTEGER=4 INORD, IPOS, IDATA1
	CHARACTER C(*)+1
INTEGER+4 ISHT (25, 25, 0), JSHT (25, 25, 4), 1X (25) /25+0/	REAL+4 R4DAT
INTEGER+4 JWEL1/0/, JWEL2/0/, 1TC/0/, LAEDG (2), LEEDG (2)	REAL+8 REDAT
REAL=4 WEL1 (100) /100=0/, WEL2 (100) /100=0/,	R4DAT - 0.0 R8DAT - 0.00
. NEL3 (100) / 100=0/, NEL4 (100) / 100=0/ REAL=4 R1NF (8)	1F(1HORD, ER.4) THEN
PEAL+8 DSCT	IDATA1 = ICHAR(C(1)(1:1))/128
CHARACTER CSNT (2500)+1, COBAT (3200)+1	REDAT = DFLOAT (HOD (ICHAR (C (1) (1:1)), 128))=2.00- (8-3)+
CHARACTER CBUF (9174)=1, DATID=2, SCTID=2, COND=128, MAPC=64,	. DFLOAT (ICHAR (C (2) (1:1)))+2. D0== (8=2)+
. TEXTID=4, HAPTBL=100, OBAT=128, HANAH=410, SPARE=1459,	. DFLOAT (ICHAR (C (3) (1:1)))=2.00++ (B+1)+
SCTCD1=2, SCTCD2=2, SCTCD3=2, CNAPC=64	DFLOAT (ICHAR (C (4) (1:1)))
EQUIVALENCE (CBUF (1) (1:1), DATID (1:1))	RBDAT - RBDAT/10.DO-1POS IF(IDATA1.EQ.1) RBDAT - RBDAT
EQUIVALENCE (CBUF (3) (1:1), SCT1D (1:1)) EQUIVALENCE (CBUF (5) (1:1), COND (1:1))	RADAT = SNGL(RBDAT)
EQUIVALENCE (CBUF (131) (1:1), MAPC(1:1))	ELSEIF (INORD. EQ. 6) THEN
EQUIVALENCE (CBUF (195) (1:1), TEXTID(1:1))	IDATA1 - ICHAR(C(1)(1:1))/128
EDUIVALENCE (CBUF (199) (1:1), MAPTBL (1:1))	REDAT = DFLOAT (HOD (ICHAR (C(1) (1:1)), 128))=2.00== (8=5) +
EQUIVALENCE (CBUF (299) (1:1), OBAT (1:1))	. DFLOAT (ICHAR (C (2) (1:1))) +2.00 - (8-4) +
EQUIVALENCE (COUF (427) (1:1), HANAH (1:1))	. DFLOAT (ICHAR (C (3) (1:1)))=2.00++ (8+3) + . DFLOAT (ICHAR (C (4) (1:1)))=2.00++ (8+2) +
EDUIVALENCE (CBUF (837) (1:1), SPARE (1:1)) EDUIVALENCE (CBUF (2296) (1:1), SCTCD1 (1:1))	. DFLOAT (ICHAR (C (2) (1:1)))*2.00+(8+1)+
EQUIVALENCE (CBUF (4589) (1:1), SCTCD2(1:1))	DFLOAT (ICHAR (C (6) (1:1)))
EQUIVALENCE (CBUF (6882) (1:1), SCTCD3 (1:1))	REDAT - REDAT/10. DO-1POS
-OPEN FILE	IF(IDATA1.ED.1) REDAT = -REDAT
OPEN (UNIT=10, ACCESS='DIRECT', RECL=9174, IOSTAT=10S)	R4DAT = SNGL (R8DAT)
IF(IOS, NE.0) 60 TO 9000	ENDIF
GET MAPPING DATA	RETURN END
DO 1000 18LK-801-5,2500-5,5 +READ S-VISSR DATA	SUBROUTINE SV0110(INORD, C, I4DAT)
READ (UNIT=10, REC=18LK, FHT=' (9) (100A1), 74A1)', IOSTAT=IOS) CBUF	
IF(IOS.NE.0) · 60 TO 8000	C TYPE CONVERT ROUTINE (I-TYPE)
+DOCUMENTATION SECTOR ?	C
IF(ICHAR(SCTID(1:1)).NE.0 .OR. ICHAR(SCTID(2:2)).NE.0)	INTEGER-4 INORD, I4DAT
. CO TO 1000	CHARACTER C(+)+1
+SET TEXT ID ITLNI = ICNAR(TEXTID(2:2))	I 4DAT - O IF(INORD.EQ.2) THEN
ILRI = IONRR(IEATID(2:2)) +ALREADY SET ?	14DAT = 1CHAR(C(1)(1:1))=2==(8=1)+
IF(IX(ITLN1+1).NE.0) GO TO 1000	ICHAR(C(2)(1:1))
+SET SIMPLIFIED MAPPING DATA	ELSEIF (INORD. EQ. 4) THEN
CHAPC(1:64) = HAPC(1:64)	140AT - ICHAR(C(1) (1:1))=2== (B=3) +
$\frac{100}{100} \frac{11-1}{100} \frac{100}{100} 1$. ICHAR(C(2)(1:1))=2==(8=2)+
CSMT (1TLN1=100+11) (1:1) - MAPTBL (11:11) 100 CONTINUE	. ICHAR(C(3) (1:1))=2↔ (8+1)+ ICHAR(C(4) (1:1))
ASET ORBIT/ATTITUDE DATA	
D0 1200 12-1,128	RETURN
COBAT (ITLN1+128+12) (1:1) • OBAT (12:12)	END
200 CONTINUE	SUBROUTINE SV0200 (CSHT, ISHT)
+SET TEXT ID FLAG	
IX(ITLH1+1) = 1 +ALL DATA ?	C SIMPLIFIED MAPPING DATA PROCESSING ROUTINE
48LL 1061A 7	CHARACTER CSHT (2500) +1
	INTEGER-4 ISHT (25, 25, 4)
NTLN - 1X(1)+1X(2)+1X(3)+1X(4)+1X(5)+1X(6)+1X(7)+1X(8) +1X(9)+1X(10)+1X(11)+1X(12)+1X(13)+1X(14)+1X(15)+1X(16)	
<pre>KTLH = IX(1)+IX(2)+IX(3)+IX(4)+IX(5)+IX(6)+IX(7)+IX(8) . +IX(9)+IX(10)+IX(11)+IX(12)+IX(13)+IX(14)+IX(15)+IX(16) . +IX(17)+IX(18)+IX(19)+IX(20)+IX(21)+IX(22)+IX(23)+IX(24)</pre>	00 2100 IL1-1,25
<pre>KTLH = IX(1)+IX(2)+IX(3)+IX(4)+IX(5)+IX(6)+IX(7)+IX(8) . +IX(9)+IX(10)+IX(11)+IX(12)+IX(13)+IX(14)+IX(15)+IX(16) . +IX(17)+IX(18)+IX(19)+IX(20)+IX(21)+IX(22)+IX(23)+IX(24) . +IX(25)</pre>	00 2100 1L1-1.25 D0 2200 1L2-1.25
<pre>KTLH = IX(1)+IX(2)+IX(3)+IX(4)+IX(5)+IX(6)+IX(7)+IX(8) . +IX(9)+IX(10)+IX(11)+IX(12)+IX(13)+IX(14)+IX(15)+IX(16) . +IX(17)+IX(18)+IX(19)+IX(20)+IX(21)+IX(22)+IX(23)+IX(24)</pre>	00 2100 1L1-1,25

