衛星画像から見た低層乱気流等の発生時の雲の特徴

Cloud Features Suggesting Low Level Wind Shear and Turbulence

伊藤 秀喜^{*}、用貝 敏郎^{*}、今泉 孝男^{*} Hideki Itoh, Toshiroh Yogai and Takao Imaizumi

Abstract

The authors have investigated the Geostationary Meteorological Satellite (GMS) images in order to find out whether low level (lower than 2000 feet high) wind shear (LLWS) and turbulence are accompanied by characteristic cloud features. Our investigation shows moderate to severe LLWS and turbulence are accompanied by some characteristic cloud features, such as convective cloud line, southern edge of major cloud system of depression, wave cloud, cu cloud lines in cold air advection and small cloud vortex. Some characteristic cloud features only appear near some specific airports. It suggests that GMS imagery is helpful in detecting LLWS and turbulence.

1. はじめに

衛星画像が低層(2000 feet 以下)の乱気流及びウィ ンドシァー等(以下乱気流等と呼ぶ)の監視・予測に 有効であるかどうかを明らかにするため、乱気流等の 発生時刻前後の衛星画像の雲に特徴があるかどうかを

衛星画像の着目点	対応すると思われる現象
雲バンド、対流雲列	前線、シァーライン、対流
雲域の縁	風のシァー
対流雲、特に Cb	対流
波状雲	山岳波
小雲渦	小渦
?	海陸風
雲域との相対的位置	総観的状況

表1 衛星画像の着目点

調査した。その際表1に示した点に着目した。調査対 象とした空港は千歳、函館、仙台、新潟、羽田、及び 福岡の6空港である。乱気流等の発生日時については 昭和62年度と昭和63年度の航空気象予報技術検討会資 料及び当該航空気象官署から提供されたものを用いた。 乱気流等の発生記録に強度の記載がないものは弱いも のとして扱った。衛星画像は、主として3時間毎のHR -FAXの画像を用いた。1987年3月以降については、 毎時の画像が取得されているので、1時間毎の WEFAXの画像を補助的に用いた。又一部オリジナル の分解能でラインプリンターに出力した画像も用いた。

2. 低層乱気流等の発生時の各空港に共通な雲の特徴

乱気流等の発生時の雲の特徴には、全ての空港又は いくつかの空港に共通して見られるものと、特定の空 港にのみ見られるものがあった。ここでは全ての空港 又はいくつかの空港に共通して見られた雲の特徴につ いて述べる。代表的な実例を写真1から12に示す。写 真1から7までは低気圧の中心及び前線に対応する雲 域付近、写真8と9は波状雲付近、写真10は筋状雲域、 写真11は寒気場内での太平洋側のCuライン付近、写 真12は小雲渦付近で、それぞれ乱気流等が発生した例 である。

* 気象衛星センター

図1 各空港に共通な乱気流等の発生位置の模式図。 太線は低気圧に伴う雲域を示す。点彩は乱気流等 の発生位置を示す。①は低気圧に伴う雲域の南縁 及び対流雲列、②は波状雲、③は寒気場の対流雲 列、④は寒気場の小雲渦を示す。

乱気流等の発生位置を上記の例に他の例も加えて模 式化したものを図1に示す。図1の太線で囲んだ領域 は発達した低気圧に対応した雲域をパターン化したも のであるが、実際にはこの雲パターンの発達程度はま ちまちであり、また地上天気図で低気圧や前線が解析 されているとは限らない。図1の①は一般的には閉塞 前線及び寒冷前線に対応する位置であり、雲の特徴と しては対流雲列である。ただし①の位置以外にある対 流雲列、例えば寒冷前線に対応する雲バンドの北縁に 対流雲列がある場合(写真4)もこれに含めた。また 低気圧に対応する雲域の北西部の南縁及び南西部の雲 バンドの南縁が明瞭である場合にも①に含めた。②は 波状雲を示し、寒気場で発生する場合が大多数である が、温暖前線付近に発生するものや寒冷前線に対応す る雲バンドから波状雲に変化するものもある。③は寒 気場の対流雲列を示し、日本海側では筋状雲となって いるが、太平側では1本又は数本の対流雲列である。 ④は寒気場に発生した小雲渦を示す。

図1の①(低気圧に対応する雲域の対流雲列または 南縁)では、全ての空港で乱気流等の発生があった。 特に千歳空港では並み以上の乱気流の40%が発生して いた。函館及び新潟でも多かったが、並み以上の乱気 流はそれぞれ1例のみであった。福岡空港や羽田空港 では低気圧に対応する雲域や雲バンドで発生している 乱気流等は多かったが、そのほとんどが弱いものであ った。並み以上の強度のものは羽田空港で4例,福岡 空港で3例発生し、その内①で発生しているものはそ れぞれ2例であった。その外に、低気圧の東又は北東 側で南から伸びる Cb域のすぐ北側で発生していたも のが1例づつあった。弱い乱気流等は、雲パターンそ のものが明瞭でない場合が多く、①での発生と特定で きるものは少なかった。仙台空港では寒冷前線に対応 する対流雲バンドの通過時に発生した弱い乱気流の1 例のみであった。

②(波状雲)での乱気流等の発生は仙台空港で非常 に多く、仙台空港での全乱気流の85%、並みの乱気流 の90%を占めた。羽田空港でも波状雲域周辺での発生 がやや多かった(強の乱気流等2例を含む)。その他の 各空港でも数例の発生があった。

