参考文献

明石秀平、木場博之、櫃間道夫(1986): 台風の気圧中心から離れて存在する積乱雲の渦、気象衛星センター技術報告、第13号、33-56.

阿部世史之、牧野義久、中鉢幸悦、上野忠良(1992):衛星画像による雲特徴パラメータと台風発生期の最大風速 との関連、気象衛星センター技術報告、第25号、15-43.

阿部世史之(1994): 衛星画像による雲特徴パラメータと台風発生期の最大風速との関連(Ⅱ)、気象衛星センター技術報告、第28号、1-32.

岩崎博之、武田喬男(1993):日本周辺の雲クラスターの出現特性、天気、40、161-170.

上田文夫(1981): OMS 赤外資料による熱帯雲域の雲頂高度別雲量の日変化、天気、28、327-332.

上野忠良(2002): 台風へと発達する雲システムの早期判別結果(2000,2001年)と南シナ海で台風に発達した雲システムの周辺場にみられる特徴、気象衛星センター技術報告、第41号、1-14.

宇宙開発事業団/通信総合研究所(2002):宇宙から見た雨、Japan Advance Plan Co., Inc.、76pp.

小倉義光(1997):メソ気象の基礎理論、東京大学出版会、215pp.

河原幹雄(1990): 大規模対流活動の年々変動と季節内変動、気象研究ノート、第 168 号、5-42.

川村宏(2000):人工衛星による海洋観測の時代、測候時報、第67巻特別号、S1-S9.

気象衛星課(1976): 予報と解析への気象衛星資料の利用、気象庁、275pp. (Anderson, et al. (1974)の和訳)

気象衛星センター(1991):雲解析事例集「テーハリングクラウド」、84pp.

気象衛星センター(1983): 気象衛星ひまわりによる雲画像の解析とその利用、271pp.

気象衛星センター(1993): 水蒸気画像 天気の解析と予報のための解釈と応用、262pp. (Weldon, et al. (1991) の和訳)

気象衛星センター(1994):雲解析事例集「Cb クラスターの実況監視」、94pp.

気象衛星センター(1996):気象衛星資料利用テキスト事例編、34pp.

気象衛星センター(2000):気象衛星画像の解析と利用、161pp.

気象衛星センター(2001):雲解析事例集 2000 年の顕著事例(CD).

気象庁予報部(1990): 予報作業指針一台風予報-、150pp.

気象庁予報部(1999):数値予報課報告-数値予報のための衛星データ同化-、別冊第 45 号、132pp.

北畠尚子(2000): 眼の大きくなった台風の構造とその環境、日本気象学会 2000 年度秋季大会講演予稿集、日本気象学会、118.

北畠尚子、別所康太郎、John Knaff (2003): 台風 0219 号の構造、日本気象学会 2003 年度秋季大会講演予稿集、日本気象学会、92.

木場博之(1984): V. F. Dvorak 氏による衛星画像からの熱帯低気圧の強度推定方法の手順とその応用例、気象衛星センター技術報告、第9号、11-21.

木場博之、小佐野慎吾、萩原武士、明石秀平、菊池正(1989): フィリビン諸島を通過する台風の強度決定について、研究時報、41、157-162.

木場博之、萩原武士、小佐野慎吾、明石秀平(1990): 台風の CI 数と中心気圧および最大風速との関係、研究時報、42、59-67.

榊原均(2000):台風-解析と予報 - 「第2章 気象レーダーによる台風の観測と解析」、気象研究ノート、第197 号、77-130.

柴田彰(2000):マイクロ波放射計による地球観測、測候時報、第67巻特別号、S105-S110.

鈴木和史、藤田由紀夫、江上公(1997):気象衛星画像の見方と利用、気象業務支援センター、1-40.

鈴木和史(2000):台風の温帯低気/E化における衛星画像の特徴、気象衛星センター技術報告、第 38 号、21-42.