11.NE1 - (CARPCOST(11.3.) (1.1))-255+(CARPCOST(11.4.1) (1.1)) 19TIEL - (CARPCOST(11.2.) (1.1))-255+(CARPCOST(11.4.1.3.0) (1.1)) 19TIEL - (CARPCOST(11.2.))-255+(CARPCOST(11.4.1.3.0) 19TIEL - (CARPCOST(11.2.)) 1000000 (CORAT - JSPT) 1000000 (CORAT - JSPT) 110000000 (CORAT - JSPT) 1100000000 (CORAT - JSPT) 11000000000 (CORAT - JSPT) 1100000000000000000000000000000000000	1L3 - (1L1-1)+100+(1L2-1)+4+1	CALL SV0100 (6, 8, COBAT (31+J:36+J), R4DHY, ATIT (6, 1))
PS 200 (L1,L1) - LT IFF CLL L1, 2 - LT IFF CLL IFF C	ILINE1 = ICHAP(CSMT(IL3)(1:1))=256+ICHAP(CSMT(IL3+1)(1:1))	2000 CONTINUE
INTICLE_111_0 INTER: Description CLL SP01006 & COMEX[1], 10, 00, 00, 00, 00, 00, 00, 00, 00, 00	ISHT (IL2, IL1, 1) = ILAT	DO 3000 I-1.8
District, 211, 0 - 19721 District,		
2100 CUTING BID Construction BID Construction Construction BID Construction BID Construction INTERSE-LINE (Statistics, Static), BID (Statistics, BID (Statistics, Static), BID (Statistics, BID (Statist), BID (Statist	1SAT (112, 111, 4) - 1PIXE1	CALL SW0100(6, 6, COBAT(49+J: 54+J), R4DHY, ORBT1(9, 1))
Imp STRUCT (2004) STRUCT (2004) <thstruct (2004)<="" th=""> STRUCT (2004)</thstruct>		CALL SV0100(6, 6, COBAT(61+J: 66+J), R4DHY, ORBT1(11, 1))
SHEARCH RE \$10000 (CARL, JOHT) Construction of the section of the secti		
C def 1 AD ATTITURE ALL PROTOCOLLAGENCY TO ESSING (). CONTRACT, AND ATTITURE ALL PROTOCOL (). CONTRACT, AND ALL PROTOCOL (). CONTRACT, AND ATTITURE ALL PROTOCOL (). CONTRACT, AND ALL PROTOCOL (). CONTRACT, AND ATTITURE ALL PROTOCOL (). CONTRACT, AND ALL PROTOCOL (). CONTRACT, AND ATTITURE ALL PROTOCOL (). CONTRACT, AND ALL PROTOCOL (). CONTRA	SUBROUTINE SV0300 (COBAT , JSMT)	CALL SV0100(6, 8, COBAT (109+J:114+J), R4DHY, ORBT1 (19, 1))
Cut STUDD (4, DOWT (5, DOWT (5, DOWT (5, DOWT (7, D), DESTRO), OWT (5, D), DETTOR	· · · · · · · · · · · · · · · · · · ·	CALL SV0100(6, 14, COBAT (135+J:140+J), R4DHY, ORBT1 (21, 1))
INTERN-1 Net GT2.0 COMMUNEST CONTINUE Control (Source (So	[
INTERNA-4 STRICES.5.0 ERLA-K WINT, SSELAD(), ELCO, ELECCO, SERST(C), INTEGS, ENDICES, E. DERLO, ELCO, ELECO, BELL-A INTEGS, ENDICES, E. DERLO, ELCO, ELECO, SERST(C), BELL-A WINDOR, ELCOURT(TL-1):F-D, BARM, GET[CS, D) CLL STRICES, ENDICES, ELSON BERNALESC GWC13, JERNER(D), GWC1, D, SERST(D) BERNALESC GWC13, JERNER(D), GWC2, D, SERST(D) BERNALESC GWC13, J, DENN Coll Diol 1-1, DI 100 JAIST BERNALESC GWC13, J, DENN SERST(D), GWC2, D, SERST(D) BERNALESC GWC13, J, DENN Coll Diol 1-1, DI 100 JAIST BERNALESC GWC13, J, DENN SERST(D), GWC2, D, SERST(D), BERNALESC GWC13, J, DENN Coll Diol 1-1, DI 100 JAIST BERNALESC GWC13, J, DENN SERST(D), GWC1, STRICE, LI, J) - HIT (ELL), J, SERST(D), SERTINE Coll Continue Coll STRICE SERTINE Coll STRICE, SERST(D), SERTINE SERTINE, S	INTEGER=4 MAP (672, 4)	CALL SV0100 (6, 12, COBAT (153+J: 158+J), R4DMY, ORBT1 (24, 1))
WILSTOR, BRINGLAG, BRINGTO, BELINTO, CHIP GO BLL STRUCK, SKITTOLO, SKI (SKITO, SK), SKITTOLO, SKI (SK), SKITOLO, SKITTOLO, SKITTOL		
Beard Beard Second Second Second C Description Out Second		
BUINTALENCE OMP(T, S), DETING), OMP(T, S), BESLEN(D)) BUINTALENCE OMP(G.S), DETING), OMP(T, S), BESLEN(D)) BUINTALENCE OMP(G.S), DETING), OMP(T, S), SEDSEN(D) BUINTALENCE OMP(G.S), DETING), OMP(G.S), SEDSEN(D) BUINTALENCE OMP(G.S), OMP(T, S), SEDSEN(D) BUINTALENCE OMP(G.S), OMP(T, S), SEDSEN(D) BUINTALENCE OMP(G.S), OMP(T, S), SEDSEN(D) BUINTALENCE OMP(G.S), COMP(G.S), SEDSEN(D) BUINTALENCE OMP(G.S), COMP(G.S), SEDSEN(D) C CLL SYDIDO(C 4. E COMP(T, 1): 100, ESSLIC(D), ESSNIC) CLL SYDIDO(C 4. COMP(G.S), SEDSEN(D), ESSNIC) CLL SYDIDO(C 4. COMP(G.S): 200, ESSLIC(D), ESSNIC) CLL SYDIDO(C 4. COMP(G.S): 200, ESSLIC(D), ESSNIC) CLL SYDIDO(C 4. COMP(G.S): 200, ESSLIC(D), ESSNIC) CLL SYDIDO(C 4. COMP(G.S): 200, ESSNIC)	REAL=8 REDNY, DSPIN, DTINS, ATIT (10, 33), ORBTI (35, 8), DSCT	3000 CONTINUE
Ext - FLAT (8:(1:)-5) Ext - FLAT (8:(1:)-5)		1-
BUMUNDEC OMPGS.D.B.ELRCD), OMPGS.D.BELNGTOD) BUMUNDEC OMPGS.D.B.ELRCD), OMPGS.D.BENSTOD BUMUNDEC OMPGS.D.B.ELRCD), OMPGS.D.BENSTOD BUMUNDEC OMPGS.D.GENCED.S.GENT COLL STOLOG CAPG.S.D.MEDICALD, OMPGS.D.BENSTOD COLL STOLOG CAPG.S.D.MEDICALD, OMPGS.D.BENSTOD COLL STOLOG CA.E. COMPT.C.E.R.E.R.E.R.E.R.E.R.E.R.E.R.E.R.E.R.E		
BUITVALENCE OWEGLS.1.D.SPHO Jarrella, LL.D.P. HITT (EAL) BUITVALENCE OWEGLS.1.D.SPHO Jarrella, LL.D.P. HITT (EAL) BUITVALENCE OWEGLS.1.D.SPHO Jarrella, LL.D.P. HITT (EAL) C Jarrella, LL.D.P. HITT (EAL) DIDO LT.F.T Jarrella, LL.D.P. HITT (EAL) DIDO CONTINUE STRICL2, LL.D.P. HITT (EAL) C Jarrella, LL.D.P. HITT (EAL) CLL STOLOG (A. B. COMATI (T. 10), BESLIND). BORT) SUBEVITIER MILVSE(HODE, BYL, BL.R. RLM, RLAT, ENCT. CLL STOLOG (A. B. COMATI (T. 110), ESTIND). BESLIND). BEST CLL STOLOG (A. B. COMATI (T. 110), ESTIND). BEST CLL STOLOG (A. B. COMATI (T. 110), ESTIND). BEST CLL STOLOG (A. B. COMATI (T. 120), ESTIND). BEST CLL STOLOG (A. B. COMATI (T. 120), ESTIND). BEST CLL STOLOG (A. COMATI (T. 120), ESTIND).	EQUIVALENCE (MAP (31, 1), RLINE (1)), (MAP (35, 1), RELINIT (1))	RLON = FLOAT(80+(112-1)=5)
BUDURLERCE OWPCDS. 30, OMETIG. 1D.). OWPCDS. 22, ATTICL, 1D.) Jarricl2, 1LL, 2 = HITY (BLIS, 2 = HITY (BLIS, 2 = HITY) C DIDOD 1-1.4 Jarricl2, 1LL, 3 = HITY (BLIS, 2 = HITY) DIDOD 000TINUE Jarricl2, 1LL, 3 = HITY (BLIS, 2 = HITY) CULL SV0100C (A, B. CORAT (1: 10, DESLINC), BORT) Jarricl2, 1LL, 3 = HITY (BLIS, 2 = HITY) CULL SV0100C (A, B. CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, B. CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, B. CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, B. CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, B. CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, D. CORAT (1: 12, DESLINC), BORT) C CULL SV0100C (A, CORAT (1: 13, DESLINC), BORT) C CULL SV0100C (A, CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, CORAT (1: 10, DESLINC), BORT) C CULL SV0100C (A, CORAT (1: 11, 10, ESLINC), BORT) C CULL SV0100C (A, CORAT (1: 11, 10, ESLINC), BORT) C CULL SV0100C (A, CORAT (1: 11, 10, ESLINC), BORT) C CULL SV0100C (A, CORAT (1: 11, 10, ESLINC), BORT) C CULL SV0100C (A, CORAT (1: 11, 10, ESLINC), BORT) C CULL SV0100C	EQUIVALENCE (MAP(131, 1), DSP1N)	
ID DO DI JUNE (1, 1) JUNE (1)	EQUIVALENCE QMAP(13,3), ORBT1(1,1)), QMAP(13,2), ATIT(1,1))	JSHT(IL2, IL1, 2) = WINT(RLON)
Lino Contribute C ERU C SUBBOUTINE C ERU C ERU SUBBOUTINE CONTINUE C ERU C SUBBOUTINE	DO 1000 I=1.4	JSHT(IL2, IL1, 4) = KIHT(RPIX)
1000 CONTINUE C C C C C C C C C C C C C C C C C C C		
Cull sv0100(4, 6, 8, COAT(1: 6), MONT, . DTHS) Cull sv0100(4, 8, COAT(7: 10), ESSIN(2), EBONT) Cull sv0100(4, 8, COAT(1: 10), ESSIN(2), EBONT) Cull sv0100(4, 8, COAT(1: 10), ESSIN(2), EBONT) Cull sv0100(4, 8, COAT(1: 10), ESSIN(2), EBONT) Cull sv0100(4, 10, COAT(1: 10), ESSIN(4), EBONT) Cull sv0100(4, 10, COAT(1: 15), ESSIN(2), EBONT) Cull sv0100(4, 10, COAT(1: 15), ESSIN(2), EBONT) Cull sv0100(4, 10, COAT(1: 15), ESSIN(2), EBONT) Cull sv0100(4, 4, COAT(1: 15), ESSIN(2), EBONT) Cull sv0100(4, 4, COAT(1: 15), ESSIN(4), EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(0) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cull sv0100(4, 4, COAT(1: 15), ELIC(1) - EBONT) Cul		1.
Call SY01006 4, 8, COBAT (1: 10), ESSI.H(2), EBORT) C Call SY01006 4, 8, COBAT (1: 10), ESSI.H(2), EBORT) C Call SY01006 4, 8, COBAT (1: 10), ESSI.H(2), EBORT) C Call SY0100 4, 8, COBAT (1: 10), ESSI.H(2), EBORT) C Call SY0100 4, 10, COBAT (1: 2), ESSIH(3), EBORT) C Call SY0100 4, 10, COBAT (1: 2), ESSIH(3), EBORT) C Call SY0100 4, 10, COBAT (1: 2), ESSIH(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), ESSIH(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), ESSIH(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), ESSIH(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC(3), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC(2), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC (2), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC (2), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC (2), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC (2), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC (2), EBORT) C Call SY0100 4, 4, COBAT (2: 2), EBLAC (2), EBORT) C	C	END
Cull sv0100(4, 8, COMT(11:10, BESLN(3), BOWT) Cull sv0100(4, 10, COMT(15:10, BESLN(3), BOWT) Cull sv0100(4, 10, COMT(15:12), BESLN(3), BOWT) Cull sv0100(4, 10, COMT(15:12), BESLN(3), BOWT) Cull sv0100(4, 10, COMT(15:12), BESLN(3), BOWT) Cull sv0100(4, 4, COMT(15:12), BESNC(3), BOWT) Cull sv0100(4, 4, COMT(15:12), BENC(2), BOWT) Cull sv0100(4, 4, COMT(15:12), BENC(2), BOWT) Cull sv0100(4, 4, COMT(15:12), BENC(2), BOWT) Cull sv0100(4, 4, COMT(15:15), BLIRC(2), BOWT) Cull sv0100(4, 4, COMT(15:15),	CALL SV0100(4, 8, COBAT(7: 10), RESLIN(1), REDNY)	RINF, DSCT, IRTN)
Call SY0100 (4, 6, COAT(15:18), EESLH(C), EBOTT) Call SY0100 (4, 10, COAT(19:22), EESLH(C), EBOTT) Call SY0100 (4, 10, COAT(19:22), EESLH(C), EBOTT) Call SY0100 (4, 10, COAT(12):22), EESLH(C), EBOTT) Call SY0100 (4, 4, COAT(12):22), EESLH(C), EBOTT) Call SY0100 (4, 4, COAT(12):22), EESLH(C), EBOTT) Call SY0100 (4, 4, COAT(13):20), ELIC(2), EBOTT) Call SY0100 (4, 4, COAT(13):20), ELIFC(2), EBOTT) Call SY0100 (4, 0, COAT(13):50), ELIFC(2), EBOTT) Call SY0100 (4, 0, COAT(15):50), ELIFC(2), EBOTT)		C.
Call SY0100 (4, 10, CDAT(19:22), ESELV(2), EBONT) Call SY0100 (4, 10, CDAT(19:22), ESELV(2), EBONT) Call SY0100 (4, 10, CDAT(19:22), ESELV(2), EBONT) Call SY0100 (4, 4, CDAT(12):22), ELIC(1), EBONT) Call SY0100 (4, 4, CDAT(12):22), EBONT) Call SY0100 (4, 4, CDAT(12):22), EBONT) Call SY0100 (4, 4, CDAT(13):30), ELIC(2), EBONT) Call SY0100 (4, 4, CDAT(13):32), ELIC(2), EBONT) Call SY0100 (4, 4, CDAT(13):32), ELIFC(2), EBONT) Call SY0100 (4, 0, CDAT(13):42), ELIFC(2), EBONT) Call SY0100 (4, 0, CDAT(13):4	CALL SV0100(4, 8, COBAT(11: 14), RESLIN(4), REDNY)	C=====================================
CALL SY0100(4,10, COMT(23:02, RESELV(0), REDWY) C THIS FROCEAM CONVERTS ECOLOREDIALCAL CATTUDE, LAWETUDE, CALL SY0100(4,4, COMAT(23:02, REDWY) CALL SY0100(4,4, COMAT(23:120, RELOC), REDWY) C THIS FROCEAM IS PROVIDED BY THE FROEDCALCAL SATELLITE CENTER OF CALL SY0100(4,4, COMAT(31:120, RELOC), REDWY) C THIS FROCEAM IS PROVIDED BY THE FROEDCALCAL SATELLITE CENTER OF CALL SY0100(4,4, COMAT(31:30, RELOC(2), REDWY) C THIS FROCEAM IS PROVIDED BY THE FROEDCALCAL SATELLITE CENTER OF CALL SY0100(4,4, COMAT(31:30, RELOC(2), REDWY) C THIS FROCEAM IS PROVIDED BY THE FROEDCALCAL SATELLITE CENTER OF CALL SY0100(4,4, COMAT(32:3250, RELOFC(2), REDWY) C THIS FROCEAM IS PROVIDED BY THE FROEDCALCAL SATELLITE CENTER OF CALL SY0100(4,6, COMAT(32:3250, RELOFC(2), REDWY) C THIS FROCEAM IS PROVIDED BY THE FROEDCALCAL SATELLITE CENTER OF CALL SY0100(4,6, COMAT(32:3250, RELOFC(2), REDWY) C THIS FROEDCAL CLASTON CONCENTS SCIENTION CALL SY0100(4,0, COMAT(32:63, SENSU(2), REDWY) C THIS FROEDCAL CLASTON CONCENTS SCIENTION CALL SY0100(4,0, COMAT(32:63, SENSU(2), REDWY) C I/0 TYPE CALL SY0100(4,0, COMAT(51:54), RELNEC(2), REDWY) C I/0 TYPE CALL SY0100(4,0, COMAT(51:54), RELNEC(2), REDWY) C I/0 TYPE CALL SY0100(4,0, COMAT(51:54), RELNEC(2), REDWY) <	CALL SV0100(4.10, COBAT(19: 22), RESELM(2), RBDMY)	C+++++++++++++++++++++++++++++++++++++
CALL SY0100(4, 4, CORAT(23: 25), BLIC(2), REDMY) CALL SY0100(4, 4, CORAT(21: 20), BLIC(2), REDMY) CALL SY0100(4, 4, CORAT(11:114), BLIC(3), REDMY) CALL SY0100(4, 4, CORAT(13: 34), FELAFC(3), REDMY) CALL SY0100(4, 6, CORAT(13: 34), SENSU(3), REDMY) CALL SY0100(4, 6, CORAT(13: 34), SENSU(3), REDMY) CALL SY0100(4, 6, CORAT(13: 34), SENSU(3), REDMY) CALL SY0100(4, 6, CORAT(13: 34), BLINE(3), REDMY) CALL SY0100(4, 6, CORAT(13: 34), BLINE(3), REDMY) CALL SY0100(4, 6, CORAT(13: 54), REMY) CALL SY0100(4, 6, CORAT(13: 54), REMY) CALL SY0100(4, 6, CORAT(13: 54), REMY(3), REDMY) CALL SY0100(4, 6, CORAT(13: 56), REMY(3), REDMY) CALL SY0100(4, 6), CORAT(13: 56), REMY(3), REMY) CALL SY0100(6, 7), CORAT(13: 56), REMY(3), REMY) CALL SY0100(6, 7), CORAT(13: 56), REMY(3), REMY) CALL SY01		C THIS PROGRAM CONVERTS GEOGRAPHICAL CO-ORDINATES (LATITUDE LOWGITUDE)
CALL SV0100(4, 4, CORAT(111:114), RLIC(3), REDMY) CALL SV0100(4, 4, CORAT(13:13, 34), RELAYC(3), REDMY) CALL SV0100(4, 4, CORAT(13:13, 34), RELAYC(3), REDMY) CALL SV0100(4, 4, CORAT(13:13, 24), RELAYC(3), REDMY) CALL SV0100(4, 4, CORAT(13:122), RELAYC(3), REDMY) CALL SV0100(4, 4, CORAT(13:122), RELAYC(3), REDMY) CALL SV0100(4, 4, CORAT(13:122), RELAYC(3), REDMY) CALL SV0100(4, 4, CORAT(13:124), REDMY) CALL SV0100(4, 4, CORAT(13:124), REDMY) CALL SV0100(4, 6, CORAT(13:145), REDMY) CALL SV0100(4, 6, CORAT(13:154), REDMY) CALL SV0100(4, 10, CORAT(13:165), REDMY) CALL SV0100(4, 10, CORAT(1	CALL SV0100(4, 4, COBAT(23: 25), RLIC(1) , REDNY)	
CALL SV0100(4, 4, COBAT(31: 34), RELHFC(2), RBOHY) C	CALL SV0100(4, 4, COBAT(111:114), RLIC(3) , REDNY)	
CALL SY0100(4, 4, COMAT (19:122), BELNETC(3), BEONT) C JHA/NSC 1991 CALL SY0100(4, 4, COMAT (29:122), BEDNET(3), BEONT) C C CALL SY0100(4, 0, COMAT (29: 42), SENSU(2), BEONT) C C CALL SY0100(4, 0, COMAT (29: 42), SENSU(2), BEONT) C C CALL SY0100(4, 0, COMAT (31: 46), SENSU(2), BEONT) C C CALL SY0100(4, 0, COMAT (31: 46), SENSU(2), BEONT) C C CALL SY0100(4, 0, COMAT (51: 50), BLINE(2), BEONT) C C CALL SY0100(4, 0, COMAT (51: 50), BLINE(2), BEONT) C IMACE KIND CALL SY0100(4, 0, COMAT (51: 50), BLINE(2), BEONT) C IMACE KIND CALL SY0100(4, 0, COMAT (51: 50), BLINE(2), BEONT) C IMACE KIND CALL SY0100(4, 0, COMAT (52: 52), BLINET(1), BEONT) C IMACE KIND CALL SY0100(4, 0, COMAT (52: 52), BELNET(1), BEONT) C IMACE KIND CALL SY0100(4, 10, COMAT (52: 52), BELNET(1), BEONT) C IMACE KIND CALL SY0100(4, 10, COMAT (52: 52), BELNET(1), BEONT) C IMACE KIND CALL SY0100(4, 10, COMAT (53: 56), HIS(1), BEONT) C 1.1 T V K VIS VIS CALL SY0100(4, 10, COMAT (53: 56), BENNE(1), BEONT) C IT 0 4 (LAT, LOM, NOT)>(LINE, PIXEL) </td <th>CALL SV0100(4, 4, COBAT(31: 34), RELNFC(1), RBDNY)</th> <td>C</td>	CALL SV0100(4, 4, COBAT(31: 34), RELNFC(1), RBDNY)	C
CALL SV0100(4, 4, COMAT(23:126), EELNFC(4), EBONY) C CALL SV0100(4, 0, COMAT(32:42), SERSSU(2), EBONY) C CALL SV0100(4, 0, COMAT(42:46), SERSSU(2), EBONY) C CALL SV0100(4, 0, COMAT(42:50), ELINE(2), EBONY) C CALL SV0100(4, 0, COMAT(51:50), ELINE(2), EBONY) C CALL SV0100(4, 0, COMAT(51:54), ELINE(2), EBONY) C CALL SV0100(4, 0, COMAT(51:54), ELINE(2), EBONY) C CALL SV0100(4, 0, COMAT(51:54), ELINE(2), EBONY) C CALL SV0100(4, 0, COMAT(55:52), ELINT(2), EBONY) C CALL SV0100(4, 0, COMAT(55:52), ELINT(2), EBONY) C CALL SV0100(4, 0, COMAT(55:52), ELINT(4), EBONY) C CALL SV0100(4, 0, COMAT(55:52), ELINT(4), EBONY) C CALL SV0100(4, 0, COMAT(55:52), ELINT(4), EBONY) C CALL SV0100(4, 10, COMAT(55:52), ELINT(51), EBONY) C CALL SV0100(4, 10, COMAT(75:78), EBONY) C CALL SV0100(4, 10, COMAT(71:78), EB), ELINS(71), EBONY) C CALL SV0100(4, 10, COMAT(71:78), EB), ELINS(71), EBONY) C C		C NSC TECH. NOTE NO.23
CALL SV0100(4, 0, COBAT(43: 46), SENSSU(2), EBONT) Commentation CALL SV0100(4, 0, COBAT(43: 46), SENSSU(3), EBONT) Commentation CALL SV0100(4, 0, COBAT(43: 46), SENSSU(4), EBONT) Commentation CALL SV0100(4, 0, COBAT(43: 46), SENSSU(4), EBONT) Commentation CALL SV0100(4, 0, COBAT(51: 54), ELINE(2), EBONT) Commentation CALL SV0100(4, 0, COBAT(51: 56), ELINE(2), EBONT) Commentation CALL SV0100(4, 0, COBAT(51: 62), EELNT(2), EBONT) Commentation CALL SV0100(4, 10, COBAT(51: 70), VNIS(2), EBONT) Commentation CALL SV0100(4, 10, COBAT(71: 74), ENDETATIC(1), EBONT) Commentation CALL SV0100(4, 10, COBAT(71: 74), ENDETATIC(1), EBONT) Commentation	CALL SV0100 (4, 4, COBAT (123:125), RELNFC (4), RBDMY)	C
CALL SV0100(4, 0, COBAT(43: 46), SENSU(4), REDMY) C CALL SV0100(4, 0, COBAT(47: 50), RLINE(2), REDMY) C CALL SV0100(4, 0, COBAT(51: 54), RLINE(2), REDMY) C CALL SV0100(4, 0, COBAT(55: 58), RELNAT(2), REDMY) C CALL SV0100(4, 0, COBAT(55: 52), RELNAT(2), REDMY) C CALL SV0100(4, 10, COBAT(51: 70), WHIS(2), REDMY) C CALL SV0100(4, 10, COBAT(71: 70), WHIS(2), REDMY) C	CALL SV0100(4, 0, COBAT(43: 46), SENSSU(2), R8DMY)	C
CALL SV0100(4, 0, COBAT(47; 50), BLIME(1), RBOMY) C CALL SV0100(4, 0, COBAT(51; 54), BLIME(2), RBOMY) C CALL SV0100(4, 0, COBAT(52; 550), BELMMT(2), RBOMY) C CALL SV0100(4, 0, COBAT(52; 52), BELMMT(2), RBOMY) C CALL SV0100(4, 0, COBAT(52; 52), BELMMT(2), RBOMY) C CALL SV0100(4, 0, COBAT(53; 552), RELMMT(3), RBOMY) C CALL SV0100(4, 10, COBAT(57; 70), WIIS(1), RBOMY) C CALL SV0100(4, 10, COBAT(57; 70), WIIS(2), RBOMY) C CALL SV0100(4, 10, COBAT(57; 73), ELMIS(1,1), RBOMY) C CALL SV0100(4, 10, COBAT(57; 73), ELMIS(2,1), RBOMY) C CALL SV0100(4, 10, COBAT(57; 73), ELMIS(2,1), RBOMY) C CALL SV0100(4, 10, COBAT(51; 54), ELMIS(2,1), RBOMY) C CALL SV0100(4, 10, COBAT(51; 52), ELMIS(1,2), RBOMY) <t< td=""><th>CALL SV0100(4, 0, COBAT(43: 46), SENSSU(3), R8DHY) CALL SV0100(4, 0, COBAT(43: 46), SENSSU(4), R8DHY)</th><td></td></t<>	CALL SV0100(4, 0, COBAT(43: 46), SENSSU(3), R8DHY) CALL SV0100(4, 0, COBAT(43: 46), SENSSU(4), R8DHY)	
CALL SV0100(4, 0, COBAT(51: 54), BLINE(3), RBDNY) C I/O TYPE CALL SV0100(4, 0, COBAT(51: 54), BLINE(4), RBDNY) C INODE 1 1 +4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(55: 58), BELNNT(2), RBDNY) C INODE 1 1 +4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(59: 62), RELNNT(2), RBDNY) C INODE 1 1 +4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(53: 62), RELNNT(2), RBDNY) C INODE 1 1 +4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(53: 62), RELNNT(2), RBDNY) C INODE 1 1 +4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 10, COBAT(63: 65), WHIS(1), RBDNY) C 3 +3 IR2 IR2 CALL SV0100(4, 10, COBAT(75: 78), ELHIS(1, 1), RBDNY) C - 1 T0 4 LAT, LON, NCT) -> (LINE, PIXEL) CALL SV0100(4, 10, COBAT(75: 78), ELHIS(1, 1), RBDNY) C - 1 T0 -4 LAT, LON, NCT) -> (LINE, PIXEL) CALL SV0100(4, 10, COBAT(75: 82), ELHIS(3, 2), RBDNY) C RPIX 1/0 R+4 PIXEL OF POINT CALL SV0100(4, 10, COBAT(75: 89), ELHIS(1, 2), RBDNY) C RLIN 1/0 R+4 LINE OF POINT (OECREES, RAST:+, MEST:-) CALL SV0100(4, 10, COBAT(95: 99), E	CALL SV0100(4, 0, COBAT(47: 50), RLINE(1), RBONY)	Ċ
CALL SV0100(4, 0, COBAT(51: 5A), BLIME(4), RBOHY) C INDDE I I=4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(55: 5B), RELWRT(2), RBOHY) C INDDE I I=4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(59: 62), RELWRT(2), RBOHY) C INDDE I I=4 CONVERSION MODE & IMAGE KIND CALL SV0100(4, 0, COBAT(59: 62), RELWRT(3), RBOHY) C I1 VIS VIS CALL SV0100(4, 0, COBAT(59: 62), RELWRT(3), RBOHY) C 3,-3 IR2 IR2 CALL SV0100(4, 10, COBAT(71: 70), WIIS(2), RBOHY) C 3,-3 IR2 IR2 CALL SV0100(4, 10, COBAT(71: 70), WIIS(2), RBOHY) C 4,-4 WWY INDE CALL SV0100(4, 10, COBAT(71: 70), WIIS(2), RBOHY) C -1 T0 4 CALL,LON, NGT)=>(LINE, PIXEL) CALL SV0100(4, 10, COBAT(75: 78), ELHIS(1,1), RBOHY) C -1 T0 -4 CALL,LON, NGT)=>(LINE, PIXEL) CALL SV0100(4, 10, COBAT(75: 88), ELHIS(2,1), RBOHY) C RUN -1 T0 -4 CALL,LON, NGT)=>(LINE, PIXEL) CALL SV0100(4, 10, COBAT(85: 98), ELHIS(2,1), RBOHY) C RLIN Referee </td <th>CALL SV0100(4, 0, COBAT(51: 54), RLINE(3) , RBDNY)</th> <td>C I/O TYPE</td>	CALL SV0100(4, 0, COBAT(51: 54), RLINE(3) , RBDNY)	C I/O TYPE
CALL SV0100(4, 0, COBAT(59: 62), RELWRT(2), RBOWY) C CHL SV0100(4, 0, COBAT(59: 62), RELWRT(3), RBOWY) CALL SV0100(4, 0, COBAT(59: 62), RELWRT(3), RBOWY) C 1,-1 VIS VIS VIS CALL SV0100(4, 0, COBAT(59: 62), RELWRT(3), RBOWY) C 2,-2 IR IRI IRI, IR4 CALL SV0100(4, 10, COBAT(63: 66), VHIS(1), RBOWY) C 3,-3 IR2 IR2 CALL SV0100(4, 10, COBAT(71: 70), VHIS(2), RBOWY) C 4,-4 WV WY CALL SV0100(4, 10, COBAT(71: 71), VHIS(2), RBOWY) C I TO 4 (LAT, LOM, NGT)->(LINE, PIXEL) CALL SV0100(4, 10, COBAT(75: 78), ELHIS(1,1), RBOWY) C -1 TO -4 (LAT, LOM, NGT)->(LINE, PIXEL) CALL SV0100(4, 10, COBAT(75: 78), ELHIS(2,1), RBOWY) C -1 TO -4 (LAT, LOM)<<<(LINE, PIXEL)	CALL SV0100(4, 0, COBAT(51: 54), RLINE(4), RBDNY)	
CALL SV0100(4, 0, COBAT(59: 62), RELNHT (4), R80HY) C 2,-2 IR IR1 IR4 CALL SV0100(4,10, COBAT(63: 65), YHIS(1), R80HY) C 3,-3 IR2 IR2 CALL SV0100(4,10, COBAT(67: 70), YHIS(2), R80HY) C 4,-4 WV WV CALL SV0100(4,10, COBAT(71: 74), YHIS(2), R80HY) C -1 TO 4 (LAT,LON,NGT) -> (LINE,PIXEL) CALL SV0100(4,10, COBAT(75: 78), ELHIS(2,1), R80HY) C -1 TO 4 (LAT,LON)<-(LINE,PIXEL)	CALL SV0100(4, 0, COBAT(59: 62), RELINKT(2), R8DHY)	C GHS-4 GHS-5 HTSAT
CALL SV0100(4,10, COBAT(57:70), VHIS(2), R80HY) C 4,-4 WV WV CALL SV0100(4,10, COBAT(71:74), VHIS(2), R80HY) C COMVERSION MODE CALL SV0100(4,10, COBAT(71:74), VHIS(2), R80HY) C I TO 4 CAT,LON,NGT)->(LINE,PIXEL) CALL SV0100(4,10, COBAT(71:72:78), ELHIS(1,1), R80HY) C I TO 4 CAT,LON,NGT)->(LINE,PIXEL) CALL SV0100(4,10, COBAT(71:72:78), ELHIS(3,1), R80HY) C I TO 4 CAT,LON)<=(LINE,PIXEL)	CALL SV0100(4, 0, COBAT(59: 62), RELINIT(4), RBONY)	C 2,-2 1R 1R1 1R1, 1R4
CALL SV0100(4,10, COBAT(71:74), VH1S(3), RBDHY) C CNVVERSION HODE CALL SV0100(4,10, COBAT(75:78), ELHIS(1,1), RBOHY) C 1 TO 4 CLAT,LON,NGT) => (LINE,PIXEL) CALL SV0100(4,10, COBAT(79:82), ELHIS(3,1), RBOHY) C -1 TO -4 CAT,LON,NGT) => (LINE,PIXEL) CALL SV0100(4,10, COBAT(79:82), ELHIS(3,1), RBOHY) C -1 TO -4 CAT,LON,NGT) => (LINE,PIXEL) CALL SV0100(4,10, COBAT(87:80), ELHIS(3,1), RBOHY) C RPIX 1/0 R-4 LINE OF POINT CALL SV0100(4,10, COBAT(99:94), ELHIS(2,2), RBOHY) C RLIN 1/0 R-4 LINE OF POINT CALL SV0100(4,10, COBAT(99:94), ELHIS(2,2), RBOHY) C RLAT 1/0 R-4 LINE OF POINT CBCREES, RAST:+, MEST:-) CALL SV0100(4,10, COBAT(99:122), ELHIS(2,3), RBOHY) C RLAT 1/0 R-4 LATITUDE OF POINT (DEGREES, ROTH:+, SOUTH:-) CALL SV0100(4,10, COBAT(99:122), ELHIS(2,3), RBOHY) C RLAT 1/0 R-4 LINE OF POINT (DEGREES, ROTH:+, SOUTH:-) CALL SV0100(6,1,0, COBAT(107:110), ELHIS(2,3), RBOHY) C RLAT I/0 R-4 LINEIGHT OF POINT (DEGREES, ROTH:+, SOUTH:-) CALL SV0100(6, 8, COBAT(107:110),		
CALL SV0100(4.10, COBAT(79: 82), ELMIS(2,1), R8DMY) C -1 TO -4 (LAT, LON) <= (LINE, PIXEL)	CALL SV0100 (4, 10, COBAT (71: 74), VHIS (3) , REDHY)	C CONVERSION MODE
CALL SV0100(4.10, COBAT(87: 90), ELMIS(1,2), R8DMY) C RLIN 1/0 R-4 LINE OF POINT CALL SV0100(4.10, COBAT(91: 94), ELMIS(2,2), R8DMY) C RLON 1/0 R-4 LINE OF POINT (DEGREES, EAST:+, MEST:-) CALL SV0100(4.10, COBAT(95: 98), ELMIS(3,2), R8DMY) C RLAN 1/0 R-4 LINE OF POINT (DEGREES, RAST:+, MEST:-) CALL SV0100(4.10, COBAT(99: 102), ELMIS(1,3), R8DMY) C RLAT 1/0 R-4 LATITUDE OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(4.10, COBAT(103: 105), ELMIS(2, 3), R8DMY) C RHGT I R-4 LINE OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(4.7, COBAT(107: 110), ELMIS(2, 3), R8DMY) C RHGT I R-4 (1) SATELLITE ZENITH DISTANCE (DEGREES) CALL SV0100(6, 8, COBAT(241: 246), R4DMY, N DSPIN) C (2) SATELLITE ZINUTH AAGLE (DEGREES) C C C (3) SUN ZENITH DISTANCE (DEGREES) C (3) SUN ZENITH DISTANCE (DEGREES) C C (4) SUN AZINUTH AAGLE (DEGREES) C (5) SATELLTE-SUN DIPARTURE ANGLE (DEGREES) C C (5) SATELLTE DISTANCE	CALL SV0100(4,10, COBAT(79: 82), ELMIS(2,1), R8DMY)	C -1 TO -4 (LAT, LON) <- (LINE, PIXEL)
CALL SV0100(4, 7, COBAT(91:94), ELMIS(2,2), RBDHY) C RLON 1/0 R=4 LONGITUDE OF POINT (DEGREES, RAST:+, WEST:-) CALL SV0100(4,10, COBAT(95:98), ELMIS(3,2), RBDHY) C RLAT 1/0 R=4 LATITUDE OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(4,10, COBAT(95:98), ELMIS(1,3), RBDHY) C RHGT 1 R=4 NEIGHT OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(4,10, COBAT(103:105), ELMIS(1,3), RBDHY) C RHGT 1 R=4 NEIGHT OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(4,10, COBAT(107:110), ELMIS(1,3), RBDHY) C RHGT 1 R=4 NEIGHT OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(4,7, COBAT(107:110), ELMIS(1,3), RBDHY) C RHGT 1 R=4 NEIGHT OF POINT (DEGREES, NORTH:+, SOUTH:-) CALL SV0100(6,8, COBAT(121:246), RADHY, DSPIN) C C (2) SATELLITE ZENITH DISTANCE (DEGREES) C C (3) SUN ZENITH DIFARTURE ANCLE (DEGREES) C (3) SUN ZENITH DISTANCE (DEGREES) C C (1)-5 SATELLITE-SUN DIFARTURE ANCLE (DEGREES) C (3) SUN ZENITH ANCLE (DEGREES)	CALL SV0100(4,10, COBAT(87:90), ELMIS(1,2), R80MY)	
CALL SV0100(4,10, COBAT(99:102), ELHIS(1,3), R8DHY) C RHGT 1 R+4 HEIGHT OF POINT CHETER) CALL SV0100(4,10, COBAT(103:105), ELHIS(2,3), R8DHY) C RINF(8) 0 R+4 (1) SATELLITE ZENTH DISTANCE (DEGREES) CALL SV0100(4,7, COBAT(107:110), ELHIS(3,3), R8DHY) C RINF(8) 0 R+4 (1) SATELLITE ZENTH DISTANCE (DEGREES) CALL SV0100(6, 8, COBAT(1241:246), R4DHY, DSPIN) C (2) SATELLITE AZIMUTH ANGLE (DEGREES) C (4) SUN AZIMUTH ANGLE (DEGREES) C (4) SUN AZIMUTH ANGLE (DEGREES) D0 2000 (1-1,10 C (5) SATELLTE-SUN DIPARTURE ANGLE (DEGREES) J - (1-1)=644257-1 C (5) SATELLTE DISTANCE (METER) CALL SV0100(6, 8, COBAT(14): 6+J), R4DHY, ATIT(1,1)) C (7) SUN DISTANCE (NRO-HETER) CALL SV0100(6, 8, COBAT(13)-18+J), R4DHY, ATIT(3,1)) C (8) SUN (R1NT ANGLE (DEGREES)) CALL SV0100(6, 11, COBAT(13+J:18+J), R4DHY, ATIT(4, 1)) C G8) SUN (R1NT ANGLE (DEGREES)) CALL SV0100(6, 11, COBAT(14)-124+J), R4DHY, ATIT(4, 1)) C G8) SUN (R1NT ANGLE (DEGREES)) CALL SV0100(6, 11, COBAT(19+J-24+J), R4DHY, ATIT(4, 1)) C G8	CALL SV0100(4,7, COBAT(91:94), ELMIS(2,2), R80MY)	C RLON 1/0 R+4 LONGITUDE OF POINT (DECREES, EAST:+, WEST:-)
CALL SV0100 (4. 7, COBAT (107:110), ELHIS (3.3), RBDHY) C C) CALL SV0100 (6. 8, COBAT (241:246), R4DHY , DSPIN) C C) C (3) SUN ZENITH DISTANCE (DEGREES) C (4) SUN AZINUTH ANGLE (DEGREES) D 2000 1-1.10 C (5) SATELLTE AZINUTH ANGLE (DEGREES) J - (1-1)=64+257-1 C (5) SATELLTE SUN DIPARTURE ANGLE (DEGREES) C (15) SATELLTE DISTANCE (NETER) CALL SV0100 (6. 8, COBAT (1+J: 6+J), R4DHY, ATIT (1.1)) C (7) SUN DISTANCE (XIR0-HETER) C (11)=64+257-1 C (7) SUN DISTANCE (XIR0-HETER) CALL SV0100 (6. 8, COBAT (1+J: 6+J), R4DHY, ATIT (1.1)) C (7) SUN DISTANCE (XIR0-HETER) CALL SV0100 (6. 11, COBAT (19-J:24+J), R4DHY, ATIT (4.1)) C DSCT 0 CALL SV0100 (6.11, COBAT (19-J:24+J), R4DHY, ATIT (4.1)) C DSCT 0 R-8	CALL SV0100(4,10, COBAT(99:102), ELMIS(1,3), R8DHY)	C RHGT I R.4 HEIGHT OF POINT (HETER)
CALL SV0100 (6, 8, COBAT (241:246), R4DHY , DSPIN) C (3) SUN ZENITH DISTANCE (DEGREES) C C (4) SUN AZIHUTH ANGLE (DEGREES) D0 2000 1=1.10 C (4) SUN AZIHUTH ANGLE (DEGREES) J = (1-1)=64+257-1 C (5) SATELLTE-SUN DIPARTURE ANGLE (DEGREES) CALL SV0100 (6, 8, COBAT (1+J: 6+J), R4DHY, ATIT (1, 1)) C (7) SUN DISTANCE (NETER) CALL SV0100 (6, 8, COBAT (13+J: 18+J), R4DHY, ATIT (3, 1)) C (8) SUN CENTA ANGLE (DEGREES) CALL SV0100 (6, 11, COBAT (19+J: 24+J), R4DHY, ATIT (4, 1)) C C C		C (2) SATELLITE AZIMUTH ANGLE (DEGREES)
D0 2000 I=1.10 C (5) SATELLTE-SUN DIPARTURE ANGLE (DEGREES) J = (1-1)=64+257-1 C (6) SATELLTE DISTANCE (NETER) CALL SV0100(6. 8, COBAT(1+J: 6+J), R4DHY, ATIT(1, 1)) C (7) SUN DISTANCE (XIRO-METER) CALL SV0100(6. 8, COBAT(13+J:18+J), R4DHY, ATIT(3, 1)) C (8) SUN DISTANCE (XIRO-METER) CALL SV0100(6.11, COBAT(19+J:24+J), R4DHY, ATIT(4, 1)) C DSCT 0 R=8 SCAN TIME (HJ)	CALL SV0100(6, 8, COBAT(241:246), R4DHY , DSPIN)	C (3) SUN ZENITH DISTANCE (DEGREES)
CALL SV0100(6. 8.COBAT(1+J: 6+J), R4DHY, ATIT(1, 1)) C (7) SUN DISTANCE (XIRO-METER) CALL SV0100(6. 8.COBAT(13+J:18+J), R4DHY, ATIT(3, 1)) C (8) SUN GRINT ANGLE (DEGREES) CALL SV0100(6. 11, COBAT(19+J:24+J), R4DHY, ATIT(4, 1)) C 0 CALL SV0100(6. 11, COBAT(19+J:24+J), R4DHY, ATIT(4, 1)) C DSCT 0	00 2000 1-1.10	C (5) SATELLTE-SUN DIPARTURE ANGLE (DEGREES)
CALL SV0100 (6. 8, COBAT (13+J:18+J), R4DHY, ATIT (3, 1)) C CB) SUN GRINT ANGLE (DECREES) CALL SV0100 (6. 11, COBAT (19+J:24+J), R4DHY, ATIT (4. 1)) C DSCT 0 R=8 SCAN TIME (HJD)		
	CALL SV0100(6. 8, COBAT (13+J:18+J), R4DHY, ATIT (3, 1))	C (8) SUM GRINT ANGLE (DEGREES)
GHS-5 S-VISSR AND HTSAT HIRID INAGE NAVIGATION (2/5) JAPAN METEOROLOGICAL AGENCY / NETEOROLOGICAL SATELLITE CENTER 1996	GHS-5 S-VISSE AND HTSAT HIRID INAGE NAVIGATION (2/5)	JAPAN NETEOROLOGICAL AGENCY / NETEOROLOGICAL SATELLITE CENTER 1996

```
CALL MG1220 (SP. SX. SY)
                                                                                                                                                     SLV(1) = STN1(1)-SAT(1)
SLV(2) = STN1(2)-SAT(2)
[3.6]
                                                                                                                                                     SLY (3)
                                                                                                                                                                   - STN1 (3) - SAT (3)
      COMMON /MMAP1/MAP (572, 4)
Č
                                                                                                                                                     CALL HG1200(SLV, SL)
CALL HG1210(SP, SL, SH2)
                                                                                                                                                                                                                                                             [3.7]
          1. COORDINATE TRANSFORMATION PARAMETERS SEGMENT
C
                                                                                           MAP (1, 1) - MAP (672, 1)
                                                                                                                                                     CALL MG1210(SY, SH2, SH3)
C
                                                                                          MAP (1.2) - MAP (572.2)
MAP (1.3) - MAP (572.3)
                                                                                                                                                     CALL HG1230 (SY, SH2, TP)
TF = SP (1) + SH3 (1) + SP (2) + SH3 (2) + SP (3) + SH3 (3)
           2. ATTITUDE PREDICTION DATA SEGNENT
C
           3. ORBIT PREDICTION DATA 1 SEGMENT
4. ORBIT PREDICTION DATA 2 SEGMENT
C
                                                                                                                                                      IF (TF.LT.O.DO)
                                                                                                                                                                               TP--TP
                                                                                           HAP (1, 4) - HAP (672, 4)
                                                                                                                                                     CALL MG1230 (SP, SL, TL)
                                                                                                                                       C
        INTERESTION DEFINITION SECONDECEDENTIAL SECONDECEDENTS SECONDECEDENTS
                                                                                                                                                                   = SNGL (HPA1-TL) /RSTEP+RFCL-VMIS (2) /RSTEP
                                                                                                                                                     RI
ČI I
                                                                                                                                                                   - SNGL (TP) /RSAMP+RFCP
+VMIS (3) /RSAMP-SNGL (RPA1-TL) +TAN (VMIS (1)) /RSAMP
                                                                                                                                                     Ð
           COMMON /MAP1/MAP
Ċ
                                                                                                                                       C
                              PPIY. PLIN, PLON, PLAT, RHGT, RINF (8)
           PEAL ...
                                                                                                                                                     IF (ABS (RI-R10), GE, EPS) THEN

RTIH - DBLE (AINT ( (RI-1.)/SENS)+RJ+RSAMP/SNGL (DPA1))/

(DSPIN=1440, DO)+DTINS
                                                                                                                                                                                                                                                             [3.8]
           INTEGER+4 MAP (672, 4), IRTN
C
                              REAL-4
                                                                                                                                                        R10
           REALA
                                                                                                                                                         GO TO 100
                                                                                                                                                     FID1P
           REAL#8
                                                                                                                                                     RLIN
                                                                                                                                                                   . RI
                               DLAT, DLON, DPAI, DSPIN, DTINS, EA, EE, EF, EN, MPAI, PC, PI, PS,
                                                                                                                                                      PIX
                                                                                                                                                                 = RJ
                               OC. OS. PTIN. TP. TL. TP.
                               SAT (3), SL (3), SL (3), SP (3), SS (3), STN1 (3), STN2 (3),
S(3), ST (3), SM1 (3), SM2 (3), SM3 (3)
DSCT, DSATZ, DSATA, DSUM2, DSUMA, DSSDA, DSATD, SUM, SD1S,
                                                                                                                                                     DSCT = RTIN
IF(RLIN.LT.O .OR. RLIN.GT.RFTL) IRTN-4
                                                                                                                                                      IF (RPIX.LT.O .OR. RPIX.GT.RFTP) IRTH-5
           REAL+8
                               DLATH, DLONN, STN3 (3) . DSUNG
                                                                                                                                       CININALINAL EQUIVALENCE INTERNETION CONTRACTOR CONTRACTOR
          EQUIVALENCE CHAP(5,1), DTINS), OMAP(7,1), BESLIN(1)
EQUIVALENCE CHAP(5,1), DTINS), OMAP(7,1), BESLIN(1)
EQUIVALENCE CHAP(11,1), RESELN(1)), OMAP(15,1), RELIC(1)
EQUIVALENCE (MAP(19,1), RELAPC(1)), OMAP(27,1), SENSSU(1))
EQUIVALENCE (MAP(31,1), BLINE(1)), OMAP(35,1), RELANT(1))
                                                                                                                                       c
                                                                                                                                                     RTIN
                                                                                                                                                                   = DBLE(AINT((DLIN-1.)/SENS)+RPIX=RSAMP/SNGL(DPAI))/
                                                                                                                                                     (DSPIN=1440.DO)+DTINS
CALL MG1100 (NTIN, COR, SAT, SP, SS, BETA)
                                                                                                                                                                                                                                                             [3.9]
                                                                                                                                                                                                                                                             [3.10]
           EQUIVALENCE GAP (39, 1), WHIS (1)),
EQUIVALENCE GAP (39, 1), WHIS (1)),
EQUIVALENCE GAP (131, 1), DSPIN)
                                                                       QNAP (42. 1) . ELMIS)
                                                                                                                                                      CALL
                                                                                                                                                               MG1220 (SP. SS. SH1)
                                                                                                                                                                                                                                                              (3.11)
                                                                                                                                                      CALL
                                                                                                                                                               MG1220 (SH1, SP, SH2)
                                                                                                                                                      BC
                                                                                                                                                                   = DCOS (RETA)
                                                                                                                                                      BS
                                                                                                                                                                   . DSIN (BETA)
                                                                                                                                                      SH3(1) - SH1(1)+BS+SH2(1)+BC
C
                                                                                                                                                      SH3 (2) = SH1 (2) =BS+SH2 (2) =BC
SH3 (3) = SH1 (3) =BS+SH2 (3) =BC
                  •
                          3.14159265300
           PI
           COR
                    .
                           P1/180.D0
                                                                                                                                                      CALL MGI200 (SH3. SX)
           CRD
                     .
                          180.D0/P1
                                                                                                                                                      CALL
                                                                                                                                                               MG1220 (SP, SX, SY)
                          PI/2.00
            HPAI .

    DCOS (DBLE (RSTEP= (RLIN-RFCL)))
    DSIN (DBLE (RSTEP= (RLIN-RFCL)))

                                                                                                                                                                                                                                                             [3 12]
            DPAI =
                          P1+2.00
                                                                                                                                                      PC
                           6378136.00
                                                                                                                                                      PS
            EA
                                                                                                                                                      OC.
                                                                                                                                                                    - DCOS (DBLE (RSAMP+ (RPIX-RPCP)))
                           1.00/298.25700
            FF

    DUS UBLE (USARP= UF1X=FFCF)))
    DSLN (DBLE (USARP= UF1X=FFCF)))
    DBLE (ELMIS(1, 1))=PC+DBLE (ELMIS(1, 3))=PS
    DBLE (ELMIS(2, 1))=PC+DBLE (ELMIS(2, 3))=PS
    DBLE (ELMIS(3, 1))=PC+DBLE (ELMIS(3, 3))=PS

                                                                                                                                                      QS
            FPS
                           10
 CITITITITITITI PARAMETER CHECK INTITITITITITITITITITITITI
                                                                                                                                                      SH1(1)
                                                                                                                                                      SH1 (2)
            IRTN = 0
IF (ABS (IMODE).GT.4) IRTN=1
IF (ABS (RLAT).GT.90. .AND. IMODE.GT.0) IRTN=2
                                                                                                                                                      SH1 (3)
                                                                                                                                                      SH2(1)
                                                                                                                                                                       QC=SH1(1)-QS=SH1(2)
 - QS-SH1 (1)+QC-SH1 (2)
                                                                                                                                                      SH2(2)
                                                                                                                                                      SH2(3)
                                                                                                                                                                   - SH1 (3)
                                                                                                                                                                   - 5X(1)=5H2(1)+5Y(1)=5H2(2)+5P(1)=5H2(3)

- 5X(2)=5H2(1)+5Y(2)=5H2(2)+5P(2)=5H2(3)

- 5X(3)=5H2(1)+5Y(3)=5H2(2)+5P(3)=5H2(3)

- 5X(3)=5H2(1)+5Y(3)=5H2(2)+5P(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2(3)=5H2
                                                                                                                                                      SH3(1)
                                                                                                                                                                                                                                                              [3, 13]
                       · ABS (THODE)
           LHODE
                          - RESLIN (LMODE)
                                                                                                                                                      SH3(2)
            RSTEP
                                                                                                                                                      543(3)
            RSAMP

    RESELM (LMODE)

                                                                                                                                                      CALL MG1200 (SH3, SL)
                                                                                                                                                                                                                                                              [3.14]
            PECI.
                          - RUIC(100E)
                                                                                                                                                                    * (1.00-EF)=(1.00-EF)
* DEF=(SL(1)=SL(1)+SL(2)=SL(2))+SL(3)=SL(3)
                                                                                                                                                      DEF
            RFCP
                          - RELMFC (LHOOE)
            SENS
                          - SENSSU (LHODE)
                                                                                                                                                      DOA
                                                                                                                                                                    + DEF+ (SAT (1)+SL(1)+SAT (2)+SL(2))+SAT (3)+SL(3)
                                                                                                                                                      008
            RFTL
                          - RLINE (LHODE)+0.5
                                                                                                                                                      DOC
                                                                                                                                                                     - DEF+ (SAT (1)+SAT (1)+SAT (2)+SAT (2)-EA+EA)+SAT (3)+SAT (3)
                          . RELINIT (LHODE) +0.5
            RETE
                                                                                                                                                                     . DD6+006-00A+00C
 DB
                                                                                                                                                      IF (DD. GE. 0. DO . AND. DDA. NE. 0. DO) THEN
DK1 • (-DOB+DSQRT (DD))/DOA
            IF ( INODE. GT. 0 . AND. INODE. LT. 5 ) THEN
DLAT - DBLE (RLAT) + CDR
                                                                                                                         [3.2]
                                                                                                                                                                        - (-DOB-DSQRT (DO))/DOA
               DLON
                             - DBLE (RLON) -COR
                                                                                                                                                         DX2
                              - 2.00-EF-EF-EF
                                                                                                                                                      FLSE
               EE
                              - EA/DSORT (1.00-EE+DSIN(OLAT)+DSIN(OLAT))
                                                                                                                                                          IRTH
               FN
               STN1 (1) = (EN+DBLE (RHGT)) + DCOS (DLAT) + DCOS (DLON)
                                                                                                                                                          GO TO 9000
               STNI (2) . (EN+DBLE (RHGT)) .DCDS (DLAT) .DSIN (DLON)
                                                                                                                                                       EXDIF
                                                                                                                                                       IF (DABS (DK1) . LE. DABS (DK2)) THEN
               STN1 (3) = (EN+(1.DO-EE)+DBLE(RHGT))+DSIN(DLAT)
                                                                                                                                                          DK
                                                                                                                                                                    - DK1
 C
                                                                                                                                                       ELSE
                              - RFCL-ATAN (SIN (SNGL (DLAT))/(6.610689-COS (SNGL (DLAT))))
               RIO
                                                                                                                                                          ٦ť
                                                                                                                                                                    - 0K2
                                  /RSTEL
                              DT1HS+DBLE(R10/SENS/1440.)/DSP1N
                                                                                                                                                       ENDIF
               211M
                                                                                                                         [3.3]
                                                                                                                                                       STN1(1) = SAT(1)+DK+SL(1)
  C
                                                                                                                                                       STN1 (2) = SAT (2) + DK-SL (2)
     100
               CONTINUE
                CALL HGI100 (RTIH, CDR, SAT, SP, SS, BETA)
                                                                                                                         [3.4]
                                                                                                                                                       STN1 (3) = SAT (3)+DK+SL (3)
                                                                                                                                                                    - DATAH (STN1 (3) / (DEF=DSQRT (STN1 (1) + STN1 (1) +
                                                                                                                                                       DLAT
  C.
                    . . . . .
                                                 STN1 (2) - STN1 (2))))
                                                                                                                                                                                                                                                               (3.15)
                CALL HG1220(SP, SS, SH1)
                                                                                                                         (3.5)
                                                                                                                                                       IF (STNI (1). NE. 0. 00) THEN
DLON - DATAN (STNI (2)/STNI (1))
IF (STNI (1). LT. 0. DO . AND. STNI (2). GE. 0. DO) DLO3-DLON+PI
IF (STNI (1). LT. 0. DO . AND. STNI (2). LT. 0. DO) DLON-DLON-PI
                CALL MG1220 (SW1, SP, SH2)
                              - DCOS (BETA)
                BC.
                BS
                              - DSIN (BETA)
                SH3(1)
                            - SH1 (1)=BS+SH2(1)+BC
                            - SH1 (2) +85+ SH2 (2) +8C
                543(2)
                                                                                                                                                       ELSE
                            - SH1 (3) +BS+SH2 (3) +BC
                                                                                                                                                          IF (STN1 (2).GT.0.DO) THEN
                543(3)
                CALL MG1200 (SH3, SX)
                                                                                                                                                              DLON-RPAT
  CHS-5 S-VISSR AND HTSAT HIRID IMAGE MAVIGATION (3/5)
                                                                                                                                           JAPAN HETEOROLOGICAL AGENCY / HETEOROLOGICAL SATELLITE CENTER
                                                                                                                                                                                                                                                             1996
```