③(寒気場内の対流雲列)での乱気流等の発生は福岡空港で多かったが強度は全て弱いものであった。筋状雲が頻繁にかかる千歳空港、函館空港及び新潟空港ではそれぞれ1例、3例、1例と少なかった。太平洋側の空港では羽田空港で多く、そのうちの2例は強いものであった。仙台空港でも3例の発生があった。

④(小雲渦)では千歳空港で並みの乱気流1例、新 潟空港で弱い乱気流1例の発生があった。

低気圧に伴う雲域の北縁付近や北東部及び雲バンド の北縁付近では千歳空港、函館空港、新潟空港及び福 岡空港で数例づつの発生があったが、各空港によって 様相が異なるので、これらについては3章の各空港毎 の項で述べる。

台風周辺での乱気流等の発生は福岡空港で多く、そ のうち並み以上の強度のものが多かった。羽田空港で も1例の発生があった。これらについては3章の各空 港毎の項で述べるとともに、実例を福岡の項で示す。

3. 各空港毎の乱気流等の発生した雲の特徴

ここでは乱気流等の発生時の雲の特徴について各空 港毎に分けて述べる。2章で各空港に共通する雲の特 徴についての実例は既に示したので、それ以外の代表 的な実例を各空港について2例づつ示す。又各空港毎 に乱気流等の発生位置の模式図を示す。各模式図の中 の数字符号(①~④)は図1で示した各空港に共通な 雲の特徴を示し、英字符号(③~℃)はそれ以外の雲 の特徴を示す。ただし羽田空港及び福岡空港の項での ①については、低気圧に伴う雲域や雲バンド等という 広い雲域を示す。

3.1 千歳空港

千歳における乱気流発生時の雲の特徴を表2に、乱 気流発生位置の模式図を図2に示す。全乱気流17例の うち強の乱気流が1例、並みの乱気流が14例とほとん どが並み以上の強度のものであった。

表2及び図2の① (雲バンドの南縁及び対流雲列付 近) での乱気流発生は7例と最も多かった。② (波状 雲域) では1例のみ発生していた。頻繁に観測される・ ③ (筋状雲) では1例のみの発生と少なかった。その 時の筋状雲は、その走向の直角方向に波状となってお り、この波状であることが乱気流発生時の筋状雲の特 徴である可能性が考えられる。④ (小雲渦) では1例 の乱気流が発生していた。その時の小雲渦は極弱いも のであった。

④(コンマ状雲の厚い雲域の前面の上層雲域)では 4例の乱気流が発生していた。その内の3例は沿海州 南端付近又は日本海中西部の低気圧に対応する発達し たコンマ状雲の厚い雲域の東側の上層雲域(写真13) で発生していた。ここでの乱気流の発生は千歳空港の 特徴と考えられる。これらは3例とも乱気流発生時頃

図2 千歳空港における乱気流等の発生位置の模式図。 ただし☆は強い乱気流、∧は並みの乱気流、∧は 弱い乱気流を示す。それらの後の数字は発生数を 示す。その他の記号等は図1に同じ。

表 2	千歳空港における低層乱気流発生時の特徴
	1986年4月~1987年6月

低層利気流発生時の雪の特徴		低層乱気流の発生数						
		SEV	MOD	LGT	Ē	計		
	対流雲列		2		2	-		
1	フック付近の不明瞭な対流雲列	1			-			
	雲バンドの南縁		3	1	5			
2	波状雲		1			1		
3	筋状雲がその走向の直角方向に波状		1			1		
4	小雲渦		1			1		
(a)	コンマ状雲前面の上層雲域		3	1		4		
	その他		3			3		
	**	1	14	2		17		

①~④及び@は図2の①~④及び@に対応する

の札幌の下層で南南西の強風 (900mb で22~29m / S)が吹いていた。もう1例は関東南岸の低気圧に対応 する発達した厚い雲域の北側の上層雲域で発生してい た(写真14)。 その他の雲域では、弱い冬型の時の空港付近のCu で1例、温暖前線に対応する雲バンドが弱まりながら 波状雲化した雲域の南側の晴天域で1例、晴天域で1 例が発生していた。

3.2 函館空港

函館空港における乱気流等の発生時の雲の特徴を表 3 に、発生位置の模式図を図3に示す。全乱気流等の 31例中並み以上のものは7例と少なかった。

図3 函館空港における乱気流等の発生位置の模式図。 WSはウィンドシアー、RAはラファアー、() は乱気流と同時に観測されたことを示す。 その他の記号等は図2に同じ。

表3及び図3の① (雲バンドの南縁及び対流雲列付 近) での乱気流等の発生は千歳空港と同様に6例と最 も多かったが、並の乱気流は1例と少なく、残りの5 例は弱い乱気流等であった。並の乱気流の例(写真6) はCbバンドの南縁付近で発生していた。②(波状雲 域)では3例の乱気流が発生し、その内1例は並の乱 気流であった。③(筋状雲)では3例の低層乱気流が 発生していた。その内2例は並の低層乱気流であった。

(④)(低気圧に伴う雲域の北東部、北東縁及び北縁付近)では4例の発生があったが、並の低層乱気流は1例のみで残りの3例は弱い乱気流等であった。これらの雲域の発達程度はまちまちであった。並の低層乱気流の例は、あまり組織的でない下層雲域の北東縁で発生していた(写真15)。