鈴木達也(1991): 1991 年 10 月の"ひまわり画像" - 相互作用を起こした台風 21 号と 22 号 - 、気象、416、20. 高嶺武、鈴木和史(1998): 2 重眼台風の風速・気圧分布と衛星画像との対応、日本気象学会 1998 年度春季大会講演予稿集、日本気象学会、185.

- 竹内義明(2000): 衛星搭載マイクロ波放射計を用いた海上風速の観測、測候時報、第67巻特別号、S111-S116. 土屋昭夫(1999): 1999 年3月の"ひまわり画像"-熱帯集束帯から中緯度にのびる雲バンド(フレアアップ)ー、気象、505、20-21.
- 士屋昭夫、三河哲也、菊池明弘(2000): 台風へと発達する雲システムの早期判別法について、気象衛星センター技術報告、第38号、13-19.
- 中澤哲夫(1998): ADEOS/NSCAT NASA マイクロ波散乱放射計から見た台風、気象、500、10-11.
- 永沢義嗣(1995):天気図の散歩道、日本気象協会、169pp.
- 日本気象学会編(1998): 気象科学事典、東京書籍、637pp.
- 萩原武士(1984): GMS による台風の位置通報とその精度について、気象衛星センター技術報告、第 10 号、15-18.
- 萩原武士、小佐野慎吾、明石秀平、木場博之、原田知幸(1989): 気象衛星資料による台風の強風半径・暴風半径 の推定、研究時報、41、89-99.
- 広島和弘、中村健治、中澤哲夫、古津年章(1998): 熱帯降雨観測衛星(TRMM) 搭載降雨レーダの初画像、天気、45、3-4.
- 藤田由紀夫、菊池 正、中鉢幸悦、上野忠良、長谷川洋平、田口晴夫(1995):北西太平洋の亜熱帯低気圧とその 強度推定について、気象衛星センター技術報告 第30号、1-31.
- 藤田由紀夫、萩原武士(2000): 台風一解析と予報-「第1章 気象衛星による台風観測」、気象研究ノート、 第197号、1-75.
- 渕田信敏(1983): 台風 8305 号と 8306 号、8307 号に見られた相互運動、気象衛星センター技術報告、第 10 号、1-8.
- 渕田信敏、河野麻由可(2003):静止気象衛星 GMS-5「ひまわり」から見た台風の発生形態と二つの台風の相互作 用運動、気象衛星センター技術報告、第42号、19-33.
- 星野俊介、中澤哲夫(2002): QuikSCAT による海上風の精度の検証、日本気象学会 2002 年度秋季大会講演予稿集、 224.
- 山崎伸一、神田一史、山際龍太郎(1999):近赤外画像を用いた夜間の霧及び下層雲の検出、気象衛星センター技術報告、第37号、63-77.
- Akio TSUCHIYA, Tetsuya MIKAWA, Akihiro KIKUCHI (2001): Method of Distinguishing between Early Stage Cloud Systems that Develop into Tropical Storms and Ones that Do Not, The Geophysical Magazine Series 2, Vol. 4, Nos. 1-4, 49-59.
- Anderson, R. K. (1974):Application of Meteorological Satellite Data in Analysis and Forecasting, ESSA Tech. Rep. NESC, 51.
- Arnold, C.P. (1977):Tropical cyclone cloud and intensity relationships, Atmospheric Science Paper No. 277, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 154pp.
- Browner, S., W. L. Woodley and C. G. Griffith (1977): Diurnal oscillation of the area of cloudiness associated with tropical storms, Mon. Wea. Rev., 856-864.
- Dvorak, V. F. (1975):Tropical cyclone intensity analysis and forecasting from satellite imagery, Mon. Wea. Rev., 103, 420-430.
- Dvorak, V. F. (1984): Tropical cyclone intensity analysis using satellite data, NOAA Technical Report NESDIS 11, 47pp.
- Dvorak & Smigielski (1992): Tropical clouds and cloud systems observed in satellite imagery, Vol. 1, U.S. Department of Commerce.
- Dvorak, V. F. (1992): Tropical clouds and cloud systems observed in satellite imagery, Vol. 2, U. S. Department of Commerce.
- Erickson, C. O. (1967): Some aspects of the development of hurrcane Drothy, Mon. Wea. Rev., 95, 121-130.