ELSE	60 TO 1200
DLOH HPAI Exclip	ENDIF 1000 CONTINUE
ENDIF	1200 CONTINUE
ELAT = SNGL (DLAT=C20) ELON = SNGL (DLON=C20)	C D0 3000 1-1.33-1
DSCT = RTIN	IF ORTIN, GE, ATIT(1, 1) .AND. RTIN, LT. ATIT(1, 1+1)) THEN
ENDIF	DELT = (RT1H-AT1T(1,1))/(AT1T(1,1+1)-AT1T(1,1))
C CIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ATTALP = ATIT(3, 1)+(ATIT(3, 1+1)-ATIT(3, 1))-DELT 11 [3, 16] ATTDEL = ATIT(4, 1)+(ATIT(4, 1+1)-ATIT(4, 1))-DELT
STH2(1) - DCDS(DLAT)=DCDS(DLON)	(3.17) BETA = ATIT(5, 1)+(ATIT(5, 1+1)-ATIT(5, 1))=DELT
STIK2 (2) = DCOS (DLAT) =DSIH (DLON) STIK2 (3) = DSIH (DLAT)	IF((ATIT(5, I+1)-ATIT(5, I)).GT.0.D0) BETA = ATIT(5, 1)+(ATIT(5, I+1)-ATIT(5, I)-360.D0+CDR)+DELT
SLV(1) = SAT(1)-STN1(1)	[3.18] GO TO 3001
SLV (2) = SAT (2) - STN1 (2) SLV (3) = SAT (3) - STN1 (3)	ENDIF 3000 CONTINUE
CALL HEI200 (SLV, SL)	3001 CONTINUE
C Call. Hg1230 (STN2, SL, DSATZ)	(3.19) MICOS - DCOS (ATTDEL)
IF (DSATZ, GT. HPAI) IRTN = 7	ATTI (1) - DSIN (ATTDEL)
C SUMM = 315,25300+0.98560000=87114	ATT1 (2) = MECOS = (-DSIN (ATTALP)) [3. 20] ATT1 (2) = MECOS = DCOS (ATTALP)
SUR01 = DMOD (SUR01, 360, DO) +CDR	ATT2(1) = NPA(1,1)=ATT1(1)+NPA(1,2)=ATT1(2)+NPA(1,3)=ATT1(3)
SDIS = (1.0001400-0.0167200=DCOS (SUR1) -0.00014=DCOS (2.00= SUBPD)=1.4959787008	0= ATT2(2) = NPA(2, 1)=ATT1(1)+NPA(2, 2)=ATT1(2)+NPA(2, 3)=ATT1(3) ATT2(3) = NPA(3, 1)=ATT1(1)+NPA(3, 2)=ATT1(2)+NPA(3, 3)=ATT1(3)
C	WESIN - DSIN(SITAGT)
IF (DLAT.GE.O.DO) THEN DLATN = HPAI-DLAT	[3.21] HIKCOS = DCOS (SITAGT) ATT3(1) = HIKCOS=ATT2(1)+HIKSIN=ATT2(2)
DLOIDI = DLOK-P1	ATT3 (2) =-WKSIN=ATT2 (1) +WKCOS=ATT2 (2)
IF (DLONN.LEPI) DLONN-DLONN+DPA1 ' ELSE	ATT3 (3) = ATT2 (3) CALL MG1200 (ATT3, SP)
DLATN = HPAI+DLAT	(C
Dlonn - Dlon Endif	MICOS = DCOS (SUMDEL) SS (1) = MICOS +DCOS (SUMALP)
STH3(1) = DCOS(DLATH)+DCOS(DLONH)	SS (2) = MICOS =DSIN (SUMALP)
STN3 (2) = DCDS (DLATH) =DSIN (DLONN) STN3 (3) = DSIN (DLATH)	SS (3) = DS IN (SUNDEL) C
SH1(1) = SLV(1)+SS(1)=SD1S=1.03	(3.22) RETURN
SH1 (2) = SLV (2)+SS (2) =SD1S=1.D3 SH1 (3) = SLV (3)+SS (3) =SD1S=1.D3	END SUBROUTINE MCI110
CALL , HG1200 (SH1, SH2)	[3.23] . (I, RTIH, COR, ORBTA, ORBTB, SAT, SITAGT, SUNALP, SUNDEL, NPA)
CALL NG 1230 (STN2, SN2, DSUNZ) CALL NG 1230 (SL, SN2, DSSDA)	. REAL=8 COR, SAT (3), RT IH, ORBTA (35, 8), ORBTB (35, 8) [3, 24] REAL=8 STAGT, SUNDEL, SUNALP, NPA (3, 3), DELT
CALL NG1240 (SL, STN2, STN3, DPA1, DSATA)	[3.25] INTEGER=4 1
CALL NG1240 (SH2, STN2, STN3, DPA1, DSUNA) DSATD - DSDRT (SLV (1) + SLV (1) + SLV (2) + SLV (2) + SLV (3) + SLV (3))	[3.26] IF (1.NE.8) THEN [3.27] DELT- (RT1N-ORBTA(1,1))/(ORBTA(1,1+1)-ORBTA(1,1))
C	SAT(1) = ORBTA(9,1)+(ORBTA(9,1+1)-ORBTA(9,1))=DELT
C CALL NG1200 (STN1, SL)	SAT (2) = ORBTA (10, 1) + (ORBTA (10, 1+1) - ORBTA (10, 1)) = DELT [3.28] SAT (3) = ORBTA (11, 1) + (ORBTA (11, 1+1) - ORBTA (11, 1)) = DELT [3.28] SAT (3) = ORBTA (11, 1) + (ORBTA (11, 1+1) - ORBTA (11, 1)) = DELT [3.28] SAT (3) = ORBTA (11, 1) + (ORBTA (11, 1+1) - ORBTA (11, 1)) = DELT [3.28] SAT (3) = ORBTA (11, 1) + (ORBTA (11, 1+1) - ORBTA (11, 1)) = DELT [3.28] <th[3.28]< th=""> [3.28] <th[3.28]< th=""></th[3.28]<></th[3.28]<>
CALL MG1230 (SH2, SL, DSUNG)	SITAGT = (ORBTA (15, 1) + (ORBTA (15, 1+1) - ORBTA (15, 1)) = DELT) = COR
CALL MG1220 (SL, SH2, SH3) CALL MG1220 (SH3, SL, SH1)	IF((ORBTA(15, I+1)-ORBTA(15, I)).LT.0.D0) . SITAGT = (ORBTA(15, I)+(ORBTA(15, I+1)-ORBTA(15, I)+360.D0)
MKCOS-DCOS (DSUNG)	•DELT) •COR
HKSIN-DSIN (DSUNG) SH2 (1) -HKCOS-SL (1) -HKSIN-SH1 (1)	SUNALP = (ORBTA (18, 1) + (ORBTA (18, 1+1) - ORBTA (18, 1)) = DELT) = CDR IF((ORBTA (18, 1+1) - ORBTA (18, 1)) . GT. 0, 00)
SH2 (2) =HKCOS=SL (2) =HKS K=SH1 (2)	. SUMALP = (ORBTA (18, 1) + (ORBTA (18, 1+1) - ORBTA (18, 1) - 360. DO)
SW2 (3) -WKCDS-SL (3) -WKS1H-SH1 (3) CALL MG1230 (SH2, SLV, DSUNG)	. = 0ELT) + CDR SUNDEL = (ORBTA (19, 1) + (ORBTA (19, 1+1) - ORBTA (19, 1)) + DELT) + CDR
C	MPA(1,1) = ORBTA(20,1)
RINF(5) - SNGL(DSATD) RINF(7) - SNGL(SDIS)	NPA (2, 1) = ORBTA (21, 1) NPA (3, 1) = ORBTA (22, 1)
RINF(1) = SNGL(DSATZ=CR0)	NPA (1,2) - ORSTA (23, 1)
RINF(2) - SNGL(DSATA-CRD) RINF(3) - SNGL(DSUNZ-CRD)	NPA (2, 2) = ORBTA (24, 1) NPA (3, 2) = ORBTA (25, 1)
RINF(4) = SNGL(DSUNA+CRD)	MPA(1,3) = ORBTA(26,1)
RINF(5) = SNGL(DSSDA=CRD) RINF(8) = SNGL(DSSUNG=CRD)	NPA (2, 3) - ORSTA (27, 1) NPA (3, 3) - ORSTA (28, 1)
CI1111111111111111 STOP/END 111111111111111111111111111111111111	1111111 ENDIF
9000 CONTINUE RETURN	RETURN END
END	SUBROUTINE MG1200 (VECT, VECTU)
SUBROUTINE HGI100 (RTIH, CDR, SAT, SP, SS, BETA) COMMON /MMAP1/MAP	REAL-8 VECT (3), VECTU (3), RV1, RV2 RV1-VECT (1)-VECT (1)+VECT (2)-VECT (2)+VECT (3)-VECT (3)
REAL-8 ATTALP, ATTDEL, BETA, COR, DELT, RTIH, SITAGT, SUNALP, SU	UNDEL, IF (RV1.EQ.0.00) RETURN
MCCOS, MCSIN REAL=8 ATIT(10, 10), ATT1(3), ATT2(3), ATT3(3), NPA(3, 3),	RV2=DSQRT (RV1) VECTU (1) = VECT (1) /RV2
. ORBT1 (35, 8) , SAT (3) , SP (3) , SS (3)	VECTU (2) - VECT (2) /RV2
INTEGER-4 MAP (672.4) C	VECTU (3) – VECT (3) /RY2 RETURN
EQUIVALENCE (MAP(13,3), ORBT1(1,1))	END
EQUIVALENCE (HAP(13,2), ATIT(1,1))	SUBROUT INE MG1210 (VA, VB, VC) REAL+8 VA (3) , VB (3) , VC (3)
DO 1000 1-1,7	VC (1) = VA (2) = VB (3) - VA (3) = VB (2)
IF (RTIN.GE.ORBTI(1,1).AND.RTIN.LT.ORBTI(1,1+1)) THEN CALL HGIIIO	VC (2) = VA (3) = VB (1) - VA (1) = VB (3) VC (3) = VA (1) = VB (2) - VA (2) = VB (1)
. (I, RTIN, CDR, ORBT], ORBT2, SAT, SITAGT, SUMALP, SUNDEL, N	
GHS-5 S-VISSR AND HTSAT HIRID IMAGE NAVIGATION (4/5)	JAPAN NETEOROLOGICAL AGENCY / NETEOROLOGICAL SATELLITE CENTER 1996

