第8章 火山噴煙、黄砂及び大規模森林火災*

火山噴火に伴う火山灰を航空機のエンジンが吸い込むと、最悪の場合にはエンジン停止等、大きな事故につながる恐れがある。また、火山噴煙は 視程障害をもたらすことがあるため、航空機の安 全運航に影響が生じる。1989年12月のリダウト 火山(カナダ)の噴火では、KLMオランダ航空機 が一時エンジン停止により事故寸前にまで至った。 また、1991年6月のピナツボ火山(フィリピン) の噴火では、JAL(日本航空)機はエンジン停止 までには至らなかったが、到着後全エンジンを交 換した(気象庁、1998)。

黄砂や大規模森林火災による煙は、視程障害を もたらす場合がある。1997年5月に発生したイン ドネシアの森林火災では、その煙のため周辺の空 港が閉鎖され、同年10月までに3000便以上が欠 航した(気象庁、1998)。

ここでは、これらの現象が衛星画像でどのよう に見えるか実例を示す。

8.1 火山噴煙

火山噴煙では、噴火に伴う強い上昇気流による 断熱膨張のため火山灰を多く含む雲(以後、徳野

(1997)にならって「火山灰雲」と呼ぶ)が形成 される。火山灰雲を衛星画像で観測すると、噴火 直後は円形であったものが時間経過とともに噴火 地点から風下側に扇形状に拡散する。また、上層 の風速が強いほど扇形の幅は狭く細長くなること が知られている。

火山灰雲は、赤外画像では通常の雲と同様に TBB が低いほど白く表され、火山灰雲の雲頂高度 が高いほど白く見える。また、一般的に可視画像 では白から暗灰色に見える。赤外差分画像では、 石英が含まれる火山灰雲と通常の雲との識別が容 易にしかも明瞭にできる場合がある。赤外差分画 像では、前者は白く、後者は黒く表現される(第 1章参照)。

ただし、小規模な噴火の場合は静止気象衛星の 画像で捉えられない事が多く、特に噴火の規模が 小さく上空に厚い雲がかかっている場合は全く観 測できない。

事例1 2000年8月18日 伊豆諸島 三宅島雄山

図 8-1-1 は伊豆諸島の三宅島雄山が噴火した直後の8月18日09UTCの可視画像である。また、 図 8-1-2 は8月18日09~14UTCの赤外画像である。の9UTCの赤外画像では伊豆半島の南東方向に 白く輝く雲域Aと本州中部の山岳地帯にも白く輝 く雲域Bが見られる。この2つの雲域は赤外画像 だけでは形状も似ており、ともに積乱雲(Cb)と 判別される場合がある。しかし、可視画像ではこ の2つの雲域の違いは明らかで、Aは黒い領域 (P204の脚注を参照)となっているのに対し、Bは 非常に白く明瞭な縁を持っている。つまり、Aは 火山灰雲で、BはCbであることが分かる。

図 8-1-2 では、火山灰雲(図中白矢印)が三宅 島から東南東方向に扇形状に拡散しながら流れて いくのが見られる。この火山灰雲は航空機観測に よると 40,000ft (12,000m)以上に達している。赤 外画像では白く輝いていることから雲頂高度はか なり高いことがわかる。なお、1枚の赤外画像で 火山灰雲と他の雲頂高度の高い雲との判別が困難 な場合でも、動画により判別が可能となる場合が ある。

図 8-1-3 は同時刻の赤外差分画像である。三宅 島から噴出した火山灰雲(図中黒矢印) Aが白い 領域で表現されている。赤外画像では火山灰雲の 拡散により、領域の判別は困難となるが、赤外差 分画像では火山灰雲をより白く表現するので、火 山灰雲の追跡が容易である。