⑤ (雲バンド南東約100~200kmの晴天域)で弱い乱 気流等が2例発生していた。©(霧域の明瞭な境界付近) で3例の乱気流等が発生し、その内の強い乱気流の発 生した例では北北東~南南西に伸びる雲バンドの東約 200~300kmで、⑤とⓒの特徴が重なったところで発生 していた(写真16)。霧域の明瞭な境から推定される下 層風のシァーと雲バンドの前面の強い南西風が重要で あると推測される。残りの2例は弱い乱気流であった。 ⑤及びⓒでの乱気流等の発生は函館空港の特徴と考え られる。ただし⑤及び©単独では弱い乱気流等しか発生 していない。

特徴がない雲域又は晴天域での低層乱気流発生は10 例と多かったが、弱いものが多く並の低層乱気流は1 例のみであった。その並の低層乱気流の例では渡島半 島の陸地とその東海上のやや厚い下層雲域と津軽海峡 の晴天域との境界付近で発生していた。

乱気流発生時の筋状雲の特徴

前述したように筋状雲では乱気流が3例(その内2 例は並の乱気流)発生していたが、冬期には筋状雲が 頻繁に発生するので、それだけでは低層乱気流等の指 標とはならない。そこで並の乱気流発生時の筋状雲に 特徴がないかどうか調べた。

1987年12月11日の例(写真10)では、北側の筋状雲 と南側の弱い筋状雲の間の東西に伸びる相対的に太く 活発な対流雲列が南下しながら渡島半島を通過した。 この対流雲列の通過時に乱気流が発生した。古屋 (1989)によると、乱気流発生時頃の空港の地上風は 風向の変動及び風速の変動が大きく、一方レーダー観 測では渡島半島中部に対流性エコーが散在しているが、 線状とは認識されていない。

もう1例の1988年2月7日の例では、日本海側は典 型的な強い筋状雲パターンになっていた。又活発な対 流雲列が渡島半島南東端から東南東に伸びていた。図 4に乱気流の発生時前後の函館及び奥尻島を通る西北 西から東南東の方向(筋状雲の走向の方向)のTBBの 変化を示す。山の風下に当る奥尻島の東南東海上及び 渡島半島の山の風下に当る函館付近でのTBBの変化 を見ると、乱気流発生直前及び直後の17時40分及び18 時40分では奥尻島の風下のTBBがやや高く、又函館 付近はTBBが高く晴天となっている。それ以前の時 刻ではこれらの所のTBBは相対的に低い。このTBB の変化と乱気流が関連している可能性が考えられる。

気象衛星センター 技術報告 第19号 1989年11月

	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				低層乱	気流等の	発生数		
	低層舌	し気流等の発生時の雲の特徴	TUR	BULE	NCE	WIND	LGT	計	
			SEV	MOD	LGT	SHEAK	ĸA		
	対流雲列または	は対流雲バンド		1	4	* 1		5	6
U	雲バンドの南緒	द्र			1			1	
2	波状雲			1	2				3
6	效业费	渡島半島から東南東に活発な筋状雲が伸 びる		1			1		2
3	肋扒芸	北側の弱い筋状雲と南側の極く弱い筋状 雲の境界のやや活発な筋状雲の通過時		1					3
٩	低気圧に伴う	まとまった雲域の北東部、又は北縁			2		1		4
U	_ 雲域	下層雲域の北東縁		1					
b	雲バンドの南東100~200km				1	1			2
0	霧域の明瞭な	雲バンドの東200~300km	1			*1			3
C	境界	霧域の境界の延長上			2				0
	特徴のない雲地	或又は晴天		1	7	* 1	2		10
	計		1	6	19	* 4	4		31

表3 函館空港における低層乱気流の発生時の雲の特徴 1986年7月~1988年8月

*印は turbulence と重複して観測されている事を示す。

①~③及び③~℃は図3の①~③及び③~℃に対応する。

図4 奥尻島及び函館を通る西北西〜東南東方向の TBB の時間変化。函館空港で並みの 乱気流が18時03分に発生した。札幌の高層観測データで TBB と同じ気温を示す高度 を気圧で示した。

3.3 仙台空港

仙台空港における乱気流発生時の雲の特徴を表4に 模式図を図5に示す。鈴木・加藤(1989)によると乱 気流は10月から4月にかけての期間にほとんどが発生 し、又1987年6月から8月には乱気流は全く発生して いない。従って表4及び図5は冬季についてのみの調 査結果だが、ほぼ年間についての統計と見なせる。強 い乱気流の発生はないが、1冬季期間に並みの乱気流 が31例発生しており、他の空港での並み以上の乱気流 等の発生数に比べ非常に多い。

表4及び図5の①(対流雲バンド)で弱い乱気流1 例、③(寒気場のCuライン)で並の乱気流2例と弱い

図5 仙台空港における乱気流等の発生位置の模式図。 記号等は図3に同じ。

気象衛星センター 技術報告 第19号 1989年11月

	4	千層刊 気流発生時	きの雪の性徴	低層乱気流の発生数 (発 生 日 数)								
	1	21官66×4010光工中	すの会の行政		並の低層乱	気流	弱い低層乱気流					
1		対流雲バン)	*						1(1)			
		本作事	日本海筋状雲	7 (5)			10(2)					
2	波状	灰 (八 芸	対流雲バンド が波状雲化		9(6)		1(1)	11(3)				
	雲		コンマ状雲の 頭の南西部	2(1)		99(19)			10(2)			
2,	等	西側波状パタ-	-ン		9 (5)	28(12)		2	10(3)			
2"		山脈に沿う雲			8 (2)			1				
		不 明*			2(1)			2				
3	寒気場の Cu ライン					2 (7)	1(1)					
	特徴なし					1(1)	3(3)					
	合	計				31(15)	21(8)					