		·····
END SUBBOUTINE NG1220 (VA, VB, VD) PEAL-8 VA (3), VB (3), VC (3), VD (3) VC (1) = VA (2) = VB (3) = VA (2) = VB (2) VC (2) = VA (3) = TB (1) = VA (2) = VB (2) VC (3) = VA (1) = VB (2) = VA (2) = VB (1) CALL NG1200 (VC, VD) RETURN END SUBROUTINE NG1230 (VA, VB, ASITA) REAL-8 VA (3), VB (3), ASITA, ASI, AS2 ASI = VA (1) = VB (1) + VA (2) = VA (2) = VA (3) = VB (3) AS2 = (VA (1) = VB (1) + VA (2) = VA (2) = VA (3) = VB (3) AS2 = (VA (1) = VB (1) + VA (2) = VA (2) = VA (3) = VB (3) AS2 = (VA (1) = VB (1) + VB (2) = VB (2) + VB (3) = VB (3)) IF (AS2, ED, 0, DD) RETURN ASITA = DACOS (ASI/DSQRT (AS2)) RETURN END SUBROUTINE NG1240 (VA, VH, VN, DPA1, AZ1) REAL-8 VA (3), VH (3), VN (3), VB (3), VD (3), DPA1, AZ1, DNAI CALL NG1220 (VB, VC, AZ1) CALL NG1220 (VB, VC, AZ1) CALL NG1220 (VB, VC, AZ1) CALL NG1220 (VB, VC, VB) DNAI = VD (1) = VH (1) + VD (2) = VH (3) = VH (3) IF (DNAI, GT, 0, DO) AZI = DPA1 - AZ1 RETURN END		
Copyright 1996 by the Meteorological Satellite Center.	•	
CALLIFIT 1994 AL THE URBOLITATION CONTINUE CONTINUE		
	ļ	
GHS-5 S-VISSR AND HTSAT HIRID IMAGE NAVIGATION (5/5)	JAPAN HETEOROLOGICAL AGENCY / HETEOROLOGICAL SATELLITE CENTER	1996

Geometrical correction of Cloud location

F.1 Outline

Cloud location of the VISSR images are apparent because the earth is spherical and the differences with their true geometrical positions are more increased at higher the latitude and the line of sight of the VISSR is the more oblique. Assuming a cloud of 15 km high, the difference becomes about 10 km in a middle latitude region. In this paper, typical corrections to determine the true geometrical location are introduced.

F.2 Description

As shown in Fig.F.1, a cloud top P in the VISSR line of sight is projected to the apparent location Q on the earth surface ABCD. Pixel data of GMS-5 / VISSR are composed of Qs (that are assembled instantaneous field of views strictly) and there is a distance Δ to be compensated to determine the true cloud position between the sub-cloud point P' that is the true geometrical position of P and Q. In Fig.F.1, the relationship between geometric latitude Ψ_0 and longitude λ_0 and apparent geometric latitude Ψ_0 and longitude λ_0 are expressed as follows.

 $\Psi_0 = \Psi_Q + \Delta \Psi$ $\lambda_0 = \lambda_Q + \Delta \lambda$

Examples of correction curves of $\Delta \Psi$, $\Delta \lambda$ are shown in Fig.F.2 and Fig.F.3.

F.3 Reference

Meteorological Satellite Center Technical Note No.1, March 1979

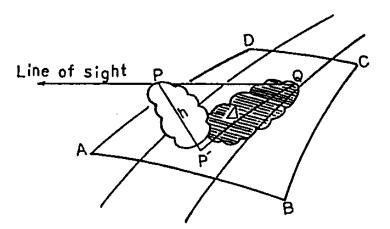


Fig.F.1 The illustration of the cloud projected on the earth surface. Q; apparent position of cloud.

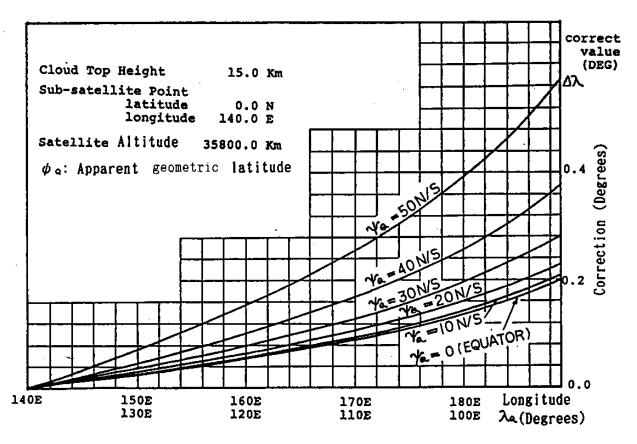


Fig.F.2 The correction curve for longitude-ways

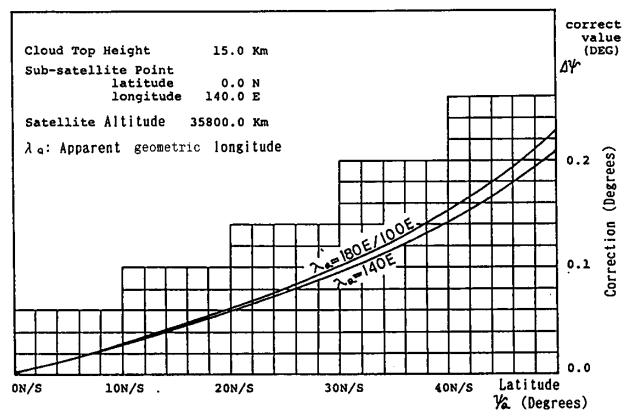


Fig.F.3 The correction curve for latitude-ways

FORMAT OF VISSR ARCHIVE DATA

VISSR raw data are archived at MSC in digital form.

1. VISSR IR Data

Global VISSR IR image data file is composed of northern hemisphere and southern hemisphere data. It consists of IR1, IR2 and WV. A half inch CMT (Cartridge Magnetic Tape) contains four day's data.

Start times of VISSR data (28 observations per day) are as follows.

00:32, 01:32, 02:32, 03:32, 04:25, 05:02, 05:32, 06:32, 07:32, 08:32, 09:32 10:25, 11:02, 11:32, 12:32, 13:32, 14:32, 15:32, 16:25, 17:02, 17:32, 18:32 19:32, 20:32, 21:32, 22:25, 23:02, 23:32 UTC

(1) File specifications

Items	Specifications	Comments
Density	76,000 BPI	36 Tracks
File label	Standard label	
File type	Multi-file	
Block length	3,664 Bytes	Fixed length
Transfer mode	8 bits	

(2) File composition

BLK#

1~2	CONTROL BLOCK	
	∠2688 ← bytes − − −	976 ──── bytes ───→
3	Mode record	not used
4	Information of S/DB operation	not used
5	Coordinate transformation parameters	not used
6	Attitude prediction data	not used
7	Orbit prediction data (1)	not used
8	Orbit prediction data (2)	not used
9	DCD Communication	not used
10	VIS calibration	not used
11	IR1 calibration	not used
12	IR2 calibration	not used
13	WV calibration	not used
14	Split window calibration	not used
15	Reserved	not used
16	Reserved	not used

(continued)

17	Simple o	oordinate	not used	
18	β-angle	sampling	not used	
19~final	LCW	DOC	Image data	

(3) File contents

BLK# 1~2 Control block

Position (bytes)	ITEMS	CONTENTS	Туре
1~2	Control block size	Block size of IR image data file= 2	I* 2
3~4	Head block number of parameter block	Parameter block number of IR image data file = 3	I*2
$5 \sim 6$	Parameter block size	Parameter block size of IR image data file=16	I*2
7~8	Head block number of image data	Parameter block number of IR image data file = 19	I*2
9~10	Total block size of image data	Total block size of image data	I*2
11~12	Available block size of image data	Normal line number of image data	I*2
13~14	Head valid line num- ber	Head line number of image data	I*2
15~16	Final valid line num- ber	Line number of final input valid data	I*2
17~18	Final data block num- ber	Block number of final input data	I*2
19~32	Reserved		
33~	Address table	Block number of available data. $(-1=not available)$	I*2

BLK# 3~18 Image parameter block same as File composition.