図 8-1-1 2000 年 8 月 18 日 09UTC 可視画像 A:火山灰雲 B:Cb

* 8.1、8.2 山崎 伸一、奥村 栄宏(現観測部管理課) 8.3 三河 哲也、奥村 栄宏

図 8-1-2 左上より 2000 年 8 月 18 日 09~14UTC の毎時の赤外画像 A:火山灰雲 B:Cb

図 8-1-3 左上より 2000 年 8 月 18 日 09~14UTC の毎時の赤外差分画像 A:火山灰雲 B:Cb

事例 2 1999 年 12 月 9 日~10 日 鹿児島県 桜 島南岳

1999年12月9日2055UTC、鹿児島県の桜島南 岳が爆発した。桜島では常に噴煙が上がっており、 噴火は断続的に起こっている。図 8-1-4 は、桜島 が爆発した後の12月9日22UTC~10日03UTC の1時間毎の赤外画像である。鹿児島県の桜島付 近から火山灰雲(図中黒矢印)が蛇行した形状で 伸びている様子が分かる。事例1の三宅島雄山の 例に比べ輝度は低いが、周囲に雲域がなく判別は 容易であった。さらに東に移動するとともに急速 に拡散し、10日00UTC 以降、不明瞭化した。

図 8-1-5 は図 8-1-4 と同時刻帯の可視画像である。 周りには活発な雲域が無いため、可視画像でも白 いベール状の雲域として噴煙が観測できる。

図 8-1-6 は 12 月 9 日 23UTC の赤外差分画像で ある。鹿児島付近から赤外画像と同じ形状の白い 領域(図中白矢印)が明瞭に見られる。

なお、この事例については、桜田ら(2001)が 詳しく調査し、下記の結果を得た。

- 爆発によってできた火山灰雲の高度は噴火地 点から遠いほど、つまり先端ほど高い。
- ② 火山灰雲の走向パターンがホドグラフ(各層間の風ベクトルの先端を下層から上層につないだベクトル)の形と一致する(図8-1-7、8参照)。
- ③ 上記①及び②は、爆発により真上に上がった 柱状の噴煙が火山灰雲となって、周囲の風に流 されたとする仮定に一致する。
- ④ 2000 年 3 月 25 日 2143UTC の爆発でも、火山 灰雲の形状は異なっていたが、同様の結果を得た。

上記のことは、火山灰雲が風の鉛直分布(ホド グラフ)を可視化していたことを示す。

図 8-1-4 左上より 1999 年 12 月 9 日 22UTC~10 日 03UTC の毎時の赤外画像 黒矢印:火山灰雲

201 ページの注:通常可視画像では、火山灰雲は白から暗灰色に表現される。しかし 201 ページの図 8-1-1 の火山灰雲 A は、真っ黒に表現されている。これは夕方のため、反射量が少ない画像(通常の 階調では全体が黒く表わされる)を強調したためと思われる。

図 8-1-5 左上より 1999 年 12 月 9 日 22UTC~10 日 03UTC の毎時の可視画像 白矢印:火山灰雲

図 8-1-6 1999 年 12 月 9 日 23UTC の赤外差分画像 白矢印:火山灰雲

図 8-1-7 12月9日 2225UTC の GMS-5 可視画像(桜田ら、2001)
①:先端
②~⑥:屈曲点
太い矢印:火山灰雲の影領域

図 8-1-8 鹿児島 00UTC の風ベクトルを 100m 毎に内挿した走向ベクトル図(桜田ら、2001) 矢印の数値は対応する高度を表わす.高度は 8400m まで算出した. ①:火山灰雲の先端 ②~⑥:屈曲点に対応する位置

航空路火山灰情報センター (VAAC: Volcanic Ash Advisory Center)

航空路火山灰情報センターは、火山の噴火によって上空に噴き上げられ浮遊する火山灰から、航空機の航行 の安全を確保するため、担当領域内にある火山の噴火を監視し、噴火や火山灰を検知した場合は各航空関係機 関に対し、火山灰の実況図や予測図を含んだ航空路火山灰情報(VAA: Volcanic Ash Advisory)を発表してい る。