- Ferreira, R. N., W. H. Schubert and J. J. Hack, (1995): Dynamical Aspects of Twin Tropical Cyclones Associated with the Madden-Julian Oscillation, J. Atoms. Sci., 53, 929-945.
- Gary P. Ellrod (1992): Potential Applications of GOES-I 3.9 μ m Infrared Imagery, Reprinted from the preprint Volume of the Sixth Conference on Satellite Meteorology and Oceanography, January 5-10, 1992m, Atlanta, Ga. Published by the American Meteorological Society.
- Gray, W. M., (1975): Tropical cyclone genesis, Dept. of Atmos. Sci. Paper No. 323, Colorado State University, Ft. Collins, CO 80523, 121pp.
- Hart, R. H (2003): A cyclone phase space derived from thermal wind and thermal asymmetry, Mon. Wea. Rev., 131, 585-616.
- Hebert, P. J. and Poteat, K. O. (1975): A classification technique for subtropical cyclones, NOAA Tech. Memo., NWS-sr-83.
- Keen, R. A., (1982): The role of cross-equatorial tropical cyclone pairs in the Southern Oscillation, Mon. Wea. Rev., 110, 1405-1416.
- Lander, M. A., (1990): Evolution of the cloud pattern during the formation of tropical cyclone twins symmetrical with respect to the equator, Mon. Wea. Rev., 122, 636-651.
- Maddox. R. A (1980): Mesoscale Convective Complexes, Bull. Amer. Met. Soc., 61, 1374-1387.
- Muramatsu, T. (1983): Diurnal variations of satellitemeasured TBB areal distribution and eye diameter of mature typhoons, J. Meteor. Soc. JAPAN, 77-90.
- Ramage, C. S., (1986):El Nino, Sci. Amer., 254, 76-83.
- Randall J. Alliss, Sethu Raman, Simon W. Chang (1992): Special Sensor Microwave / Imager (SSM/I) Observation of Hurricane Hugo (1989), Monthly Weather Review, Vol. 120, 2723-2737.
- Randall J. Alliss, Glenn D. Sandlin, Simon W. Chang, Sethu Raman (1993): Applications of SSM/I Data in the Analysis of Hurricane Florence (1988), Journal of Applied Meteorology, Vol. 32, 1581-1591.
- Shimamura, M. (1981): The Upper-Troposheric Cold Lows in the Northwestern Pacific as Revealed in the GMS Satellite Data, Geophy. Mag., 39, 119-156.
- Thomas F. Lee, F. Joseph Turk, Kim Richardson (1997): Strarus and Fog Products Using GOES-8-9 3.9 μ m Data, Weather And Forecasting, Vol. 12, 664-677.
- Weldon R. B. and S. J. Holmes (1991): Water Vapor Imagery, NOAA Technical Report NESDIS 57.
- Willoughby, H. E., J. A. Clos and M. G. Shoreibah (1982): Concentric eye walls, Secondary wind maxima, and the evolution of the hurricane vortex, J. Atoms. Sci., 39, 395-411.
- Willoughby, H. E. (1900): Temporal changes in the primary circulation in tropical cyclones, J. Atoms. Sci., 47, 242-264.
- Zehr, R.M. (1992):Tropical Cyclogenesis in the Western North Pacific, NOAA Technical Report NESDIS 61, 181pp.