BLK# 19~final Image data block. From the first to the 64th bytes are line control words (LCW).

Image data block LCW (Line Control Word) section

ITEMS	CONTENTS	Туре
Data ID	Higher 16 bits=Image segment, Lower 16 bits=Data segment Image segment 0000 =standard (part) observa- tion 0008=test observation Data segment 0001 =IR 1ch 0002=IR 2ch 0004=IR 3ch 0008=VIS 1ch 0010=VIS 2ch 0020=VIS 3ch 0040=VIS 4ch 0000=others	
Line number	Added by VISSR collection signal	Ι
Line name	Contents of VISSR data 01=VISSR image data 08=test 10=annotation data 20=gray scale data	I
Error line flag Error message	Normal/Error line 0000=normal line Massage number of S/DB mode error.	I I
Mode error flag Scan time Beta angle West side earth edge East side earth edge Received time (1) Received time (2)	Bit data of S/DB mode error. 0=normal MJD (Modified Julian Day) of VISSR scan time Sun-Earth angle in radian Pixel position of west side earth edge Pixel position of east side earth edge Received time of host side (216 type) Received time of host side in milli-seconds	I R*8 R*8 I I I I
	Data ID Data ID Line number Line name Error line flag Error message Mode error flag Scan time Beta angle West side earth edge East side earth edge Received time (1)	Data IDHigher 16 bits=Image segment, Lower 16 bits=Data segment Image segment 0000=standard (part) observa- tion0008=test observation Data segment0001=IR 1ch 0002=IR 2ch 0004=IR 3ch 0008=VIS 1ch 0010=VIS 2ch 0020=VIS 3ch 0040=VIS 4ch 0000=othersLine numberAdded by VISSR collection signalLine nameContents of VISSR data 01=VISSR image data 08=test 10=annotation data 20=gray scale dataError line flagNormal/Error line 0000=normal line Bit data of S/DB mode error. 0=normalMode error flagBit data of S/DB mode error. 0=normal Scan timeMode earth edge East side earth edgePixel position of west side earth edge Pixel position of east side earth edge Received time (1) Received time of host side (216 type) Received time (2)

- 1

DOC (Document) Section

Position (bytes)		ITEMS		CONTENTS	Туре
65~320	DOC		Omitted		

Image data section

Position (bytes)	ITEMS	CONTENTS	Туре
321~	Image data	Brightness value of each pixel (one byte/pixel)	Binary

2. VISSR VIS data

Global VISSR visible image data file is composed of northern hemisphere and southern hemisphere data. A half inch CMT (Cartridge Magnetic Tape) contains one day's data.

Start times of VISSR data (16 observations per day) are as follows.

 $00 \div 32, \ 01 \div 32, \ 02 \div 32, \ 03 \div 32, \ 04 \div 25, \ 05 \div 02, \ 05 \div 32, \ 06 \div 32, \ 07 \div 32, \ 08 \div 32, \ 15 \div 32,$ 20:32, 21:32, 22:25, 23:02, 23:32 UTC

(1) File specification

Items	Specification	Comments
Density	76,000BPI	36 Track
File label	Standard label	· · · · · · · · · · · · · · · · · · ·
File type	Multi-file	
Block length	13,504 bytes	Fixed length
Transfer mode	8 bits	

(2) File composition

CONTROL BLOCK

BLK# $1 \sim 2$

3	Mode record	Information of	Coordinate	Attitude pre-	Not used
		S/DB opera-	transforma-	diction data	
		tion	tion parame-		
	(0.000 1))		ters		
	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2752 bytes)
4	Orbit predic-	Orbit predic-	Information of	VIS calibra-	Not used
	tion data (1)	tion data (2)	DCD commu-	tion	
			nication		
	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2752 bytes)
5	IR1 calibra-	IR2 calibra-	WV calibra-	Split window	Not used
	tion	tion	tion	calibration	
	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2752 bytes)
6	Reserved	Reserved	Simple coordi-	β -angle sam-	Not used
			nate transfor-	pling	
			mation table	-	
	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2688 bytes)	(2752 bytes)

The return codes of VZ4000 and VACTBL are written in the last.

7 ~final	LCW	DOC	Image data

141

(3) File contents

BLK#

1~2	CONTROL BLOCK		
Position (bytes)	ITEMS	CONTENTS	Туре
1~2	Control block size	Block size of VIS image data file=2	I*2
3~4	Head block number of parameter block	Parameter block number of VIS image data file=3	I*2
5~6	Parameter block size	Parameter block number of VIS image data file=4	I*2
7~8	Head block number of image data	Parameter block number of VIS image data file=7	I*2
9~10	Total block line of image data	Total block size of image data	I*2
11~12	Available block size of Normal line number of image data image data		
13~14	Head valid line num- ber	Head line number of image data	I*2
15~16	Final valid line num- ber	Line number of final input available data	I*2
17~18	Final data block num- ber	Block number of final input data	I*2
19~32	Reserved		
33~	Address table	Block number of available data $(-1=not available)$	I*2

BLK# 3~18Image parameter block same as File composition of VISSR IR data.BLK# 19~finalImage data block. From the first to the 64th bytes are line control words
(LCW).

LCW (Line Control Word)

Position (bytes)	ITEMS	CONTENTS	Туре
1~4	Data ID	Higher 16 bits=Image segment, Lower 16 bits=Data segment Image segment 0000=standard (part) observa- tion 0008=test observation	
		Data segment $0001 = IR 1ch$ 0002 = IR 2ch 0004 = IR 3ch 0008 = VIS 1ch 0010 = VIS 2ch 0020 = VIS 3ch 0040 = VIS 4ch 0000 = others	
5~8	Line number	Added by VISSR collection signal	Ι
9~12	Line name	Contents of VISSR data 01 = VISSR image data 08 = test 10 = annotation data 20 = gray scale data	Ι
13~16	Error line flag	Normal/Error line 0000=normal line	I
17~20	Error message	Massage number of S/DB mode error. $0 =$ normal	Ι
21~24	Mode error flag	Bit data of S/DB mode error. $0=normal$	Ι
$25 \sim 32$	Scan time	MJD (Modified Julian Day) of VISSR scan time	R*8
33~36	Beta angle	Sun-Earth angle in radian	R*8
37~40	West side earth edge	Pixel position of west side earth edge	I
41~44	East side earth edge	Pixel position of east side earth edge	Ι
$45 \sim 52$	Received time (1)	Received time of host side (2I6 type)	Ι
53~56	Received time (2)	Received time of host side in milli-seconds	I
57~64	Reserved		

DOC (Document) Section

	osition bytes)	ITEMS		CONTENTS	Туре
6	5~128	DOC	Omitted		

Image data section

Position (bytes)	ITEMS	CONTENTS	Type
129~	Image data	Brightness value of each pixel (one byte/pixel)	Binary

3. VISSR typhoon short time observation data.

Six days image data (VIS,IR1,IR2,WV) of VISSR typhoon short time observation are archived in a half inch CMT.

Start times of data (3 observations per day) are 03:32, 03:47, 04:02 UTC.

Position (word)	ITEMS	CONTENTS	Туре
1	Satellite number	Serial number of satellite	I
$2 \sim 4$	Satellite name	Satellite name (≦8 letters)	EBCDIC
5~8	Observation time	AD (UTC)	EBCDIC
9~10	Observation time	MJD	R*8
11	GMS operation mode	1=S1 $6=S6$ $7=S7$ $0=not$ specified	Ι
12	DPC operation mode	1=automatic 2=manual	Ι
13	VISSR observation mode	1=scheduled 2=wind vectors 3=unscheduled 4=special	Ι
14	Scanner selection	1=primary-1 11=primary-2 2=redundant-1 12=redundant-2 0=not specified	
15	Sensor selection	Used sensor (70digit decimal) 10^6 10^5 10^4 10^3 10^2 10^1 10^0 IR1 IR2 WV1 VIS1 VIS2 VIS3 VIS4 0=not specified 1=primary 2=redundant	I
16	Sensor mode	Selection of VIS/IR (IR1,IR2,WV) MSB 31 LSB 0 IR VIS 0=not used 1=used (control parameter)	Ι
17	Scan frame mode	1 = normal frame (2500 steps) 2 = expanded frame (2756 steps) 0 = not specified	1
18	Scan mode	1=normal scan $2=$ partial scan $3=$ single scan $0=$ not specified	I
19	Upper limit of scan line	Scan line number of upper limit	Ι
20	Lower limit of scan line	Scan line number of lower limit	Ι
21	Equatorial scan line number	Line number of equatorial scan	Ι
22	Spin rate	Rotational rate (spins/minute)	R

Table-1 Image parameter block

① Mode record

)		
23	VIS frame parameters	Bit length	Ι
24		Number of lines	I
25		Number of pixels	I
26		Stepping angle	R
27		Sampling angle	R
28		LCW-pixel size	Ι
29		DOC-pixel size	I
30		reserved	
31~38	IR frame parameters	Same as above	I,R
39	Satellite height	Nominal height of satellite $(3.59 \times 10^7 \text{ m})$	R
40	Earth radius	Earth radius (6.3702895×10 ⁶ m)	R
41	SSP-longitude	Nominal SSP-longitude	R
42~50	Reserved		
51	Table of sensor trouble	VIS primary 1ch	Ι
52	(1=VISSR sensor is	VIS primary 2ch	I
53	available)	VIS primary 3ch	I
54		VIS primary 4ch	I
55		VIS redundant 1ch	I
56		VIS redundant 2ch	Ι
57		VIS redundant 3ch	I
58		VIS redundant 4ch	Ι
59		IR 1 primary	Ι
60		IR 1 redundant	Ι
61		IR 2 primary	Ι
62		IR 2 redundant	Ι
63		WV primary	Ι
64		WV redundant	Ι
	ł		

101~160	Status tables of data	Relative address	Ι
	segment	0 Data segment	
		1 Data presence	
		2 Generated	
		3 day & time	
		[Data segment] 1=Information of S/DB operation 2=Parameters for coordinate transformation 3=Attitude prediction data 5=Orbit prediction data (1),(2) 6=DCD communication data 7=VIS calibration 8=IR1 calibration 9=IR2 calibration 10=WV calibration 11=Split window calibration (reserved) 12 \sim 14=Reserved 15= β -angle sampling (reserved) [Data presence] 1=Exist	
		2=Not exist [Data generation time]	
		YYMMDD date	
		hhmmss time	
161 - 672	Reserved		

1 Coordinate conversion parameters segment

Position (word)	ITEMS	CONTENTS	Туре
1	Data segment	2=Coordinate transformation parameters	I
2	Reserved		
3~4	Data generation time	Generation time of this block's parameters 3 YYMMDD date 4 hhmmss time	I
5 - 6	Scheduled observation time	Scheduled observation time (MJD)	R*8
7	Stepping angle along	VIS channel	R
8	line	IR1 channel	R
9		IR2 channel	R
10		WV channel	R

11	Sampling angle along	VIS channel	F
12	pixel	IR1 channel	F
13		IR2 channel	F
14		WV channel	F
15	Central line number of	VIS channel	F
16	VISSR frame	IR1 channel	F
17		IR2 channel	F
18		WV channel	F
19	Center pixel number of	VIS channel	F
20	VISSR frame	IR1 channel	F
21		IR2 channel	F
22		WV channel	F
23	Pixel difference of	VIS channel	F
24	VISSR center from the	IR1 channel	F
25	normal position	IR2 channel	F
26		WV channel	F
27	Number of sensor ele-	VIS channel	F
28	ments	IR1 channel	F
29		IR2 channel	F
30		WV channel	F
31	Total number of	VIS channel	F
32	VISSR frame lines	IR1 channel	F
33		IR2 channel	F
34		WV channel	F
35	Total number of	VIS channel	F
36	VISSR frame pixels	IR1 channel	F
37		IR2 channel	F
38		WV channel	F
9~41	VISSR misalignment	39 x-component : δ a	F
		40 y-component : δ b	

12~50	Matrix of misalign- ment	$ELMIS = \begin{bmatrix} \cos\delta c & \sin\delta c & 0 \\ -\sin\delta c & \cos\delta c & 0 \end{bmatrix}$	R
	mont		
		$\begin{bmatrix} \cos\delta b & 0 & -\sin\delta b \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
		$\begin{bmatrix} 0 & 1 & 0 \\ \sin \delta b & 0 & \cos \delta b \end{bmatrix} \times \begin{bmatrix} 0 & \cos \delta a & \sin \delta a \\ 0 & -\sin \delta a & \cos \delta a \end{bmatrix}$	
		$ELMIS(1,1) = CC \times CB$	
		$ELMIS(2,1) = -SC \times CB$	
		ELMIS(3,1) = SB	
		$ELMIS(1,2) = CC \times SB \times SA + SC \times CA$ $ELMIS(2,2) = -SC \times SB \times SA + CC \times CA$	
		$ELMIS(3,2) = -CB \times SA$	
		$ELMIS(1,3) = -CC \times SB \times CA + SC \times SA$	
		$ELMIS(2,3) = SC \times SB \times CA + CC \times SA$	
		ELMIS(3,3)=CB×CA where, SA=sin δ a CA=cos δ a	
		$SB = \sin\delta b$ $CB = \cos\delta b$	
		$SC = \sin \delta c$ $CC = \cos \delta c$	
51	Parameters	Judgement of observation convergence time	R
52		Judgement of line convergence	R
53		E-W angle of Sun-light condense prism	R
54		N-S angle of Sun-light condense prism	R
55		$\pi = 3.141592$	R
56		$\pi/180 = 0.017453292$	R
57		$180/\pi = 57.295780$	R
58		Equatorial radius=6377397.2	R
59		Oblateness of the earth=0.0033427731	R
60		Eccentricity of the earth orbit=0.081696829	R
61 60		First angle of VISSR observation in S/DB	R
62		Upper limited line of the 2nd prism for VIS solar observation	R
63		Lower limited line of the 1st prism for VIS solar observation	R
64		Upper limited line of the 3rd prism for VIS solar observation	R
65		Lower limited line of the 2nd prism for VIS solar observation	R
66	Stepping angle along	VIS solar observation	R
67	line	IR solar observation	R
68	Sampling angle along	VIS solar observation	R
69	pixel	IR solar observation	R
70	Center line of VISSR	VIS solar observation	R
71	frame	IR solar observation	R
72	Center pixel of VISSR	VIS solar observation	R
73	frame	IR solar observation	R

continued)		VIS solar observation	R
74 75	Pixel difference of VISSR center from the	IR solar observation	R
75	normal position		K
76	Sensor elements num-	VIS solar observation	R
77	ber	IR solar observation	R
78	rotu, numoti er	VIS solar observation	R
79	VISSR frame lines	IR solar observation	R
80		VIS solar observation	R
81	pixels / lines of VISSR frame	IR solar observation	R
82~100	Reserved		
101 - 102	Orbital parameters	Epoch time	R*8
103 - 104		Semi-major axis (km)	R*8
105 - 106		Eccentricity	R*8
107 - 108		Orbital inclination (deg)	R*8
109 - 110		Longitude of the ascending node (deg)	R*8
111 - 112		Argument of perigee (deg)	R*8
113 - 114		Mean anomaly (deg)	R*8
115 - 116		Longitude of SSP (deg)	R*8
117 - 118		Latitude of SSP (deg)	R*8
119 - 120	Reserved		
121 - 122	Attitude parameters	Epoch time (MJD)	R*8
123 - 124		Angle between Z-axis and satellite spin axis at the epoch time	R*8
125 - 126		Angle change rate between spin axis and Z-axis	R*8
127 - 128		Angle between spin axis and ZY-axis	R*8
129 - 130		Angle change rate between spin axis and ZY-axis	R*8
131 - 132		Daily mean of spin rate (RPM)	R*8
133 - 661	Reserved		
662	Correction of image	Stepping angle along line of IR1 (rad)	R
663	distortion	Stepping angle along line of IR2 (rad)	R
664		Stepping angle along line of WV (rad)	R
665		Stepping angle along line of VIS (rad)	R
666		Sampling angle along pixel of IR1 (rad)	R
667		Sampling angle along pixel of IR2 (rad)	R
668		Sampling angle along pixel of WV (rad)	R
669		Sampling angle along pixel of VIS (rad)	R
670		X component of VISSR misalignment (rad)	R
671		Y component of VISSR misalignment (rad)	R
672		Z component of VISSR misalignment (rad)	R

Attitude prediction

Position (word)	ITEMS	CONTENTS	Туре
1	Data segment	3=Attitude prediction data	Ι
2	Reserved		
3~4	Data generation time	3 YYMMDD date 4 hhmmss time	I
5~6	Start time	Start time of attitude prediction (MJD)	R*8
$7 \sim 8$ 9 ~10	End time Prediction interval time	End time of attitude prediction (MJD) Interval time of attitude prediction (MJD)	R*8 R*8
11	Number of prediction	Number of attitude prediction	I
12	Data size	Number of attitude prediction data set	Ι
13~672	Attitude prediction data	Attitude prediction data $1 \sim 33$ (See table (3)-1)	

- 1

Table 3-1 Contents of attitude prediction data

Position (word)	ITEMS	CONTENTS	Туре
0~1	Prediction time	Prediction time (MJD)	R*8
2~3	Prediction time	Prediction time (UTC) 2 YYMMDD date 3 hhmmss time	I
4~5	Right ascension of attitude	Predicted right ascension of attitude (rad)	R*8
$6 \sim 7$	Declination of attitude	Predicted declination of attitude (rad)	R*8
$8 \sim 9$	Sun-earth angle	Sun-earth angle at prediction time	R*8
$10 \sim 11$	Spin rate	Satellite spin rate at prediction time	R*8
12~13	Right ascension of orbital plane	Right ascension of orbital plane at prediction time	R*8
14~15	Declination of orbital plane	Declination of orbital plane at prediction time	R*8
16~17	Reserved		-
18	Eclipse flag	0=Out of eclipse period, $1=$ In eclipse period	Ι
19	Spin axis flag	0=within 0.5 degree, 1=beyond 0.5 degree	I

④ Orbit prediction

Position (word)	ITEMS	CONTENTS	Туре
1	Data segment	5=Orbit prediction data	Ι
2	Reserved		
3~4	Data generation time	3 YYMMDD date 4 hhmmss time	I
5~6	Start time	Start time of orbit prediction (MJD)	R*8
7~8	End time	End time of orbit prediction (MJD)	R*8
9~10	Prediction interval time	Interval time of orbit prediction (MJD)	R*8
11	Number of prediction	Number of orbit prediction	Ι
12	Data size	Number of orbit prediction data set	I
13~642	Attitude prediction data	Orbit prediction data $1 \sim 9$ (See table $(4-1)$)	
643 - 672	Reserved		

- 1

Table (4)-1 Contents of orbit prediction data

Position (word)	ITEMS	CONTENTS	Туре
0~1	Prediction time	Prediction time (MJD)	R*8
2~3	Prediction time	Prediction time (UTC) 2 YYMMDD date 3 hhmmss time	I
$4 \sim 5 6 \sim 7 8 \sim 9 10 \sim 11 12 \sim 13 14 \sim 15$	Satellite position and velocity in the 1950.0 yearly mean inertial coordinate system	X-component of position Y-component of position Z-component of position X-component of velocity Y-component of velocity Z-component of velocity	R*8 R*8 R*8 R*8 R*8 R*8
$ \begin{array}{r} 16 - 17 \\ 18 - 19 \\ 20 - 21 \\ 22 - 23 \\ 24 - 25 \\ 26 - 27 \\ \end{array} $	Satellite position and velocity in the earth- fixed coordinate sys- tem	X-component of position Y-component of position Z-component of position X-component of speed Y-component of speed Z-component of speed	R*8 R*8 R*8 R*8 R*8 R*8