表4 仙台空港における低層乱気流発生時の雲の特徴 1987年11月1日~1988年3月31日

注1 ①~③は図5の①~③に対応するもの。

注2 乱気流の発生記録に強度のないものは、備考の内容で強度を分類した。「強い上下動」、「強い下降気流」 及び「6000feet 以下で LIG~MOD」は並の低層乱気流に分類した。又高度が2000feet 以上のものは除 外した。

注3 *印は低層乱気流発生時前後の衛星画像から「山脈に沿う雲」、「西側波状パターン」又は「波状雲」 と推定されるが、低層乱気流の発生時に衛星の観測がなかった例。

注4 弱と並の低層乱気流が同じ日に発生した場合、並の低層乱気流の発生日数とした。

乱気流1例が発生していた。山岳波に関連すると思わ れる波状雲等(②、②'及び②")の雲域で並の乱気流が 28例、弱い乱気流が16例発生し、この雲パターンで全 乱気流の85%、並みの乱気流の90%が発生していた。

波状雲等の雲域で乱気流の大部分が発生していたの で、詳しく見るために波状雲等を次の3つに細分した。 蔵王山より東側に波状雲がある場合を「波状雲」とす る(②、写真8)。蔵王山以西で波状の形状をしてお り、蔵王山より東側に波状雲がない場合を「西側波状 パターン」とする(②'、写真18)。その場合波状のパター ンは不明瞭な場合が多く、又蔵王山の東側以外の太平 洋側に波状雲がある場合が多い。奥羽山脈に沿って厚 い雲がかかり、その直ぐ西側の山形盆地から米沢盆地 付近に晴天域が広がり、蔵王山より東側に波状雲がな い場合を「山脈に沿う雲」とする(②"、写真17)。こ れらの3つの雲の推移は、擾乱通過後冬型になり、「山 脈に沿う雲」、「西側波状パターン」、次に「波状雲」と なる場合が多い。ただし明瞭な「山脈に沿う雲」のパ ターンになることは少ない。

「波状雲」、「西側波状パターン」及び「山脈に沿う 雲」での並の乱気流の発生はそれぞれ9回、9回及び 8回でほぼ同数であった。弱い乱気流は「波状雲」で 多かった。発生日数は「波状雲」で最も多く9日、「西 側波状パターン」で5日、「山脈に沿う雲」で2日であ った。「山脈に沿う雲」での発生日2日の内の1日は、 明瞭な「山脈に沿う雲」の出現時の1987年11月24日12 時39分から18時50分の間に7回の並の乱気流が集中して発生した。

このように仙台空港では波状雲等での乱気流発生は 多いが、東北地方は波状雲が日本で最も頻繁に発生す る地域であり、又波状雲等が現れる継続時間も長い場 合が多い。従って乱気流発生時の波状雲等に特徴がな ければ、乱気流発生の指標としての価値は半減する。 この事については別の機会に述べる。

その他の雲域では4例の乱気流が発生し、その内の 並みの乱気流の1例は日本の南岸の前線に伴う雲域の 中下層域の北縁付近で発生していた。残り3例の弱い 乱気流の発生は、東北地方北部が波状雲でその南側の 晴天域で1例、寒気場内で佐渡島付近の小規模な活発 な対流雲域の前面の晴天域で1例及び東日本が広く晴 天域での1例であった。 生数は24例と少なく、又その内の並み以上の乱気流等 は6例であった。表5及び図6の①(雲バンドの南縁、 雲バンド内及び対流雲列付近)での乱気流等の発生 は11例と最も多かった。そのうちの強い低層乱気流

3.4 新潟空港

新潟空港における乱気流等の発生時の雲の特徴を表 5 に、発生位置の模式図を図 6 に示す。乱気流等の発

図6 新潟空港における乱気流等の発生位置の模式図。 DD はダウンドラフトを示す。その他の記号等は 図3に同じ。

	/正 园	ガダンマンドのそのため	乱気流			WIND	DOWN	=+		
	1匹/冒	乱丸加寺の光生時の喜の村街	SEV	MOD	LGT	SHER	DRAFT		п	I
	対流雲列		1		2	3	1		7	
	雲バンド	佐渡付近を通る対流雲列			2			2	9	11
1	の南縁	佐渡と新潟の間に Cb か				1		1	Э	11
	雲バンド内、佐渡付近を通る対流雲列				1				1	
2	波状雲			1	1					2
3	筋状雲(オープンセル)			1						1
4	小雲渦付近				1					1
a	西北西〜東南東に伸びる雲バンドの北縁			1	2					4
b	関東南岸の小擾乱に伴う雲域の北西縁			1	3					4
	晴天				1					1
	Ē	ł	2	4	13	4	1			24

表5 新潟空港における低層乱気流等の発生時の雲の特徴 1983年4月~1988年8月

①~5及び@bは図6の①~5及び@bに対応する。

は1例で、その他は全て弱いものであった。強い低層 乱気流が発生した例(写真5)では、不活発な雲バン ドの南縁付近で、乱気流発生の1.5時間前に南西から新 潟の沿岸に細い対流雲列が伸びており、乱気流発生の 1.5時間後でもこの対流雲列は弱まったがほぼ同じ位 置にあった。Down draft が発生した例では寒冷前線 に対応する雲バンドの後面の Cb ラインの通過時に発 生していた。雲バンドの南縁及び雲バンド内の下層雲 域で4例の弱い乱気流等が発生していた。そのうち空 港付近に対流雲列又はCb がない3例では、活発な対 流雲列が佐渡島付近にあり、その南西50~100kmで発生 していた。前線はその対流雲列付近に解析されている。 残りの1例では佐渡島と新潟の間に Cb らしき雲があ った。