_		LCV(Low level Cloud Vortex) 53, 72	
索引		LST(Local Standard Time:地方		
・ アルファベット		MCC (Mesoscale Convective Complex		
Aqua	102, 106	:メソスケール対流複合体)	100, 101	
Banding Eye(バンド状眼) 54		MET(Model Expect T)数	50, 59	
BF(Banding Feature)数	56, 64	MTSAT-1R	111, 117	
Cb	111, 116	NOAA(National Oceanic and		
Cb クラスター 2,	16, 53, 72, 100, 118	Administration)	43, 104	
Cbクラスターパターン	53, 74, 75	Organized Cb-Cluster	53, 72, 74, 75	
Cbバンド	2, 22, 120, 122	PT(Pattern T)数	50, 60	
CCC(Central Cold Cover)	22, 30, 51, 53, 72	PT 図	60	
CCC パターン	22	PT 図のハッチ部分	60	
CDO(Central Dense Overcast)	2, 16, 37, 72, 118	QuikSCAT	102	
CDO パターン	2, 53, 74, 81	Ragged Eye	53, 72, 74, 81	
CF(Central Feature)数	56		Meteorological	
Cg	111	Center)	30, 71	
Ci	111, 116	SAREP(気象衛星資料実況通報	式) 85	
CI(Current Intensity)数	16, 51, 60	Sc	111, 114	
Ci ストリーク	13, 113	Sc 化	34, 37, 118	
Cm	111	Shear	50, 53	
Cu	111	SH 型	7	
CSC(Cloud System Center)	1, 9, 16, 37, 118	SPCZ(South Pacific Converg	ence Zone	
Distinct CDO	53, 72, 74, 81	:南太平洋収束帯)	71, 90	
Distinct Large Eye	53, 72, 74, 81	Subtropical cyclone(亜熱帯	低気圧) 42	
Distinct Small Eye	53, 72, 74, 81	SSM/I(Special Sensor Microwave/Imager) 106		
DMSP(Defense Meteorological Satellite		St	111	
Program)衛星	106	STS(Severe Tropical Storm)	16	
DT(Data T)数	50, 53	T数(Tropical number)	1, 16, 50, 60	
Dvorak	1, 50	TC 番号	31	
Dvorak 法	1, 16, 50	TBB(Equivalent Blackbody T	emperature	
EC 型	7	:等価黒体温度)	17, 30, 63, 88	
EIR 画像(Enhanced InfraRed imagery		TD(Tropical Depression:熱帯低気圧) 16,102		
:赤外強調画像)	18, 30, 63, 118	TRMM(Tropical Rainfall Mea	suring Mission	
EIR 法	16, 50	:熱帯降雨観測)衛星	102, 107	
Embedded Center	53	TS(Tropical Storm)	16	
EMBED パターン	53, 55, 59	TUTT(Tropical Upper Tropos	pheric Trough	
EXL(Extratropical Low)	53, 72	:熱帯対流圏上層トラフ)	3, 8, 16	
Eye(眼)パターン	53	T (Typhoon)	16	
Eye wall(眼の壁雲)	23	UCL (Upper Cold Low)	3, 8, 16, 22, 96	
GMS-5	111	UC 型	7	
G0ES-9	111	Unknown	73, 74, 86	
Hybrid cyclone	42	Unorganized Cb-Cluster	53, 72, 74, 75	
Indistinct CDO	53, 72, 74, 81, 122	VIS法	16, 50	
ITCZ(Intertropical Convergence Zone				
:熱帯収束帯)	1, 71, 90, 95			