28~29	Greenwich sidereal time		R*8
30~33	Sun-directional vector	Vector from Satellite to Sun in 1950.0 yearly mean inertial coordinate system 30~31 Azimuth 32~33 Elevation	R*8 R*8
34~37	Sun-directional vector	Vector from Satellite to Sun in the earth-fixed coordinate system 34~35 Azimuth 36~37 Elevation	R*8 R*8
38~55	Conversion matrix A1~A9	Matrix to convert from 1950.0 yearly mean inertial coordinate system(X,Y,Z) to the earth- fixed coordinate system(x,y,z) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} A1 & A4 & A7 \\ A2 & A5 & A8 \\ A3 & A6 & A9 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$	R*8
56~61	Moon directional vector	Vector from Satellite to Moon in 1950.0 yearly mean inertial coordinate system 56~57 X-component of vector 58~59 Y-component of vector 60~61 Z-component of vector	R*8 R*8 R*8
62~63 64~65 66~67	Satellite position	Latitude of SSP Longitude of SSP Satellite height	R*8 R*8 R*8
68	Eclipse period flag	0=out of eclipse period, 1=In eclipse period	Ι
69	Reserved		

-

(5) VIS Calibration data

Position (word)	ITEMS	CONTENTS	Туре
1	Data segment	7=VIS calibration	Ι
2	Data validity	1=available (At least one channel is available) 2=not available (4 channels are not available)	I
3~4	Data generation time (UTC)	3 YYMMDD date 4 hhmmss time	Ι
5	Sensor group	Sensor group calibration table of primary or redundant Bit position 3 2 1 0(LSB) VIS ch.1 VIS ch.2 VIS ch.3 VIS ch.4 1=primary 2=redundant	I

((continued)	· · · · · · · · · · · · · · · · · · ·
	6~405	VIS 1~4 ch calibra- See Table (5)-1 tion table
ſ	406 - 672	Reserved

Table 5-1 Contents of VIS channel calibration table

Position (bytes)	ITEMS	CONTENTS	Туре
0	Channel number	channel number=1~4	I
1	Data validity	1=utilization possible 2=utilization impossible	Ι
2~3	Updated time	YYMMDD date hhmmss time	I
4	Table ID	Increment when the table is updated.	Ι
5~68	Brightness-albedo con- version table	Brightness=0 Albedo Albedo=0~1 1 Albedo 63 Albedo	R
69~74	VIS channel staircase brightness data	Brightness and voltage used to calculate the electric calibration regression curve	R
75~84	Coefficients table of VIS staircase regres- sion curve	Coefficients of VIS staircase regression curve	R
85~86	Brightness table for Calibration	85 Universal space brightness86 Solar brightness	R
87~88	Calibration uses bright- ness correspondence voltage chart	87 Universal space voltage88 Solar voltage	R
89~90	Calibration coefficients of radiation observa- tion	1	R
91~99	Reserved		

Position (bytes)	ITEMS	CONTENTS	Type	
1	Data segment	8=VIS 1 calibration record 9=VIS 2 calibration record 10=WV calibration record		
2	Data validity	1=available 2=not available	Ι	
3~4	Updated time	3 YYMMDD date 4 hhmmss time	Ι	
5	Sensor group	1=primary 2=redundant	I	
6	Table ID	Calibration table ID. Increment when the table is updated.	Ι	
7~8	Reserved			
9~264	Conversion table of equivalent black body radiation	Radiation (W/cm² sr·µm) to brightnessBrightness=0Radiation1Radiation255Radiation	R	
265~520	Conversion table of equivalent black body temperature	Temperature (K) to brightness Brightness=0 Temperature 1 Temperature 255 Temperature	R	
521~526	Staircase brightness data	Brightness and voltage used to calculate regres- sion curve for electric correction	R	
527~536	Coefficients table of Staircase regression curve	Coefficients table of staircase regression curve		
537	Brightness data for	Brightness of space	R	
538	calibration	Brightness of black body shutter	R	
539		Reserved	R	
540	_	Voltage of space	R	
541	brightness of calibra- tion	, onage of black body shatter	R	
542	·	Reserved	R	

Table 🚯	VIS 1 ·	VIS $2 \cdot WV$	calibration	record
---------	---------	------------------	-------------	--------

543~544	Calibration of radiant tion		•		on observation R
				89 G 90 V ₀	
545	Valid shu ture	itter to	empera- Valid shutter	r temperature (K)	R
546	Valid shu	tter ra	diation Valid shutter	r radiation (W/cm ² sr	·μm) R
547~562	Telemetr	y data	perature. Telemetry d	ata of calibration and lata are defined by for perature calculation ments file.	lags of valid
	relative word	mark	flag=0 GMS-3	flag=1 GMS-4	flag=2 GMS-5
	0	T ₁	shutter temp.1 (°C)	shutter temp. (°C)	shutter temp.1 (°C)
	1	T2	shutter temp.2 (°C)	redundant mirror ten	np. (°C)
	2	T ₃	scanner temp.1 (°C)	primary mirror temp	. (°C)
	3	T ₄	scanner temp.2 (°C)	baffle FW temp. (°C)	
	4	T ₅	scanner temp.2 (°C) baffle AF temp. (°C)		
	5	_	+15 volt auxiliary power supply (V)		
	6	_	radiative cooler temp.1 (K)		
	7	-	radiative cooler temp.2 (K)		
	8		electronics module temp (°C)		
	9	T ₁₀	reserved		scan mirror temp. (°C)
	10	T11	reserved		shutter cavity temp. (C)
	11	T ₁₂	reserved		Primary mirror aperture stop temp. (°C)
	12	T ₁₃	reserved		Redundant mirror sealed temp. $(^{\circ}C)$
	13	T14	reserved		shutter temp.2 (°C)
	14		reserved		
	15		reserved		
563	Flag of valid shutter 0=GMS-3 method I temperature calcula- 1=GMS-4 method 1 tion 2=GMS-5 method 1				I
564~672	Reserved				

O Split window calibration record is wholly set by 0.

Position ITEMS half word		S CONTENTS			
1	60°N, 80°E IR1 line number	Calculated by coordinate conversion (ZGCG00)	Ι		
2	60°N, 80°E IR1 pixel number				
3	60°N, 85°E IR1 line number				
4	60°N, 85°E IR1 pixel number				
51	55°N, 80°E IR1 line number				
52	55°N, 80°E IR1 pixel number				
53	55°N, 85°E IR1 line number				
54	55°N, 85°E IR1 pixel number				
1249	60°S, 160°W IR1 line number				
1250	60°S, 160°W IR1 pixel number				

- -

- -

 $Table \ \textcircled{B} \quad Simple \ coordinate \ conversion \ table$

Position word	ITEMS	CONTENTS	Туре
626	Earth equator radius (m)	Retrieved from coordinate conversion block (58 th word) of image data file	R
627	Satellite height (m)	Retrieved from orbit prediction block (78th word) of image data file	R
628	Stepping angle (rad)	Retrieved from coordinate conversion block (8th word) of image data data file	R
629	Sampling angle (rad)	Retrieved from coordinate conversion block (12 nd word) of image data file	R
630	SSP-latitude (deg)	Calculated by coordinate conversion (ZGCG00)	R
631	SSP-longitude (deg)		R
632	SSP-line number		
633	SSP-pixel number		

634	π	Retrieved from coordinate conversion block (12 nd word) of image data file	R
635	line correction (X) IR1-VIS	Calculated by conversion of coordinates of SSP (lat/lon) X=Lvis-(Lir1-1)*4-2.5 Lvis: VIS sensor line number Lir1: IR1 sensor line number	R
636	Pixel correction (Y) IR1-VIS	Y=Pvis-(Pir1-1)*4-2.5 Pvis: VIS sensor pixel number Pir1: IR1 sensor pixel number	R
637	Line correction (X) IR1-IR2	X=Lir2-Lir1 Lir2: IR2 sensor line number Lir1: IR1 sensor line number	R
638	Pixel correction (Y) IR1-IR2	Y = Pir2-Pir1 Pir2 : IR2 sensor pixel number Pir1 : IR1 sensor pixel number	
639	Line correction (X) IR1-WV	X=Lwv-Lirl Lwv: WV sensor line number Lir1: IR1 sensor line number	
640	Pixel correction (Y) IR1-WV	Y=Pwv-Pir1 Pwv: WV sensor pixel number Pir1: IR1 sensor pixel number	
641~669	Reserved		
670 (*1)	Flag of VZ4000	Flag set by the return code of the subroutine VZ4000 1=return code is 0 or 6 2=except above	R
671 (*1)	Return code of VZ4000	Return code of the sudroutine VZ4000	R
672 (*1)	Return code of simple coordinate conversion	Return code of the subroutine VACTBL	R

(*1) VIS imagery data are located on $670 \sim 672$ word of β -angle sampling record until 16 October 1995.

(9) β angle sampling - Omitted.

~

FORMAT OF VISSR HISTOGRAM DATA

VISSR histogram data are the frequency distribution of pixels for brightness levels. They are calculated in every $0.25 \degree x \ 0.25 \degree$ grid in the area from $60\degree N$ to $60\degree S$ and from $80\degree E$ to $160\degree W$ of VISSR image data for visible, infrared 1, infrared 2, water vapor and split (the difference of brightness level between two channels) channel. The data are produced 5 times a day (00,03,06,09,21 UT) for visible image data, 8 times a day (00,03,06, 09,12,15,18,21 UT) for the other image data. One VISSR histogram data file is made at each observation time and from each kind of image data. These histogram data are saved once a day to a CWT(Cartridge Wagnetic Tape), being accumulated.

File characteristics on CMT(Cartridge Magnetic Tape)

Items	Specifications	Comments
Recording density File label File format	76000 BPI standard label Wulti-file	36 tracks
Block length	23136 bytes	Fixed length

Construction of the file

This file is constituted of the following three parts.

Name of each part	Number of blocks
(1) File control block	l block
(2) Data address block	1 block
(3) Histogram data block	varying with the amount of the data

(1) File Control Block

Data construction in this file and image data parameter are saved.

In the type column in the following tables, I, R and C stand for Integer, Real and Character(EBCDIC) respectively.

Position (word)	Items	Contents	Туре
1-2	Data generated date	lst: 'YY-M' YY=(year)-1900 NM=(month) 2nd: 'M-DD' DD=(day)UTC	C C
3	Data identification	Kind of image data 1 = visible, 2 = IR1, 3 = IR2, 4 = water vapor, 5 = split	I
	Area of information of histo- gram data	The information of latitude, longitude and grid of the area of the histogram data are saved. The grid point has the coordinate in the center of each grid area.	
4		Starting latitude, φ(deg) φis from 90°N to 90°S.	R

Position (word)	Items	Contents	Туре
5		Starting longitude, λ (deg) λ is from 0 ° to 360°. Western longi- tude occupies over 180°	R
6		Grid interval for latitudinal direction (deg)	R
7		Grid interval for longitudinal direction (deg)	R
8		Number of grid for latitudinal direction	I
9		Number of grid for longitudinal direct- ion	I
10		Total number of grids with making histo- gram	I
11		Northern limit latitude used for histo- gram making	R
12		Southern limit latitude used for histo- gram making	R
13	Total block number	Total block number of this file	I
14	Record length	Record length (byte) (=23136)	I
15	Position of address block	Starting block address	I
16		Number of blocks	I
17	Position of histogram data	Starting block address	I
18	block	Number of blocks	I
19	VIS channel ID	VIS channel number used for making histogram data	I
20-83	VIS calibration table	Calibration table in response to the channel number in 19th word	R
84-755	Wode block	Node block in image parameter part in VISSR image data file	
756-1427	IR calibration block	Calibration block in image parameter part in VISSR image data file	
1428 -2099	Transformation parameters block	Coordinate transformation parameter block in image parameter part in VISSR image data file	
2100 -2771	Orbital prediction data block l	Orbital prediction data block 1 in image parameter part in VISSR image data file	

Position (word)	Items	Contents	Type
2772 -3443	Orbital prediction data block 2	Orbital prediction data block 2 in image parameter part in VISSR image data file	
3444 -5784	(reserved)		

(2) Data address block

The relative block address in the file and the starting byte address in that block are shown, where the histogram data in the head longitudinal grid area (western edge grid area) at each latitude are recorded.

Position (word)	Items	Contents	Туре
1	Block address	Block number including the grid data at the western edge of nothernmost latitude	I
2	Starting address(bytes)	Position of the western edge of the grid data at nothernmost latitude	I
• • • •	• • • • • • • • • • • • • • • • • • • •		•••
2(n-1)+1	Block address	Block number including the grid data at the western edge of the nth latitude	I
2(n-1)+2	Starting address(bytes)	Position of the western edge of the grid data at the nth latitude	I
• • • •			• •
2(N-1)+1	Block address	Block number including the grid data at the western edge of the Nth latitude	I
2(N-1)+2	Starting address(bytes)	Position of the western edge of the grid data at the Nth latitude	I
• • • •	• • • • • • • • • • • • • • • •		• •
2N+1 -5784	(reserved)		

note: N is the number of grid for latitudinal direction (8th word in File Control Block).

(3) Histogram Data Block

Histogram data calculated from all pixels existing in each grid area are sequentially saved.

The saving order is $(1,1)(2,1)(3,1)(1,2)(2,2)(3,2)\cdots (N,N)$, when 'M' is grid number for latitudinal direction and 'N' for longitudinal direction respectively.

When each histogram data are saved sequentially, if the remaining area in the block is too small against the length of the histogram data for one grid data, which should be saved, zero data are written in the remaining area, and the histogram data are saved from the head of the next block so as not to be written over the two continuous data blocks.

Relative Position (byte)	Items	Contents	Туре
1	Grid number for longitudinal direction	Grid number for longitudinal direction	I
3	Grid number for latitudinal direction	Grid number for latitudinal direction	I
5	Ninimum brightness level	The value of minimum brightness level of the pixel which has minimum brightness level in the area of each grid	I
7	Waximum brightness level	The value of maximum brightness level of the pixel which has maximum brightness level in the area of each grid	I
9	Number of pixels in the area of the grid	Total number of pixels in the area of the grid	I
11	Histogram data		I 2 byte 1 byte

If the length of the IR histogram data is odd, the length is adjusted to be an even number by adding dummy data of 1 byte at the end.

APPENDIX I

FORMAT OF CLOUD GRID DATA

Cloud grid data are produced as a database by collecting image data processing results. Those are 0.25° x 0.25° grid data in the area from 60° N to 60° S and from 80° E to 160° W. Cloud grid data are made 8 times a day (00,03,06,09,12,15,18,21 UT). The data are saved once a day to a CMT(Cartridge Magnetic Tape), being accumulated.

File characteristics on CWT(Cartridge Magnetic Tape)

Items	Specifications	Comments
Recording density File label	76000 BPI standard label	36 tracks
File format Block length	Multi-file 30720 bytes	Fixed length

Construction of the file

This file is constituted of the following two parts, and data are saved sequentially.

Name of each part	Number of blocks
(1) File control block	l block
(2) Cloud grid data block	1440 blocks

(1) File Control Block

Information for data construction in this file are saved.

In the type column in the following tables, I, R, DR and C stand for Interger, Real. Real-double precision and Character(EBCDIC) respectively.

Position (word)	Itens	Contents	Туре
1-2	File generated date	lst: 'YY-N' YY=(year)-1900 NN=(month)	С
		2nd: 'M-DD' DD=(day)UTC	C
3	Data generated date	Newest data generated date (YYNNDD)	I
4		Newest data generated time (HHmmss)	I
5		Newest data generated day and time (WJD)	I
6-7	Data Identification	Kind of data saved "CLUDGRID"	С
8	Grid position parameters	Starting latitude, ϕ (deg)	R
9	(The center position of each grid area is expressed as follows.	Starting longitude, λ (deg)	R
10	As for latitude(ϕ), a north lat. is shown as a positive	Grid interval for latitudinal direction (deg)	R

Position (word)	Items	Contents	Тур
11	number, while a south lat. as a negative number. As for longitude(λ), an	Grid interval for longitudinal direction (deg)	R
12	eastern longitude is shown as a number from 0.0 to 360.0.	Number of grid for latitudinal direction	I
13	while a western longitude as a number from 180.0 to 360.0)	Number of grid for longitudinal direct- ion	I
14	Position of the data block	Address of the data block	1
15		Number of blocks in the data block	I
16	Grid point information	Record length in each grid data (word)= 48 (nominal)	I
17		Number of grids in each block =160 (nominal)	I
18		Number of blocks composing one latitudi- nal line =3 (nominal)	I
19	Grid data saving information	Total block number of this file	I
20	Record length	Record length of this file (byte)	I
21	Number of cloud layer	Number of cloud layer, which is used to calculate cloud amount of each layer	I
22-26	Threshhold level of cloud layer	Atmospheric pressure at boundary level, which is used to calculate cloud amount of each layer (hPa)	I
27	Grid number along the equater	Grid number for latitudinal direction correspond to the equater	I
28-30	(reserved)		
31-32	Starting time of VISSR obser- vation	Starting time of VISSR observation (MJD)	DE
33-34	SSP information	VISSR scan time at sub-satellite point (MJD)	DE
35	1	Latitude of SSP (deg)	R
36		Longitude of SSP (deg)	R
37		Satellite altitude (∎)	R
38		Right ascension of the sun at the scan time of SSP (deg)	R
39		Declination of the sun at the scan time of SSP (deg)	R

~

1 - L

163

Position (word)	Items	Contents	Туре
40-41	Sun-glint information (location and expanse of sun- glint are shown)	Extent of ζ (upper limit, lower limit) (deg)	I
42	ζ : solar zenith angle θ : satellite zenith angle	Extent of $ \zeta - \theta $ (deg)	I
43	ϕ : solar direction angle	Extent of ϕ (deg)	I
44-45		Extent of ζ (upper limit, lower limit) (deg)	I
46		Extent of $ \zeta - \theta $ (deg)	I
47		Extent of ϕ (deg)	I
48-49		Extent of ζ (upper limit, lower limit) (deg)	I
50		Extent of $ \zeta - \theta $ (deg)	I
51		Extent of ϕ (deg)	I
52	VISSR histogram file informa- tion (maximum 4 kinds of files can be used)	Data identification of VISSR histogram file I (1:visible 2:infrared 1 3:infrared 2 4:water vapor)	I
53		Generation date of the same file above	I
54		Generation time of the same file above	I
55		Data identification of VISSR histogram file II	I
56		Generation date of the same file above	I
57		Generation time of the same file above	I
58		Data identification of VISSR histogram file M	I
59		Generation date of the same file above	1
60		Generation time of the same file above	I
61		Data identification of VISSR histogram file IV	I
62		Generation date of the same file above	I
63		Generation time of the same file above	I
64	(reserved)		
65	Vertical temperature file information	Generation date of vertical temperature file	I

Position (word)	Items	Contents	Тур
66		Generation time of vertical temperature	I
67		Generation date of altitude data	I
68		Generation time of altitude data	I
69		Generation date of temperature data	I
70		Generation time of temperature data	I
71		Generation date of volume mixing ratio data	1
72		Generation time of volume mixing ratio data	I
73		Generation date of atmospheric correc- tion data	I
74		Generation time of atmospheric correc- tion data	I
75	Data file information for justifying clear sky area	Generation date of data file for justify -ing clear sky area	I
76		Generation time of data file for justify -ing clear sky area	Ι
77	Clear sky radiance file infor- mation	Generation date of clear sky radiance file (brightness temperature)	Ι
78	(brightness te∎perature)	Generation time of clear sky radiance file (brightness temperature)	I
79	Clear sky radiance file infor- mation (albedo)	Generation date of clear sky radiance file (albedo)	I
80	(albedo)	Generation time of clear sky radiance file (albedo)	I
81-82	Cloud grid data file informa- tion (use for justification of fog and stratus in the night time)	Starting time of VISSR observation (MJD)	DR
83		Generation date of cloud grid data file	I
84		Generation time of cloud grid data file	I
85	2 dimensional histogram file	Data identification of 2 dimensional histogram file I	I
86		Generation date of the same file above	I
87		Generation time of the same file above	I

÷....

-

165

Position (word)	Items	Contents	Туре
88		Data identification of 2 dimensional histogram file II	I
89		Generation date of the same file above	I
90		Generation time of the same file above	I
91	Cloud cluster file information	Data identification of cloud cluster file information	I
92		Generation date of the same file above	I
93		Generation time of the same file above	I
94	Infrared and water vapor data file information	Data identification of infrared and water vapor data file	I
95		Generation date of the same file above	I
96		Generation time of the same file above	I
97		Generation date of numerical prediction data used here	I
98		Generation time of the same file above	I
99-5440	(reserved)		

(2) Cloud grid data block

The data calculated for each grid are sequentially saved.

The saving order is

 $(1, 1)(2, 1)(3, 1)(1, 2)(2, 2)(3, 2) \cdots (N, N),$

when ' \mathbf{M} ' is grid number for latitudinal direction and ' \mathbf{N} ' for longitudinal direction respectively.