②(波状雲)では並みの乱気流が1例と弱い乱気流が1例発生していた。③(筋状雲)では並みの乱気流が1例みの発生していた。その時の筋状雲はオープンセル状で、これが乱気流発生時の筋状雲の特徴である可能性が考えられる。④(小雲渦)で弱い乱気流1 例が発生していた。

(西北西~東南東に伸びる厚い雲バンドの北縁) では4例の乱気流が発生していた。そのうち強いもの が1例(写真19)、並みのものが1例であった。この雲 域では他の空港でも乱気流等が発生しているが、新潟 空港での発生が最も顕著である。

⑤(関東南岸の小規 模な擾乱に伴う雲域の北西縁付近)では並みの乱気流 が1例及び弱い乱気流が3例発生していた。並みの乱 気流の例(写真20)では、前線上の関東南岸を東進す る弱い低気圧に対応する上層雲のバルジとその南東側 に積乱雲を持つ雲域があり、その後面に残された下層 雲の北西縁付近で発生した。弱い乱気流の3例は、北 上中の関東南岸の弱い熱帯低気圧に対応する雲域(同 じ日に2例発生した)とその前日の同じ様な雲域(天 気図では解析されていない)の北西縁付近で発生した。 関東南岸の小規模な擾乱に伴う雲域の北西縁付近はそ の擾乱の影響範囲にあり、下層での東よりの風が推定 される。関谷・渡辺(1989)は上記のうちの関東南岸 の低気圧と関東南岸の弱い熱帯低気圧の時の2例を解 析し、地上風は共に東よりの風である事を示し、又乱 気流と「ダシ風」の関連を示唆している。②及び⑤で の乱気流の発生は新潟空港の特徴と考えられる。

その他には、ボッ海湾付近の低気圧に対応する南北 に立った発達したコンマ状雲前面の晴天域で、弱い乱 気流が1例発生していた。

3.5 羽田空港

羽田空港における乱気流等の発生時の雲の特徴を表 6に、発生位置の模式図を図7に示す。3年間に発生 した乱気流等は154例と非常に多いが、そのうちで強い ものは10例、並みのものは7例と並み以上の強度のも のは少ない。

表6及び図7の①(低気圧に伴う雲域及び雲バンド) では36例の発生があった。それらのうち強度が強のも のは3例、並みのものは1例であった。強いウィンド シァーの2例は雲バンドの北縁付近の対流雲列付近 (写真4)及び低気圧中心付近にある南西から伸びる Cb 域のすぐ北側でそれぞれ発生していた。強いダウン ウォシュの例では、南岸付近を南西から北東に伸びる 雲バンドが覆っており、東北地方の太平洋岸のややま とまった雲域から関東に下層雲が伸びているが、可視 画像がないので詳細は不明である。並みの乱気流の例 は雲バンドの中の対流雲列付近で発生したと推測でき る(乱気流発生の2時間前の画像では西南西から東北 東に伸びる雲バンドが九州から東北中部を覆っていた が、関東平野は雲のない隙間になっていた。その隙間 の中に明瞭な対流雲列が西南西から東北東に伸びてい た。乱気流発生の1時間後には可視画像がないので不 確かであるがこの対流雲列は南岸まで南下したようで ある)。その他32例の弱いものがあった。それらは低気 圧に伴う雲域及び雲バンド内で発生したが、多くは明 瞭な雲の特徴は認められなかった。

②(波状雲)では乱気流等が16例発生し、そのうち 強度が強のものが2例、並みのものが1例であった。 強いウィンドシァーの例では富士山付近から東京湾に かけて明瞭な波状雲が見られた(写真9)。その他の15

図7 羽田空港における乱気流等の発生位置の模式図。 DW はダウンウオッシュを示す。その他の記号等 は図3に同じ。

羽田空港における低層乱気流等の発生時の雲の特徴 1984年4月~1987年3月

表 6

逬	뤰乱気流等の発生時の雲の特徴	TURBUL SEV MOI) LGT	WIN SEV A	D SHEAR 10D LGT	*	UP DOWN DRAFT	DOWN WASH	TAIL WIND	MICRO BURST	DOWN BURST	ROUGH AIR	<u>क्रोल</u>
6	低気圧に伴う雲域			1		8							6 (9)
∋	_{雲バンド} 走 W-E 「行 SE-NE	1		1		19		SEV 1					$\begin{array}{ccc} 20 (& 17) \\ 7 (& 7) \end{array}$
8	被状篡付近	1 1	1	Ч		12							16(15)
9	寒気場の W-E Cuライン 走 WSW-ENE 行 WNW-ESE NW-SE					15 11 9 3		1 1 2		1	1		$\begin{array}{ccc} 20(& 19) \\ 11(& 9) \\ 11(& 9) \\ 5(& 1) \end{array}$
	Cb 周辺				1	7						3	11(0)
その他	下層雲域 台風周辺 (の Cu ライン) 晴天域 不明	1 2 2 2	1	-	1	5 25 25			1				9(7) 1(0) 32(18) 2(2)
	±= ↓□	3 5	2	9	2 1	119	m	2	-	1	1	5	154(111)
况:	1 ①~3は図7の①~3に	対応する。										Ē	

例えば、1000Z に TURBULENCE 1010Z に WIND SHEAR を観測した場合、同じ雲バターンで TURBULENCE が1例、WIND SHEAR が1例と言うように数え ている。乱気流等が観測された日数は98日である。 「計」の欄の()内の数字は、地上風解析でシアーラインが解析された例数。 茁2