ア行		最小埋没距離	59
アーククラウド	100	最盛期	17, 23, 53, 72, 118
亜熱帯	16, 42, 88, 95	最低海面気圧	50
亜熱帯低気圧	42	サージ	10, 16, 103
暗域	17, 37, 39, 45, 92, 114, 118	ジェット気流	95, 114
1 分間平均最大風速	41, 51, 63	持続予報	27
雲形	111	湿潤域	17
雲型	111	シヤーパターン	2, 23, 55, 74, 81
雲頂高度	17, 37, 88, 113, 118	上層雲	37, 111, 116, 118, 124, 125
雲量分布図	92, 93	上層寒冷渦	7
衛星風	45	上層寒冷渦近傍型	7
鉛直シヤー	23, 27, 55, 74, 82	上層暖気核	32
大きな眼	57, 68, 74, 81	上層トラフ通過型	13
温帯低気圧	32, 39, 42, 72, 74	上層の発散	17
温低化(温带低気圧化	(2) 23, 32, 37, 118	上層偏東風波動	7
温度風	42	衰弱期	17, 23, 53, 72, 118
		数值予報	27
カ行		スコールライン	100
ガストフロント	100	スパイラル	53
下層雲	111	スパイラル構造	59
下層雲渦	33, 53, 72, 81, 104	スーパーセル	100
下層雲渦パターン	53, 74, 82	盛衰判断	17, 118
下層シャー型	7, 102	積雲	111
かなとこ巻雲	17, 96, 113, 116	赤外強調(EIR)画像	18, 30, 50, 63
寒気核	8, 43, 48, 96	積乱雲	100, 111, 116
寒気核型低気圧性循	環 8,16	切離低気圧	42, 46
乾燥域	40, 114	前線系	33, 37
気象衛星資料実況通	報式(SAREP) 85	前線性	42
季節内変動	. 41	前線性雲バンド	37, 108
季節変化	90, 92, 99	層雲	111
輝度温度(TBB)	22, 30, 112	層状雲	114
強風域半径	108	早期判別法	10, 22
極軌道衛星	43, 49, 102	層積雲	111
霧	111	相当温位	97
雲システムサイズ	85, 86	測定階調	54
雲パターン	1, 53, 72		
クラウドクラスター	1, 7, 16, 101	タ行	
コナ・ストーム	42	ダイアグラム	54
コリオリカ	94	台風雲パラメータ抽品	
混成低気圧	42	対称性	28, 118
コンマ型	56, 64	台風	1, 16
		台風の強度推定	50
サ行		台風の中心位置推定	72
最狭幅	56	台風番号	31, 48
最狭バンド幅	56	タイムラグ	17, 60

太陽高度(角)	23	マ行	
対流雲	88, 111, 114	マイクロ波散乱計	102
対流雲セル	1, 16, 22	マイクロ波探査計	43
対流雲の影	23	マイクロ波放射計	102, 106
対流雲列	33, 75, 118	南太平洋収束带(SPCZ)	71, 90
暖気核	8, 32, 37, 42	眼階調	57
短周期の変動	50	眼の壁雲(Eye wall)	18, 23, 58, 66
地方標準時(LST)	17, 88	メソスケール対流複合体(MCC)	100, 101
中心位置推定	72	メソ対流系	100
中心位置推定精度	85	メソβスケールの下層渦	83
中層雲	37, 111	眼調整	56
低気圧性の曲率	22, 23	眼の直径	57
テーパリングクラウド	100	眼パターン	56, 74, 81
等価黒体温度(TBB)	17, 30	モンスーン	90, 92, 99, 103
トランスバースライン	113	モンスーントラフ	3, 7, 16
		モンスーントラフ型	3, 5
ナ行			
二重眼	66	ヤ行	
日変化	17, 88	雄大積雲	111
熱帯	1, 16, 88	予報作業指針	7, 32, 102
熱帯収束帯(ITCZ)	1, 16, 71, 90, 95		
熱帯低気圧	1, 16, 31, 32, 42, 71	ラ行	
熱帯低気圧番号(TC番号)	31	ライフサイクル	17
		ライフステージ	17, 72
八行			
発生期	22, 53, 72, 118	ワ行	
発生判定	10	湾曲したバンド	50, 74
発達期	17, 22, 53, 72, 118		
ハリケーン	16, 28, 31		
バンド軸	54		
バンド状眼(Banding Eye)	54, 58, 66, 81		
バンドの平均幅	58		
バンドの階調	56		
バンドパターン	2, 53, 74, 81		
非対称性	17, 42		
標準的な発達率	50		
藤原効果	98		
フレアアップ	95		
ベストトラック	18, 30, 85		
偏西風帯	23, 32, 46, 96, 108		
偏東風波動型	3, 5		
暴風域半径	108		
ボーガス	29, 30		
北西太平洋	1, 16, 41		