The saving method is subject to the grid data saving information in the file control block. The grid data for the specified number are sequentially saved from the head in a block. The format in one grid data is as follows.

Position (half word)	Items	Contents	Туре
1	Statistics of TBB in infrared	Total pixel number	Ι
2	1 CH	Number of available pixels	Ι
3		Averaged TBB value (Unit: 0.1K)	I
4		Standard deviation of TBB (Unit: 0.01K)	I
5		Maximum value of TBB (Unit: 0.1K)	I
6		Minimum value of TBB (Unit: 0.1K)	I

Position (half word)	Items	Contents					Туре
7		Mode valu	e of TBB	(Unit:	0.1K)		I
8		Number of	cloudy	pixels			I
9		Averaged	TBB in c	loud are:	a (Unit: 0.	1K)	I
10		Standard deviation of TBB in cloud area (Unit: 0.01K)			rea	I	
11	Statistics of observation	Total pixel number					I
12	value (converted to albedo) in visible CH		Number of available pixels				I
13	(Solar zenith angle is not corrected yet)	Averaged albed value (Unit: 0.001)					I
14		Standard	deviatio	n of alb	edo		I
15		Maximum value of albedo (Unit: 0.001)				I	
16		Minimum value of albedo (Unit: 0.001)				I	
17		Wode value of albedo (Unit: 0.001)				I	
18		Number of cloudy pixels				I	
19		Averaged (Unit: 0.		n cloud	area		I
20		Standard area	deviatio	on of alb	edo in clou	ıd	I
21	Angle information	Cosine of satellite zenith angle (Unit: 0.0001) Cosine of solar zenith angle (Unit: 0.0001)					I
22							I
23		Solar direction angle (Unit: deg)					I
24	Cloud top altitude (before correction)	Cloud top altitude calculated from IR1 CH (Unit: 100gpm)					I
25	Justification information	Clear, cloudy and land/sea identifica- tion			ca-	I	
		area	clear	cloudy	fog/ stratus	unde	cided
		sea land boundary sun- glint	0 10 20 30	1 11 21 31	2 12 22 32		9 19 29 39

Position (half word)	Items	Contents	Туре
26		Justification results (4 figures)	Ι
27		Extracted TBB (IR1 CH) (Unit: 0.1K)	I
28		Extracted albedo (Unit: 0.001)	I
29		Extracted TBB (temperature remainder for split window) (Unit: 0.1K)	I
30		Extracted TBB (water vapor CH) (Unit: 0.1K)	I
31	Cloud amount in 6 layers	Pixel number in 1st layer	I
32		Average TBB in 1st layer (IR1) (Unit: 0.1K)	I
33-34		Sum of (TBB)*(TBB) in 1st layer (IR1) (Unit: K)	R
35		Pixel number in 2nd layer	I
36		Average TBB in 2nd layer (IR1) (Unit: 0.1K)	I
37-38		Su∎ of (TBB)*(TBB) in 2nd layer (IR1) (Unit: K)	R
39		Pixel number in 3rd layer	1
40		Average TBB in 3rd layer (IR1) (Unit: 0.1K)	I
41-42		Sum of (TBB)*(TBB) in 3rd layer (IR1) (Unit: K)	R
43		Pixel number in 4th layer	I
44		Average TBB in 4th layer (IRl) (Unit: 0.1K)	I
45-46		Sum of (TBB)*(TBB) in 4th layer (IR1) (Unit: K)	R
47	1	Pixel number in 5th layer	I
48	1	Average TBB in 5th layer (IR1) (Unit: 0.1K)	I
49-50		Sum of (TBB)*(TBB) in 5th layer (IR1) (Unit: K)	R
51	1	Pixel number in 6th layer	I

Position (half word)	Items	Contents	Туре
52		Average TBB in 6th layer (IR1) (Unit: 0.1K)	I
53-54		Sum of (TBB)*(TBB) in 6th layer (IR1) (Unit: K)	R
55	Statistics of TBB remainder in	Total pixel number	I
56	split window	Number of available pixels	I
57		Averaged TBB value (Unit: 0.1K)	I
58		Standard deviation of TBB (Unit: 0.01K)	I
59		Waximum value of TBB (Unit: 0.1K)	I
60		Minimum value of TBB (Unit: 0.1K)	I
61		Node value of TBB (Unit: 0.1K)	I
62		Number of cloudy pixels	I
63		Averaged TBB in cloud area (Unit: 0.1K)	I
64		Standard deviation of TBB in cloud area (Unit: 0.01K)	I
65	Statistics of TBB in water	Total pixel number	I
66	vapor CH	Number of available pixels	I
67		Averaged TBB value (Unit: 0.1K)	I
68		Standard deviation of TBB (Unit: 0.01K)	I
69		Maximum value of TBB (Unit: 0.1K)	I
70		Winimum value of TBB (Unit: 0.1K)	I
71		Node value of TBB (Unit: 0.1K)	I
72		Number of cloudy pixels	I
73		Averaged TBB in cloud area (Unit: 0.1K)	I
74		Standard deviation of TBB in cloud area (Unit: 0.01K)	I
75	Semi-transparency cloud infor- mation 1	Number of pixels	I
76]	Valid emissivity	I
77		Nethod of altitude correction	I

٠.,

-

169

Position (half word)	Items	Contents	Туре	
78	· · · · · · · · · · · · · · · · · · ·	Altitude (Unit: 100gpm)	I	
79	Semi-transparency cloud infor- mation 2	Number of pixels		
80		Valid emissivity	I	
81		Method of altitude correction	I	
82		Altitude (Unit: 100gpm)	I	
83	Cloud top altitude (after correction)	Corrected altitude of semi-transparency upper cloud by the use of IR1 CH and water vapor CH (Unit: 100gpm)		
84	Sea surface temperature	(Unit: 0.1K)		
85	Upper tropospheric air humidity	Upper tropospheric air humidity (relative humidity) (Unit: 0.1%)		
86		Peak air pressure in weighted function (Unit: hPa)	I	
87	Precipitable water amount	(Unit: 0.1g/cm2)	I	
88	Outgoing longwave radiation	(Unit: V/m2)	Ι	
89-91	Convective cloud information	Following information is saved in each byte. 1st byte: num. of pixels in clear sky (no cloud) area 2nd byte: num. of pixels of non-convec- tive cloud lower than 400hPa 3rd byte: num. of pixels of non-convec- tive cloud higher than 400hPa 4th byte: num. of pixels of convective cloud lower than 400hPa 5th byte: num. of pixels of convective cloud higher than 400hPa 6th byte: (reserved)	I	
92-96	(reserved)			

FORMAT ON CD-ROM OF THE MONTHLY REPORT OF MSC

J.1 Introduction

The CD-ROM of the Monthly Report of the Meteorological Satellite Center (MSC) contains the observation data derived from the Geostationary Meteorological Satellite (GMS) of Japan and the polar orbital meteorological satellites operated by NOAA.

The CD-ROM contains the following observation data.

J.1.1 GMS Full Disk Earth's Cloud Images

The images are from three sensors, i.e. IR1: infrared (10.5-11.5 μ m), VS: visible and WV: water vapor.

Three VS images are made in a day (nominal time: 00,03 and 06UTC) and for other sensors five images are made (00,03,06,12 and 18UTC).

The images are recorded in Bitmap format available in the Microsoft(R) Windows(R) operating system.

The size of the image is 512 pixels by 512 lines and 256 colors.

J.1.2 GMS Cloud Images of Japan and its Vicinity

The images are from three sensors, i.e. IR1: infrared (10.5-11.5 μ m), VS: visible and WV: water vapor.

Thirteen VS images are made in a day (nominal time: from 21UTC to 09UTC) and for the other sensors twenty-four images are made (hourly).

The images are the digital data extracted from VISSR data covering the area from 20N to 50N and 120E to 150E at every 0.06 degrees latitude by 0.06 degrees longitude box.

The images are recorded in an original format which is shown in Fig.J.1 to J.5.

The size of the image is 501 pixels by 501 lines.

The images can be viewed by the Viewer contained in the CD-ROM.

J.1.3 Cloud Amount

Five-days mean data of cloud amounts, total cloud amount (T) and upper cloud amount (U: higher than 400hPa level), are shown in tabular form at every 2 degrees latitude by 2 degrees longitude box covering the area from 50N to 49S and 90E to 171W.

These data are derived from the histogram data of IR-1 channel of GMS-5 and expressed in the number of tenths.

The mark '*' in the columns shows that the cloud amount exceeds 9.5, and the mark '-' shows 'no data'.

J.1.4 Sea Surface Temperature

Ten-days mean data of sea surface temperatures (SST) are shown in tabular form at grid points arrayed every 1 degree latitude and longitude covering the area from 50N to 50S and 90 E to 170W.

SST is derived from brightness temperatures of infrared split-window channels (IR1 and IR2) of GMS-5 using a multi-channel SST retrieval algorithm.

In the table, SSTs are expressed in 0.1 degrees Celsius by integer form (multiplied by 10) of three digits.

The marks '/' and '.' show 'land' and 'no valid data' respectively.

J.1.5 Cloud and Water Vapor Motion Wind

Cloud and water vapor motion wind data (wind direction (unit : degree), wind speed (0.1m/s), target cloud top height (10hPa) and brightness temperature of the target cloud (degree Celsius)) are calculated using time-sequential images of GMS and are shown in tabular form.

These data are derived four times in a day (00,06,12 and 18UTC) and are processed in the area from 50N to 49S and 90E to 171E.

J.1.6 Orbit Data

Six orbital elements (Semi-major axis (SMA: km), Eccentricity (ECC), Inclination (INC: deg.), Right ascension of the ascending node (ASCN: deg.), Argument of perigee (PERG: deg.) and Mean anomaly (MA: deg.)) of the GMS at the epoch of 00UTC are determined by the statistical determination procedure shown in tabular form.

The location of GMS (latitude and longitude of sub-satellite point (SSP: deg.) and height of the GMS above the surface of the earth (H: km)) at the epoch of 00UTC are shown in tabular form.

J.1.7 Attitude Data

The GMS attitude data at the epoch of 00UTC are estimated from specific landmark locations in the latest several VISSR visible images by means of a statistical method and are shown in tabular form.

X and Y direction cosines of the spin axis in the mean of

1950.0 coordinate system

Torque of solar radiation pressure (kg.m)

Spin rate (RPM)

Right ascension of the spin axis in the true of date coordinate system (ALPHA : deg.)

Declination of the spin axis in the true of date coordinate system (DELTA : deg.)

VISSR misalignment angle around X and Y-axis in VISSR coordinates (X,Y MISAL: deg.)

Bias of the Beta angle (B-ANG BI : deg.)

J.1.8 VISSR Image Data Catalog

Data archiving conditions of VISSR images on CMT (cartridge magnetic tape) and microfilm are shown in tabular form.

There are four VISSR datasets on CMT; VIS (visible), IR (infrared), WV (water vapor) and Typhoon Special Observation Data.

There are three kinds of pictures on the microfilm; IR, VIS and WV Images.

The VIS, IR and WV data on CMT are retained for ten years, and the Typhoon Special Observation Data are for thirty years.

The data on microfilms are retained permanently.

J.1.9 Equivalent Blackbody Temperature

Five-days mean data of equivalent blackbody temperature derived from IR-1 channel data of GMS-5 are shown in tabular form at every 2.5 degrees latitude by 2.5 degrees longitude box covering the area from 50N to 50S and 90E to 170W.

These data are expressed in Kelvin.

J.1.10 Out-going Longwave Radiation (OLR)

Five-days mean data of brightness temperature corresponding to OLR derived from the IR-1 channel and the water vapor channel data of GMS-5 are shown in tabular form at every 2.5 degrees latitude by 2.5 degrees longitude box covering the area from 50N to 50S and 90E to 170 W.

These data are expressed in W/m^{*2} .

J.1.11 Solar Irradiation

Daily data of day-time (from 20UTC to 09UTC) total downward solar irradiance at the surface of the Earth (solar irradiation) are shown in tabular form at every 1 degree latitude by 1 degree longitude box covering the area from 60N to 60S and 80E to 160W.

Solar Irradiation is derived from the reflectance of the visible channel data of GMS-5 using a simple radiative transfer model.

These data are expressed in MJ/m^{**2} .

J.1.12 Snow and Ice Index

Daily data of index for the information on the Earth's surface about the area covered by snow and ice are shown in tabular form at every 1 degree latitude by 1 degree longitude box for the area from 60N to 20N and 80E to 160W. This index is derived from the reflectance of the visible channel data of GMS-5.

These data are expressed in percent.

J.1.13 TOVS Vertical Profile of Temperature and Precipitable Water

Vertical sounding data are obtained by processing the data observed by TIROS Operational Vertical Sounder (TOVS) and Advanced Very High Resolution Radiometer (AVHRR) on the NOAA/TIROS-N polar orbital meteorological satellite of the USA.

Direct broadcast NOAA data received by the MSC is processed to retrieve the vertical profiles of temperature and precipitable water.

Temperature at surface and 15 pressure levels are expressed in 0.1 degrees Celsius and precipitable water contained in layers from 300hPa to 5 pressure levels are in 0.01 g/cm^{**}2.

Product coverage is around Japan (the area from 10N to 60N and 110E to 170E).

The retrieval is made in the clear ocean region. Resolution of this product is about 20km.

J.1.14 TOVS Total Ozone Amount

A day-mean Total Ozone Amount derived from TOVS-HIRS/2 data of NOAA are shown in tabular form at every 1 degree latitude by 1 degree longitude box covering the area from 60N to 10N and 100E to 180E.

The mark '---' in the columns shows 'no data'.

These data are expressed in m atm-cm.

J.2 Recording format

ISO9660 standard is applied for a volume and file structure. The CD-ROM is recorded as a Single-Session.

The satellite observation data (contained in the directory TEXT) except the Image data are recorded in ASCII code.

The files contained in the directory DOCUMENT are recorded either in ASCII code (*.ENG) or shift JIS code (*.JPN).

Full Disk Earth's Cloud Images are recorded in Bitmap (BMP) format available in the Microsoft(R) Windows(R) Operating System.

Cloud Images of Japan and its Vicinity are recorded in an original format and can be viewed and analyzed by the Viewer (GMSLP*.EXE) contained in the directory VIEWER.

J.3 Directory Structure

The directory structure of the CD-ROM of the Monthly Report is shown in Fig.J.6.

There are five major directories on the disk :

(1) The directory 'DOCUMENT' contains the documents of the satellite observation data, the Viewer and the CD-ROM. Each document is written both in English (*.ENG) and in Japanese (*.JPN).

(2) The directories 'IMAGEDK' and 'IMAGEJP' contain sub-directories 'DKdd' and 'JPdd' respectively.

The sub-directories 'DKdd' contain the Full Disk Earth's Cloud Images of the day 'dd' of a month.

The sub-directories 'JPdd' contain the Cloud Images of Japan and its Vicinity of the day 'dd' of a month.

'IMAGEDK' and 'IMAGEJP' also contain sub-directories 'DKINF' and 'JPINF' respectively.

The sub-directory 'DKINF' contains quality information of the Full Disk Earth's Cloud Images and the sub-directory 'JPINF' contains that of the Cloud Images of Japan and its Vicinity.

The quality information is a list of file-names about missing images, and images which are not available in part and so on.

The quality information is written both in English (DINFyymm.ENG/ JINFyymm.ENG) and in Japanese (DINFyymm.JPN/ JINFyymm.JPN) where 'yy' and 'mm' denote year and month respectively.

(3) The directory 'TEXT' contains the satellite observation data in tabular form except for image data.

Each data set is contained in a sub-directory which is named after the respective data name.

(4) The directory 'VIEWER' contains the Viewer of the Cloud Images of Japan and its Vicinity and additional files.

The Viewer can be used on NEC PC-9800 Series, Microsoft Windows and UNIX operating system.

Each version of the Viewer is contained in a sub-directory which is named after the respective operating system.

The Viewer for Microsoft Windows is prepared both in English and in Japanese, and contained in respective sub-directories 'ENG' and 'JPN'.

PC9800 Series are trademarks of NEC Corporation.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

	1 Record=256 Bytes CW: Control Word	
CONTROL PART	CW	CW
CALIBRATION PART	CW	
(VIS: 1 Record,		
IR1,WV :4 Records)		CW
	CW Most Northern Line	
DATA PART		CW
	1 Line=501 Pixels=2 Records	
	Total 501 Lines	
	CW Most Southern Line	
		CW

Fig.J.1 Data format about Cloud Images of Japan and its Vicinity

CONTROL PART (position is relative in the part)

- 1

Byte pos.	Items	Contents	Туре
1 - 4	control word	fixed : 256	I * 4
5 - 12	sensor name	"GMS-VIS", "GMS-IR1" or "GMS-WV"	C * 8
13 - 20	satellite name	"GMS-5"	ditto
21 - 24	unused		:
25 - 56	start time	see Fig.I-5	I * 32
57 - 88	end time	same as above	I * 32
89 - 92	coordinate	rectilinear coordinates=1	I * 4
93 - 96	number of pixels on VISSR data	number of pixels for longitudinal direction	ditto
97 ~ 100	same as above	number of pixels for latitudinal direction	ditto
101 - 104	resolution on CD-ROM data	longitudinal length of a pixel=0.06 deg.	R * 4
105 - 108	same as above	latitudinal length of a pixel=0.06 deg.	ditto
109 - 112	number of pixels on CD-ROM data	number of pixels for longitudinal direction=501	I * 4
113 - 116	number of pixels on CD-ROM data	number of pixels for latitudinal direction=501	ditto
117 - 120	record length	record length per 1 line=2	ditto
121 - 124	byte length	byte length of a pixel=1(8bits)	ditto
125 - 156	the region of the image on CD-ROM data	lat. and lon. at NW corner lat. and lon. at NE corner lat. and lon. at SW corner lat. and lon. at SE corner	(R * 4) * 8
157 - 160	number of Calibration values	VIS=62 IR1 and WV=254	I * 4
161 - 164	first level	level corresponding to the least value of calibra- tion table=2	ditto
165 - 168	last level	level corresponding to the most value of calibra- tion table $VIS=63$, IR1 and $WV=255$	ditto
169 - 252	(reserved)	all "0"	
253 - 256	control word	same as 1 - 4 position	I * 4

Fig.J.2 The contents of CONTROL PART

(Cloud Images of Japan and its Vicinity)

CALIBRATION PART (position is relative in the part)

byte pos.	Items	Contents	Туре
1 - 4	control word	VIS : 256, IR1,WV : 1024	I * 4
5 -	calibration table	VIS: values that show albedos (0.0-1.0) corre- sponding to levels from 2 to 63 are recorded in 1 record (256 bytes) IR1,WV: values that show TBB(K) correspond- ing to levels from 2 to 255 are recorded in 4 records (1024 bytes)	R * 4
Last 4 bytes	control word	same as 1-4 position	I * 4

Fig.J.3 The contents of CALIBRATION PART (Cloud Images of Japan and its Vicinity)

DATA PART

I: integer, R: real, C: character

(position	is	relative	in	the	part)
-----------	----	----------	----	-----	-------

byte pos.	Items	Contents	Type
1 - 4	control word	Number of bytes per 1 line=512	I * 4
5 -	image data	level of each pixel is recorded in binary form using 1 byte per 1 pixel	
Last 4	control word	same as 1-4 position	I * 4

Fig.J.4 The contents of DATA PART

(Cloud Images of Japan and its Vicinity)

Relative byte pos.	Contents	Туре
1 - 4	YY: year 19,20	I * 4
5 - 8	YY: year 00-99	I * 4
9 - 12	MM : month	I • 4
13 - 16	DD: day	I • 4
17 - 20	hh: hour	I * 4
21 - 24	mm : minute	I * 4
25 - 28	ss : second	I * 4
29 - 32	ms : (m sec)	I * 4

Fig.J.5 The contents of start and end time of CONTROL PART

ROOT-	-DOCUMENT
	EBT.ENG/JPN (Documents of Equivalent Blackbody Temperature)
	GMSLP98.ENG/JPN (Documents of Viewer for PC-9800 series) GMSLPU.ENG/JPN (Documents of Viewer for UNIX)
	GMSLPW.ENG/JPN (Documents of Viewer for Windows)
	IMAGEDK.ENG/JPN (Documents of Full Disk Earth's Cloud Image)
	IMAGEJP.ENG/JPN (Documents of Cloud Image of Japan and its Vicinity) OLR.ENG/JPN (Documents of OLR)
	SNOW.ENG/JPN (Documents of Snow and Ice Index)
	SOA.ENG/JPN (Documents of Satellite Orbit and Attitude Data)
	VSRINF.ENG/JPN (Documents of VISSR Image Data Catalog)
	WIND.ENG/JPN (Documents of Cloud and Water Vapor Motion Wind)
	-IMAGEDK (contains Full Disk Earth's Cloud Images)
	DKdd——ssmmddhh.BMP (Image Data of the day 'dd') ——DKINF——DINFyymm.ENG/JPN (Quality Information)
	JPddssyymmdd.Zhh (Image Data of the day 'dd')
	JPINF—JINFyymm.ENG/JPN (Quality Information)
	-TEXT (contains satellite observation data in tabular form)
	CLOUD CLDmmddH.TXT (Cloud Amount: the day 'dd' of the month 'mm' is the start
	date of 5-days that the data are averaged over) ——EBT——EBTmmddH.TXT (EBT: the day 'dd' of the month 'mm' is the start date of
	5-days that the data are averaged over)
	OLR—OLRmmddH.TXT (OLR: the day 'dd' of the month 'mm' is the start date of
	5-days that the data are averaged over)
	ORByymm.TXT (Orbit Data)
	SSTSSTyymmF.TXT (Sea Surface Temperature : First 10 days of the month 'mm'
	[10-day mean data]) ————————————————————————————————————
	SSTyymmT.TXT (ditto: Second To days of the month mm')
	SUN-SUNmmdd.TXT (Solar Irradiation)
	TOVS—OZNmmdd.TXT (TOVS Total Ozone Amount)
	TVSyymmF.TXT (TOVS Vertical Profile of Temperature and Precipitable Water : First 10 days of the month 'mm')
	TVSyymmS.TXT (ditto : Second 10 days of the month'mm')
	TVSyymmT.TXT (ditto: Remained days of the month 'mm')
	VSRINF-VCMTyymm.TXT (VISSR Image Data Catalog : CMT) VPICyymm.TXT (VISSR Image Data Catalog : Micro Film)
	WIND—WINCmmdd.TXT (Cloud Motion Wind)
	WINWmmdd.TXT (Water Vapor Motion Wind)
	-VIEWER (contains the Viewer)
	98UTL (the Viewer for NEC PC-9800 series)
	ENG (English edition)
	JPN (Japanese edition)

In this directory structure, 'yy', 'mm', 'dd' and 'hh' denote year, month, day and hour(UTC), respectively.