WIND SHEAR の欄の*印は強度の報告(SEV MOD LGT)がなかった事例である。 迁 3 4 例では伊豆半島から房総半島付近にかけて波状雲があったもので乱気流発生域とは離れている。それらのうちで強い乱気流が発生した時の例を写真21に示す。それらの波状雲はほとんどが冬型のときに発生している。

③ (寒気場の Cb ライン) では47例の乱気流等が発生 していた。その内強いウィンドシァーは 2 例で、 残りの45例は弱い乱気流等であった。強いウィン ドシァーの 2 例の内の 1 例では東京湾を雲頂温度の 比較的低い WNW-ESE 走行の対流雲列が横切り(写 真11)、もう 1 例では東京付近から東に述びる 1 部途切 れた極弱く細い対流雲列があった(写真22)。

Cb 周辺では11例発生していたが並みのウィンドシ ァーが1例で残りは全て弱いものであった。

下層雲域で並みのウィンドシァーが1例と弱い乱 気流等が8例発生していた。その並みのウィンドシァ ーの例については可視画像がないので詳細は不明であ る。その他の弱い乱気流等については雲パターンに特 徴が見られなかった。

台風周辺の Cu ライン付近で発生したと思われる並 みの乱気流が1 例あった。乱気流発生の2 時間前の画 像では日本海中部に台風があり、南西海上から房総半 島に長さ1000km以上の Cu ラインが伸びていた。その 後乱気流発生の4時間後まで衛星の観測がないので詳 細は不明である。

晴天域での乱気流等の発生は32例と多かった。強度が 強のものは3例で残りのものは弱いものであった。強 い3例のうち2例は日本海に筋状雲があって、筋状雲 の走行が西北西-東南東及び南南西-東北東の時に発 生しており、2例の筋状雲の走行は異なっていた。も う1例は日本海の低気圧に対応する雲域前面で、関東 北部の沿岸から南に伸びる下層雲域(下層雲域の西縁 は対流雲列)の後面の晴天域で発生していた。その他 の弱いものの大部分は冬型の気圧配置の時の晴天域で 発生していた。

雲パターン不明の2例の並みの乱気流の内の1例は 乱気流発生時頃の衛星画像がないものである。もう1 例は寒気場内で、乱気流発生の1時間40分前には晴天 だったが、発生の1時間20分後には東京湾を東西に横 切る対流雲列があったものである。

並み以上の強度の乱気流等の発生時の雲の特徴をま とめると、17例の内10例は雲バンド内の対流雲列(2 例)、低気圧の中心付近で南西から伸びる Cb 域のすぐ 北(1例)、波状雲域の風下(1例)、波状雲域の北側 (2例)、寒気場の Cu ライン(2例)、台風に入り込む Cu ライン(1例)及び Cb 周辺(1例)等の特徴ある 雲域で発生していた。その他の7例は冬型時の晴天域 で発生した3例及び画像がない等のため不明な4例で ある。

ここで扱った154例の乱気流等のうち111例は地上風 の解析でシアーラインが解析されている(荒井 (1987)。ここで分類した雲とシアーラインがどのよう に関連しているか、毎時観測がなされている1987年3 月以降のデータについての詳細な解析によって明らか にする必要がある。

3.6 福岡空港

福岡空港における低層乱気流等の発生時の雲の特徴 を表7に、発生位置の模式図を図8に示す。4年間に 発生した全乱気流等の114例中並み以上のものは13例 と少なく、ここで扱った乱気流はほとんどが弱いもの である。

表7及び図8の①(低気圧に対応する雲域の中心付 近又は南西部、東西に伸びる雲バンド内のCb付近、雲 バンドの南縁及び雲バンドの延長上のCuライン)で の乱気流等の発生は36例と最も多かったが、並みの乱 気流等は3例と少なく、弱いものがほとんどであった。 並みの乱気流はテイパリングクラウド(写真7)、不明 瞭な対流雲列、及びコンマ状の雲域の中の南から伸び るCb域のすぐ北側でそれぞれ発生していた。①で発 生した弱い乱気流等については対流雲列等の特徴的な 雲は認められないことが多かった。

②(波状雲)で並みの乱気流が1例発生していた。
 ③(筋状雲)では乱気流等が21例発生していたが全て弱いものであった。

図8 福岡空港における乱気流等の発生位置の模式図。 記号等は図3に同じ。

METEOROLOGICAL SATELLITE CENTER TECHNICAL NOTE No.19 NOVEMBER, 1989

	/rt 🖂	日后达效不改化吐不是不能得	TUR	BULE	NCE	WIND SHEAR			DOWN	<u>₹</u> ∔	
	低眉	乱、気気寺の先生時の景の特徴	SEV	MOD	LGT	SEV	MOD	*	DRAFT	ā	
	低気日	Eに伴う雲域の中心付近又は南西部		3	4			17		24	
	東西に	(伸びる雲バンド内の Cb 付近						5		5	26
Û	東西に伸びる雲バンドの南縁付近							2		2	30
	雲バンドの延長上の Cu ライン				1			4		5	
2	波状雲			1							1
3	筋状雲				4			17			21
(a)	東西に	z伸びる雲バンドの北縁		1				3			
Ъ	雲バン	/ドに南から入り込む Cu ライン						2			2
©	低気E	Eに対応する雲域の東部又は南東部			1			10			11
	孤立した Cb 付近		1		1	1	1	7			11
		台風を取り囲む Cb 域の東縁		1						1	
	台風	台風周辺の対流雲列	1	2				2		5	11
		台風周辺の Cu 又は晴天域			1	1		3		5	
	特徴な	rl			6			11	1		18
		≣∔ ≣∔	2	8	18	2	1	84	1	114	