1 実況の監視

- 火山の観測情報やパイロットレポートなどで噴火状況の把握を行う。
- ・ 気象衛星画像により火山灰の常時監視を行う。

2 航空路火山灰情報の発表

- ・ 火山灰の高さが海抜 5,000 メートルを超えた場合に発表する。
- ・ 衛星画像で火山灰の領域を解析できた場合には火山灰実況図,拡散予測図も合わせて発表する。
- ・ 情報の更新は、監視している火山灰に著しい変化がない限り、おおむね 00、06、12、18UTC の 6 時間ごと に発表する。
 (航空路火山灰情報センター 齋藤 祥司)

事例 3 1991 年 6 月 12 日 フィリピン ピナツ ボ火山

1991 年 6 月 12 日、フィリピンのルソン島ピナ ツボ火山が噴火した。その後も噴火は続き、15 日 にはかなり大規模な噴火となった。当時の気象衛 星 GMS-4 では赤外差分画像(赤外差分画像及び水 蒸気画像は GMS-5 より取得)はなかったが、かな り大規模な噴火であったことや、日中に噴火した ため、可視画像や赤外画像でも噴火の様子が容易 に観測できた。 図 8-1-9、10 は噴火直後の 1991 年 6 月 12 日 03UTC の赤外及び可視画像である。赤外画像では ルソン島付近に白く輝く Cb のような雲域(図中 白矢印)が見られる。一方、可視画像では南西方 向にある Cb を含む対流雲域に比べ、灰色で境界 がぼやけている事から、火山灰雲(図中白矢印) である事が分かる。図 8-1-11、12 はそれぞれ 3 時 間後の赤外及び可視画像である。火山灰雲は上空 の北東風により、南西方向に流されながら拡散し た(図中白矢印)。

図 8-1-9 1991 年 6 月 12 日 03UTC 赤外画像

図 8-1-10 1991 年 6 月 12 日 03UTC 可視画像

図 8-1-11 1991 年 6 月 12 日 06UTC 赤外画像

図 8-1-12 1991 年 6 月 12 日 06UTC 可視画像

図 8-1-13、14 は 6 月 15 日 01UTC の赤外及び可 視画像である。赤外画像ではピナツボ火山の東側 には台風の中心を示唆する下層渦(図中右側の黒 矢印)があり、周辺には Cb や上層雲などの輝度 の高い雲が多い。このため、火山灰雲との判別は 難しいが、可視画像では、それらの白い雲の中に 黒灰色の円形の火山灰雲(図中中央の白矢印)が 明瞭に見られる。

図 8-1-15、16 は 15 日 08UTC の赤外及び可視画

像である。可視画像では、黒灰色の火山灰雲が更 に大きな円盤状に広がっている。赤外画像では、 火山灰雲の部分は周囲より暗く、火山灰雲の TBB が雲の TBB より高温であることを示している。 Tokuno (1991) は、「この火山灰雲の TBB は、圏 界面温度より 10℃以上も高い。このことは、火山 灰雲が成層圏に突入したことを意味している。ま た、風に逆らって風上側にも拡大し直径 400km に まで拡大した」としている。

図 8-1-13 1991 年 6 月 15 日 01UTC 赤外画像

図 8-1-14 1991 年 6 月 15 日 01UTC 可視画像

図 8-1-15 1991 年 6 月 15 日 08UTC 赤外画像

図 8-1-16 1991 年 6 月 15 日 08UTC 可視画像

8.2 黄砂

黄砂は中国大陸の黄土地帯やゴビ砂漠などで発 生し、大気の流れにより広範囲に移動・拡散する。 発生当初の黄砂は、可視画像では明灰色の比較的 明瞭な境界をもち、赤外差分画像では白い領域と して観測できる。しかし、赤外画像で観測するこ とは困難である。また、一般的に黄砂は、日本付 近に達するころには拡散により薄くなり、可視画 像でも判別が難しくなるが、黄砂が海上にある場 合には、可視画像でも階調を調整すれば、海面と のコントラストがはっきりし、黄砂の領域が確認 できる場合がある。一方、赤外差分画像では白い 領域として観測でき、日本付近で黄砂が拡散して も可視画像より明瞭に判別できる。