The combination of these numbers represents the observed date of data in the file.

The index 'ss' in the cloud image file name identifies the spectral channel; IR denotes infrared, VS: visible, WV: water vapor.

Fig.J.6 Directory Structure of the CD-ROM of the MONTHLY REPORT of MSC

Specification of GMS Image Microfilm

form 35mm, perforation recorded image and frequency is as follows

projection	channel	frequency
Full Disk(DK)	infrared(IR) visible(VIS) water vapor(WV)	3-hourly 00,03,06 UTC hourly
Polar-Stereographic(PS) (northern hemisphere)	infrared(IR) visible(VIS)	hourly 00,01,02,03,04,05, 06,07,08,22,23 UTC

volume density: 7 days/1 volume format: see Fig.K.1

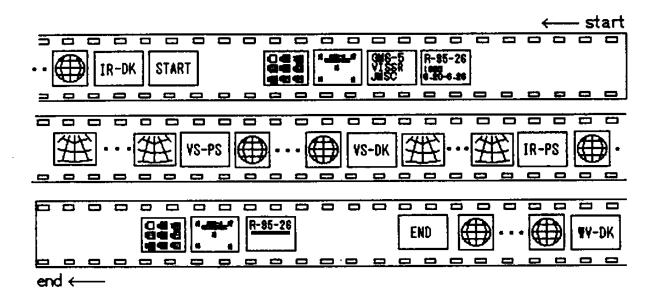


Fig.K.1 Format of GMS image microfilm

Appendix L

Processing of NOAA Satellite Data

L.1 Data Reception and Archive

L.1.1 Introduction

MSC has received High Resolution Picture Transmission (HRPT) data broadcast directly by NOAA operational polar orbiting satellites and made some products from Advanced Very High Resolution Radiometer (AVHRR) data and TIROS Operational Vertical Sounder (TOVS) data. TOVS includes the following instruments:

- (1) High Resolution Infrared Radiation Sounder/2 (HIRS/2),
- (2) Stratospheric Sounding Unit (SSU),
- (3) Microwave Sounding Unit (MSU).

A detailed description of the NOAA Polar Orbiter instrumentation can be found in NOAA Technical Memorandum NESS 116.

The data of morning descending satellite and afternoon ascending satellite have been received two or three times a half day. Before June 13, 1995, the data from one of two operational satellites were received. The HRPT coverage from MSC is shown in Fig. L.1. The coverage area is 5200 km in diameter centered at MSC.

L.1.2 HRPT Archive Data

HRPT data received at MSC has been archived on Cartridge Magnetic Tapes (CMTs). One CMT includes daily HRPT data from one satellite. Before June 13, 1995, the data were archived on Cartridge Tapes (CTs).

L.1.3 APT Predict (TBUS) Bulletin

The source of information concerning a satellite's position in time and space is the APT Predict (TBUS) bulletin prepared by NESDIS. The code form of the TBUS bulletin are given in the TIROS-N Series Direct Readout Services Users Guide. It is transmitted daily, at about 1908 UTC, by KWBC Washington, DC, on the Global Telecommunications Services network. MSC has archived the TBUS bulletin since March 3, 1987.

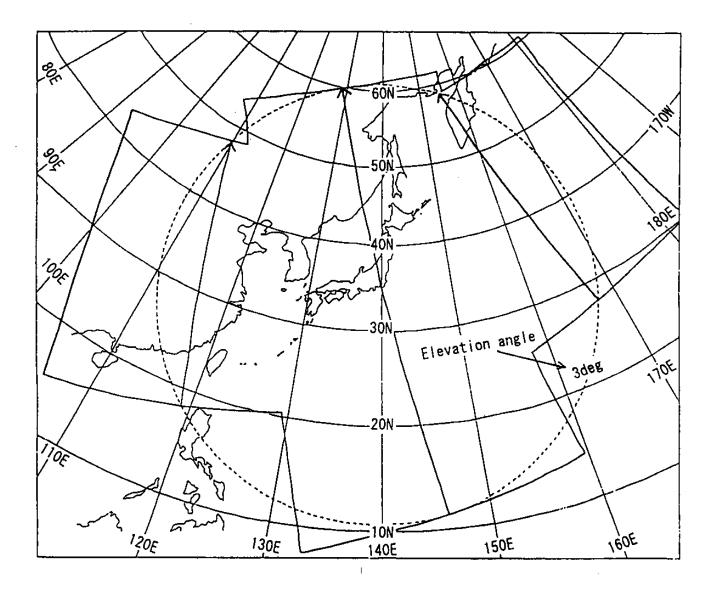


Fig.L.1 HRPT coverage from MSC

L.2 Products

L.2.1 Sea surface temperature

L.2.1.1 Outline

Sea surface temperatures(SSTs) are extracted from measurements of Advanced Very High Resolution Radiometer(AVHRR) on NOAA polar orbit satellites. The SST is calculated from two simultaneous brightness temperatures of split-window channels by using a linear regression equation.

L.2.1.2 Description

The SSTs are estimated every day. The area of SST estimation is from 50 degree North to 20 degree North and from 120 degree East to 160 degree East.

Pixels(image-elements) of AVHRR full-resolution data are discriminated into cloud free pixels or cloud contaminated pixels by a cloud filtering algorithm. The algorithm consists of threshold tests of reflectance, brightness temperature and brightness temperature difference of split-window channels.

SST is calculated from two simultaneous brightness temperatures of split-window channels of cloud free pixels by using a linear regression equation, the so-called Multi-Channel SST (MCSST) retrieval algorithm. The equation is as follows:

$$SST = aT_{11} + b(T_{11} - T_{12}) + c(T_{11} - T_{12})(\sec \theta - 1) + d$$

where T_{11} is brightness temperature in IR1, 10.5-11.5µm, T12 is brightness temperature in IR2, 11.5-12.5µm, θ is satellite zenith angle, a, b, c, and d are coefficients of the linear regression.

The calculated SSTs are compared to climatological values and unreasonable values are eliminated.

The mean is calculated from the reasonable values in the area with regular intervals of 0.25 degree latitude by 0.25 degree longitude, and is employed as the representative SST in the area.

Grid point values of the SSTs with 0.25 degree latitude and longitude resolution are sent to the Headquarters of JMA in GRIB code.

L.2.1.3 Remarks

As a result of comparison between satellite SSTs and measurements of buoys, the Root Mean Square difference of them is from 1.2 to 1.5 degree Kelvin.

Coefficients for the retrieval equation are published by National Oceanic and Atmospheric Administration/ National Environmental Satellite, Data and Information Service (NOAA/ NESDIS).

L2.2 Vertical Profile of Temperature and Water Vapor

L2.2.1 Outline

Vertical sounding data are extracted from TOVS and AVHRR data. The data of the morning descending satellite are processed to retrieve the vertical profiles of temperature and water. The data coverage is around Japan (10-60N, 110-170E) and the retrieval is carried out in the clear ocean region. Resolution of this product is about 20km.

L2.2.2 Description

Prior to the retrieval of vertical profile, TOVS data and AVHRR data are calibrated. Partial cloudiness in a HIRS field of view (FOV) are calculated. 300 to 450 AVHRR FOVs are included in one HIRS FOV so we can derive the partial cloudiness as the ratio of cloudy AVHRR FOVs to total AVHRR FOVs. The cloudy AVHRR FOV is determined from eight parameters deduced from five AVHRR channel data by using a given algorithm and thresholds.

At the same time we calculate some statistical parameters of AVHRR data in the HIRS FOV e.g. minimum, maximum and mean brightness temperature. Latitude and longitude at the center of HIRS FOVs are also calculated by satellite position, HIRS scan time and HIRS scan angle.

To retrieve the vertical profile of temperature and water vapor, an initial guess is generated from forecast grid data of the Global Spectral Model and the Regional Spectral Model, which is provided by Numerical Forecast Division of JMA, through temporal and spatial interpolation. Then we interactively retrieve the optimum profile consistent to observed HIRS brightness temperatures considering the initial guess error, observation error, and bias of the radiative transfer model. The radiation bias and observation error are updated once a month from a match-up dataset of HIRS data and radiosonde data.

Retrieved temperatures at 15 levels and dew point depressions at 5 levels are converted to thickness and precipitable water, coded by SATEM format, and transmitted to the Forecast Department of JMA H.Q. Data amounts are about 200 a day. Sounding data are archived as formatted files on CMT (one volume a month). The archive data include TOVS data, cloud information and location data and vertical profile data. The contents of the sounding archive data are shown in Table L.1.

L.2.2.3 Remarks

Validation with radio sonde data shows the RMS error of retrieved temperature is 1-1.4K in the lower troposphere and is 0.8-1.2K in the mid-troposphere and upper layers. RMS error of retrieved precipitable water is around 30%. Note that the error characteristics of this product depend on that of the numerical forecast as the first guess.

Table L.1 Contents of the sounding archive data. Product Description TOVS data Calibrated HIRS/2, SSU, and MSU brightness temperature at each spot (in K) Cloud Information and Location data (at each HIRS/2 spot) Latitude/Longitude at the center of HIRS/2 spot Partial cloudiness Maximum, minimum, and mean brightness temperature (in K) and reflectance (in %) Mean brightness temperature (in K) and reflectance (in %) in cloudy area Vertical Profile data (at each HIRS/2 spot) Latitude/Longitude at the center of HIRS/2 spot Land/Ocean flag, Surface pressure, Surface temperature Temperature (in K) of the atmosphere at the 15 pressure levels (in hPa) listed below: 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10 Dew point (in K) of the atmosphere at the 9 pressure levels (in hPa) listed below : 1000, 850, 700, 500, 400, 300, 250, 200, 150

L.2.3 Total Ozone Amount (TOA)

L.2.3.1 Outline

The estimation of TOA from TOVS HIRS/2 data is based on a regression method. The area of TOA is from 60N to 10N and from 100E to 180E with 1 degree latitude and longitude resolution.

L.2.3.2 Description

The technique for estimation of TOA is based on a regression method using HIRS/2 channel 9,i.e., the spectral band of ozone absorption. Input data are radiance of five channels, i.e.,ch.1,2, 3,8 and 9 of HIRS/2. The regression coefficients are determined by collocated data of satellite observations and Dobson measurements of direct sun observation at four JMA's surface observation stations; Sapporo, Tateno, Kagoshima, and Naha. The co-located data have been accumulated on the basis of distance within 50km and timelag within one hour since 1991. The regression coefficients were established for every month and renewed once a year, taking into account the seasonal variation of the TOA.

Prior to TOA calculation, HIRS/2 data with high level cloud or overcast cloud are excluded by using the partial cloud data (described L.2.2) and JMA forecast data.

The daily mean values at every 1 degree latitude and longitude area are sent monthly to the Ozone Layer Monitoring Office.

L.2.3.3 Remarks

The RMS error between the TOA grid data and the Dobson measurements is about 5%. The accuracy trends to deteriorate in winter when the regression coefficients could not accurately

express the ozone situation. The cause are given as under. In winter, the co-location data are not enough because few Dobson data of the direct sun observations are obtained at Sapporo for broken clouds, and the co-location data are low because TOA is fluctuating sharply.

L.3 References

- Aoki, T., 1982, An Improved Method to Retrieve the Clear Radiance from Partially Cloudy Spots of Radiometer on Board Satellite, J.Meteor.Soc.Japan, 60, 758-764.
- Barnes, J.C. and M.D. Smallwood, 1982, TIROS-N Series Direct Readout Services Users Guide, NOAA/NESDIS.
- Kidwell, Katherine B. (Editor), June 1995, NOAA Polar Orbiter Data Users Guide, NOAA/ NESDIS NCDC SDSD.
- Planet, Walter G. (Editor), revised October 1988, Data Extraction and Calibration of TIROS-N/ NOAA Radiometers, NOAA Technical Memorandum NESS 107 Revision 1, 130pp.
- Schwalb, Arthur, February 1982, Modified Version of the TIROS-N/NOAA A-G Satellite Series (NOAA E-J) - Advanced TIROS-N (ATN), NOAA Technical Memorandum NESS 116, 23pp.
- Takeuchi, Y., 1995, Recent Progress of the Operational TOVS Processing System in MSC, Technical Proceedings of ITSC-VIII, ECMWF, 453-464.

(Blank page)

- 1

-

List of Acronyms

- -

AD	-Anno Domino
ADESS	
	-Automated Data Editing and Switching System
AGC AIREP	-Automatic Gain Control
	-AIRcraft REPort
AM	-Amplitude Modulation
APT	-Automatic Picture Transmission
AS	-Automatic target cloud Selection
ASCII	-American Standard Code for Information Interchange
ASDAR	-Aircraft to Satellite DAta Relay
AVHRR	-Advanced Very High Resolution Radiometer
AZ	-AZimuth
BCD	-Binary Coded Decimal
BCH code	-Bose-Chaudhuri-Hocquenghem code
BFL	-Best Fit Level
BPI	-Bits Per Inch
BPS	-Bits Per Second
BPSK	-Bi-Phase Shift Keying
DI OR	Di l'habe binte Reynig
C-ADESS	-Central ADESS
CCP	-Communication Control Processor
CCT	-Computer Compatible Tape
CD	-Character Display
CDA(S)	-Command and Data Acquisition (Station)
CDD	-Command Demodulated/Decoder
CDF	-Coded Digital Facsimile
CGMS	-Coordination of Geostationary Meteorological Satellites
CMT	-Cartridge Magnetic Tape
CMW	-Cloud Motion Wind
CPI	-Character Per Inch
CPU	-Central Processing Unit
CRC	-Cyclic Redundancy Check
CRT	-Cathode Ray Tube
СТ	-Cartridge Tape
СТН	-Cloud Top Height
CWES	-Cloud Wind Estimation System
DASD	-Direct Accord Storage Device
	-Direct Access Storage Device
DBA	-Despin Bearing Assembly
DCD	-Data Collection and Dissemination
DCP	-Data Collection Platform
DCS	-Data Collection System
DEM	-Demodulator

` -

DEV	-Device
DOC	-Documentation
DPC	-Data Processing Center
DUS	-Data Utilization Station
EBCDIC	-Extend Binary Coded Decimal Interchange Code
EL	-ELevation
EOT	-End Of Transmission
ES	-Earth and Sun
ESA	-European Space Agency
FAX	-FAcsimile
FM	-Frequency Modulation
FSK	-Frequency Shift Keying
GDP	-Graphic DisPlay Processor
GMS(S)	-Geostationary Meteorological Satellite (System)
GOC	-GMS Operating Console
GOES	-Geostationary Operational Environmental Satellite
GPC	-Global Processing Center
GPCP	-Global Precipitation Climatology Project
GPV	-Grid Point Value
GSPDC	-Geostationary Satellite Precipitation Data Center
GTS	-Global Telecommunication System
0 + 10	
НССР	-High speed Communication Control Processor
HIRS /2	-High resolution Infrared Radiation Sounder/2
HK	-House Keeping
HR	-High Resolution
HRPT	-High Resolution Picture Transmission
	_
ICA	-ISCCP Central Archive
ICSU	-International Council of Scientific Union
IDCP	-International DCP
IDP	-Image Display Processor
IF	-Intermediate Frequency
IFOV	-Instantaneous Field of View
IGFOV	-Instantaneous Geometric Field Of View
IPC	-Image Processing Console
IR	-InfraRed
ISCCP	-International Satellite Cloud Climatology Project
JJY	-(call-sign of Japan standard frequency and time signal)
JMA	-Japan Meteorological Agency
• -	· · · · · · · · · · · · · · · · · · ·

- 1

LBF	-Level of Best Fit
LCW	-Line Control Word
LSB	-Least Significant Bit
LSD	-Least Significant Digit
MANAM	-MANual AMendment
MCSST	-Multi- Channel SST
MDUS	-Medium Scale Data Utilization Station
METEOSAT	-European Geostationary Meteorological Satellite
MJD	-Modified Julian Day
MLS	-Maximum Linear Sequence
MOD	-MODulator
MODEM	-MOdulator-DEModulator
MRS	-Master Ranging Station
MSB	-Most Significant Bit
MSC	-Meteorological Satellite Center
MSD	-Most Significant Digit
MSU	-Microwave Sounding Unit
MT	-Magnetic Tape
NAPS	-Numerical Analysis and Prediction System
NASDA	-NAtional Space Development Agency of Japan
NESDIS	-National Environmental Satellite, Data, and Information Service
NOAA	-National Oceanic and Atmospheric Administration
NRZ	-Non Return to Zero
NWP	-Numerical Weather Prediction
OLR	-Outgoing Longwave Radiation
OQ	-Objective Quality control
PCM	-Pulse Code Modulation
PLL	-Phase Lock Loop
PM	-Phase Modulation
РМТ	-PhotoMultiplier Tube
PN	-Pseudo-Noise
PSK	-Phase Shift Keying
Q/D	-Quality of Data
QPSK	-Quadri-Phase Shift Keying
RDCP	-Regional DCP
RF	-Radio Frequency
RMS	-Root Mean Square
RPM	-Revolutions Per Minute
RX	-Receiver

••

SAREP	-(WMO code name for synoptic interpretation of satellite cloud data)
SATOB	-(WMO code name for satellite observations of surface temperature, winds, clouds and radiation)
S/C	-Space Craft
SCC	-Satellite Calibration Center
SCIC	-Satellite Cloud Information Chart
SDC	-ScheDule Console
SDUS	-Small-scale Data Utilization Station
SEM	-Space Environment Monitor
SI	-Satellite-derived Index of precipitation intensity
S/N	-Signal to Noise ratio
SSP	-Sub-Satellite Point
SST	-Sea Surface Temperature
SSU	-Stratospheric Sounding Unit
S-VISSR	-Stretched VISSR
SYNC	-SYNChronized or SYNChronous
TARS	-Turn-Around Ranging Station
TC,Tc	-temperature of Cloud Top
TBB	-Temperature, equivalent Black-Body
TDR	-Tape Data Recorder
TIROS	-Television and InfraRed Observation Satellite
TLM	-TeLeMetry
TOVS	-TIROS-N Operational Vertical Sounder
ТР	-Test Pattern
TRRR	-Trilateration Range and Range Rate
ТХ	-Transmitter
UHF	-Ultra-High Frequency
UT(C)	-Universal Time (Coordinated)
VDM	-VISSR Digital Multiplexer
VDP	-VISSR Demodulated Processor
VIS	-VISible
VISSR	-Visible and Infrared Spin Scan Radiometer
WCRP	-World Climate Research Program
WEFAX	-WEather FAcsimile
WMO	-World Meteorological Organization
WVMV	-Water Vapor Motion Wind
WWW	-World Weather Watch

- 1

~