表7 福岡空港における低層乱気流等の発生時の雲の特徴 1984年9月~1988年8月

注1 ①~3及び@~Cは図8の①~3及び@~Cに対応する。

注 2 乱気流等の報告で高度が2000FT 以上のもの、1000~7000FT のようなもの及び高度がないものは除外した。

注3 乱気流等のデータは可視画像のある08:00~16:001のみを対象とした。ただし、孤立した Cb は IR 画像だ けで判断がつくので、全て対象にした(1985年1例、1986年3例)。

注 4 表中の WIND SHEAR には DOWN WIND SHEAR 及び TAIL WIND SHEAR を含めた。*は強度の 報告がなかったものを示す。

④ (東西に伸びる雲バンドの北縁付近)では4例の 発生があり、その内の1例は並みの乱気流で、残りの 3例は弱いウィンドシァーであった。並みの乱気流の 例では薄い雲バンドの北縁付近で発生しており、特徴 的ではなかった。⑤(雲バンドに南西から入り込む Cu ライン)では2例の弱いウィンドシァーが発生してい た。①(低気圧に伴う雲域の東部又は南東部)での発 生も11例と少なくなかったが、全て弱いものであった。 孤立した Cb 周辺では低層乱気流等が11例発生してい た。そのうち強い低層乱気流が1例、強いウィンドシ ァーが1例、並みのウィンドシァーが1例、及び弱い 乱気流等が8例であった。 台風周辺での乱気流等の発生は11例であった。その 内強いもの2例、及び並みのもの3例で、並み以上の 強度のものが多かった。強い乱気流の例は台風の南東 象限の対流雲列付近(写真23)で発生していた。強い ウィンドシァーの例(写真24)では台風の北側に曲線 状に飛び飛びに並んだCbの北約20kmの晴天域で発生 していた。この飛び飛びに並んだCbが強いウィンド シァーに関連しているように見える。並みの乱気流は 台風を取り囲む活発な対流雲域の東縁付近で発生して いた。

そのほか特徴のない雲域又は晴天域で18例の低層乱 気流等の発生があったが、全て弱いものであった。

並み以上の強度の乱気流等の発生時の雲の特徴をま とめると、12例の内9例はテイパリングクラウド(1 例)、南から伸びる Cb 域のすぐ北(1例)、波状雲域(1 例)、台風を取り囲む Cb 域の縁(1例)、台風周辺の対 流雲列(3例)及び孤立した Cb 周辺(2例)等の特徴 ある雲域で発生していた。その他の3例は雲バンド内 の不明瞭な対流雲列(1例)、台風の北側に曲線上に並 んだ Cb の北西の晴天域(1例)および東西に伸びる雲 バンドの北縁付近(1例)で発生していた。

4. まとめ

低層乱気流がどのような雲域で発生しているかを調 べた。その結果並み以上の強度のものについては特徴 ある雲域で発生している場合が多かった。それらは対 流雲列、低気圧に伴う雲域の南縁、波状雲、筋状雲及 び小雲渦等であった。千歳、函館、及び新潟の各空港 では、乱気流等の発生時の雲の特徴がその空港に固有 なもの又は顕著に見られるものがあった。それらは、 千歳空港では発達したコンマ状雲の東側の上層雲域、 函館空港では霧域の明瞭な境界付近及び雲バンドの前 面100km~300km、新潟空港では西北西から東南東に伸 びる雲バンドの北縁及び関東南岸の小規模な擾乱に対 応する雲域の北西縁等であった。羽田空港では衛星画 像から情報の得られない晴天域で全乱気流等の20%が 発生していた。

以上のように各空港について低層乱気流等の発生時 の雲の特徴がある程度明らかになった。従って低層乱 気流等の監視及び予測の1つの資料として衛星画像は 有効であると言える。ただし例数が少ないこと、1987 年3月以前の乱気流等については衛星観測が3時間毎 であるために低層乱気流等の発生時刻前後の詳細な解 析がなされていないこと、又例えば頻繁にかかる筋状 雲での乱気流等の発生が数例しかないこと等から、ここで分類した雲の特徴には、低層乱気流等と関係のないものが含まれている可能性もある。今後例数を増やすと共に詳細な解析(例えばCuラインとシャーラインとの関係等)をすることによって低層乱気流等と雲の特徴との関係をより明確にする必要がある。

5.謝辞

千歳、函館、新潟、仙台、羽田及び福岡の各航空気 象官署から乱気流等の観測データを提供して頂いた。 気象衛星センターの萩原武士解析課長、木場博之調査 官、麻生正調査官から適切な助言を頂いた。深く感謝 します。

参考文献

- 荒井 浄(1988):低層乱気流等・ウィンドシャー。昭 和62年度航空気象予報技術検討会資料、187-202
- 鈴木、加藤(1989):低層乱気流等・ウィンドシャー予 測の可能性の検討。昭和63年度航空気象予報技術検 討会資料、209-213
- 関谷 亨、渡辺文弥(1989):低層乱気流等・ウィンベ シャーについて。昭和63年度航空気象予報技術検討 会資料、258-260
- 古屋勝美(1989):低層乱気流等・ウィンドシャーについて。昭和63年度航空気象予報技術検討会資料、201-206

写真1 1987年5月3日11時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類はフック付近の対流雲列(低気圧の中心付近)。