なお、中国大陸では黄砂による視程障害により 空港閉鎖など航空機の運航に影響を与えるが、通 常日本付近では若干の視程の低下を生じさせる程 度である。

事例 2000年4月6日~8日

図 8-2-1 は 2000 年 4 月 6 日 03UTC の可視画像 である。ただし、黄砂を見やすくするため階調を 強調しており、雲域は白くつぶれている。図中点 線で示した明灰色の薄いベール状の領域が黄砂で ある。図 8-2-2 は同時刻の赤外差分画像で、黄砂 は白い領域として観測されており、可視画像に比 べて明瞭である。

図 8-2-3、4 は、図 8-2-1、2 から 24 時間後の 4 月7日 03UTC の可視画像と赤外差分画像である。 可視画像では黄砂(図中白矢印)は、中国大陸か ら朝鮮半島を経て沿海州沖にかけて見られる。日 本海や黄海などの海上の黄砂は階調を調整すれば 識別できるが、陸上に比べると不明瞭である。赤 外差分画像では中国大陸や朝鮮半島の陸上の黄砂 は明瞭に見られるが、海上はさほど明瞭ではない。

図 8-2-1 2000 年 4 月 6 日 03UTC 可視画像

図 8-2-2 2000 年 4 月 6 日 03UTC 赤外差分画像

図 8-2-3 2000 年 4 月 7 日 03UTC 可視画像

図 8-2-4 2000 年 4 月 7 日 03UTC 赤外差分画像

図 8-2-5、6 は、さらに 24 時間後の 4 月 8 日 03 UTC の可視、赤外差分画像である。

黄砂(図の点線部分)はさらに拡散しながら日 本付近に達しており、可視画像による判別は難し くなっている。一方、赤外差分画像では明灰色か ら白い領域が日本海から本州にかかっているのが、 不明瞭ながら識別できる。

この日、東京・大阪など広い範囲で黄砂が観測 された。このため、空港では視程が低下し複数の 空港では卓越視程が 7,000m となった。

図 8-2-7 は、図 8-2-3 に数値予報値(RSM)の 925hPa の相当温位と風向風速を重ね合わせたも のである。黄砂のバンドは黄海から朝鮮半島で相 当温位 300K 前後の等値線が混んだところ(集中 帯)にほぼ一致している。また、朝鮮半島では黄 砂のバンドの屈曲と同様に、相当温位の等値線も

屈曲している。図は省略したが RSM の 850hPa で は同等値線の屈曲がやや不明瞭で、700hPaでは見 られないことから、黄砂の高度は 850hPa(約 1,500m)以下と推定できる。黄砂のバンドの屈曲 付近には南北に連なる 1.500m 級の山脈があり、 屈曲はこの山脈の影響と考えられる(菊池、2000)。

一般に、相当温位の集中帯は気団の境界(前線) を示しており、この事例では黄砂のバンドが南下 する乾燥した寒気団の先端にあることから、寒冷 前線を可視化していたと推測できる。

黄砂は大陸方面からより上層の強い偏西風に流 され、足早に日本の上空に到達することが多いが、 この事例では、地表面を這うようにして広がる寒 冷前線後面の下層の寒気とともに、ゆっくり日本 付近に到達したと思われる。

図 8-2-5 2000 年 4 月 8 日 03UTC 可視画像 図 8-2-6 2000 年 4 月 8 日 03UTC 赤外差分画像

図 8-2-7 2000 年 4 月 7 日 03UTC の可視画像と RSM925hPa の 相当温位と風 実線:相当温位 矢羽:10kt

8.3 大規模森林火災

小規模な森林火災は、衛星画像で観測すること は難しいが、その範囲が数百 km に及び数週間か ら数ヶ月にわたって燃え続けるような大規模な場 合、可視画像で火災による煙の様子を見ることが できる。ただし、画像で見られる煙は薄いことか ら、上空に雲があるときには観測が難しい。

森林火災は晴天が続く場合に多く見られ、沈降 性の逆転層により煙が下層で濃密になる場合など では、航空機の運航に影響を及ぼすことがあるの で注意が必要である。

事例1 1997 年インドネシア付近の森林火災

東南アジアではエルニーニョ現象の発生に伴い、 対流活動が平年より弱かったことに対応して 1997年夏から少雨が続き、インドネシア付近では 干ばつだけでなく、大規模な森林火災の被害も報 じられた。

この火災は 1997 年 5 月頃に発生し、10 月頃ま で続いた。9 月にはガルーダインドネシア航空機 が到着予定のスマトラ島北部のメダン空港付近で 墜落事故を起こした。当時、空港上空は火災によ る煙のため視界がゼロに近い状況であった(気象 庁、1998)。

図 8-3-1 は 1997 年 9 月 10 日 06UTC から 15 日 06UTC までの 24 時間毎の可視画像である。カリ マンタン (ボルネオ) 島付近から火災による煙 (図 中白矢印)が、西方のマレー半島やスマトラ島方 面に拡散しながら流れていく様子が分かる。煙は 灰色半透明でベール状のもやのように見えている。

図 8-3-1 1997 年 9 月 10 日 06UTC~15 日 06UTC の 24 時間毎の可視画像

事例2 2001年ハバロフスク・沿海州付近の森林 火災

2001 年 9 月末から 10 月にかけてハバロフス ク・沿海州付近で森林火災と思われる煙や焼け跡 が見られた(三河(2001))。

図 8-3-2 は 2001 年 9 月 30 日 07UTC の可視画像 である。×印(ハバロフスク)の周辺に見られる 灰色がかったベール状の白い領域が火災による煙 である。煙は北西の下層風により南東に向かって 流され、半透明の煙の一部は宗谷海峡付近まで達 している。また、沿海州の2カ所からも煙が発生 している。図 8-3-3 は火災の広がる前の 9 月 12 日 02UTCの可視画像で、図 8-3-2の矩形領域(緯度 3度×経度3度)を拡大表示したものである。ア ムール川の周辺で黒く見えるものは湖沼あるいは すでに焼けた跡と思われる。約1ヶ月後の図 8-3-4 では黒い領域はかなり広がって、相当な面積の森 林を焼失したことが分かる。

森林火災で見られる煙を赤外画像で確認するこ とはほとんど困難であるが、火災地点の確認には 利用できる。火災地点は周辺の地表面温度と比べ て非常に高温となっているため、高温を黒く表示 する赤外画像では、火災地点だけが真っ黒な小さ な点(ホットスポットと呼ばれる)として見られ る。図 8-3-5 は図 8-3-2 に近い年 9 月 30 日 04UTC 頃に極軌道衛星 NOAA が観測した赤外画像であ る(ホットスポットを強調するため、かなり明る い階調に調整してある)。矢印で示した黒い点(1 $\sim 2 \ell \ell \nu = 1 \sim 2 km$) がホットスポットで、図 8-3-2の煙の発生地点や図 8-3-4の焼け跡の位置と ほぼ対応している。なお、1998年にサハリン付近 で発生した森林火災について、渕田ら(1998)は GMS-5 の赤外画像でホットスポットを観測して いる。

図 8-3-2 2001 年 9 月 30 日 07UTC の可視画像

図 8-3-3 2001 年 9 月 12 日 02UTC 図 8-3-4 2001 年 10 月 9 日 02UTC 図 8-3-5 2001 年 9 月 30 日 04UTC 可視画像

可視画像

赤外画像 (NOAA)