画像の観測時刻は日本付近の撮影時刻を示す。千歳空港で11時50分に強の乱気流が発生した。地 上天気図では低気圧が発達しながら北北東ないし北東進し,09時には秋田付近、15時には浦河付近 を通過した。写真では、この低気圧に対応する雲域のフックが渡島半島のすぐ西海上にあり、不明 瞭だが対流雲列が東北の日本海側から北海道南部に伸びている。この対流雲列付近で乱気流が発生 した。

写真2 1987年1月8日08時40分の可視画像(左側)と14時40分の可視画像(右側)。雲の特徴の分類は 雲バンドの南縁(閉塞前線)

千歳空港で09時28分に並みの乱気流が発生した。地上天気図では09時に日本海北部に低気圧があ り、低気圧から閉塞前線が三陸沿岸の閉塞点に伸びている。15時には閉塞点は根室付近で低気圧と して解析されている。写真の閉塞前線に対応する厚いバンドの南縁の移動を外挿すると、この厚い 雲バンドの南縁付近の通過時に乱気流が発生した。尚11時40分には衛星観測がなされていない。

写真3 1987年5月13日8時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は対流雲列(寒 冷前線)

千歳空港で10時00分に並みの乱気流が発生した。地上天気図ではオホーツク海北部にある低気圧 から伸びる寒冷前線が09時頃に北海道南部にかかっている。写真では、この寒冷前線に対応する雲 パンドの南縁に対流雲列があり、ゆっくり東進している。この対流雲列付近で乱気流が発生した。

写真 4 1986年10月22日11時40分可視画像(左側)と赤外画像(右側)。雲の特徴の分類は対流雲列(寒 冷前線)

羽田空港で10時35分に強いウィンドシャーが発生した。09時の地上天気図では青森県の東海上に 発達中の低気圧があり、低気圧から伸びる寒冷前線は関東付近を通り奄見大島付近に伸び、東進し ている。写真では活発な対流雲で構成されている雲バンドが関東南岸を西南西から北東に伸びてい る。この雲バンドの北縁付近の伊豆半島南西海上から伊豆半島南端を通り東京湾付近にかけて活発 な対流雲列がある。さらに千葉市付近から北東に対流雲列が伸びており、内陸では不活発だが海上 では雲頂温度が低く活発である。写真の3時間前の画像でも不明瞭な対流雲列が関東平野に見られ るので、この対流雲列付近でウィンドシァーが発生したと推定できる。

写真 5 1987年 2 月23日08時40分の可視画像 (左側) と赤外画像 (右側)。雲の特徴の分類は対流雲列 (寒 冷前線)

新潟空港で10時15分に強の乱気流が発生した。9時の地上天気図では渡島半島西海上に低気圧が 解析されているが前線は解析されていない。写真では日本海北部に雲渦がありその前面の北海道か ら佐渡付近に前線性の雲バンドが伸びている。この雲バンドの南西端の富山湾から新潟市付近に対 流雲列が伸びている。3時間後の衛星画像でもこの対流雲列は弱まったがほぼ同じ位置に存在して いる。この対流雲列付近で乱気流が発生した。

写真 6 1988年 8 月26日08時40分の可視画像 (左側) と赤外画像 (右側)。雲の特徴の分類は対流雲列 (停 滞前線)

函館空港で8時50分に並みの乱気流が発生した。09時の地上天気図では能登半島付近から北北東 にのびる停滞前線が解析されている。写真では、この前線に対応して Cb バンドがあり、ゆっくり東 進している。乱気流はこの Cb バンド南縁付近で発生した。

写真7 1986年7月15日08時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は対流雲列(停滞前線)

福岡空港で09時00分に並みの乱気流が発生した。09時の地上天気図では低気圧が鳥取の北の日本 海南部にあり、停滞前線が低気圧から隠岐島付近、対馬付近を通り済州島の北に伸びている。写真 では九州北部の西海上からティパリング状の非常に活発な積乱雲が瀬戸内海に伸びている。乱気流 はこのティパリングクラウド付近で発生した。

写真8 1987年11月25日11時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は波状雲。 仙台空港で09時00分から12時55分の間に低層でラフエアー、高度3000~5000フィートで並みの乱 気流、及び高度6000フィート以下で並み以下の乱気流が発生した。又17時56分から18時03分の間に 並みの低層乱気流及び7000フィート以下で弱い乱気流が発生した。衛星画像では前日の日本海の活 発な筋状雲が次第に弱まり、又東北地方にかかる雲は「山脈に沿う雲」(写真17)から典型的な「波 状雲」に変化した。この波状雲は日中持続した。典型的な波状雲域で高度7000フィート以下の乱気 流が多発した。

写真9 1984年12月18日08時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は波状雲。 羽田空港で08時45分に強いウィンドシァーが発生した。9時の地上天気図では紀伊半島に低気圧 があって温暖前線が関東南岸に解析されている。写真ではこれらの低気圧に対応して関東平野を除 き東北地方から西日本にかけて厚い雲域に覆われている。関東平野は晴天で関東南岸の雲頂温度の 低い雲は上層雲で、その下に下層雲が散在している。その中で富士山付近から東京湾にかけて明瞭 な波状雲が見られる。強いウィンドシァーはこの波状雲付近で発生した。尚この波状雲は可視画像 のない05時40分の観測では存在が不明で、11時40分の観測では消滅している。

写真10 1987年12月11日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は筋状雲。 函館空港で15時57分に並みの乱気流が発生した。写真では、オホーツク海中部の低気圧に対応す る雲域の後面にコンマ型雲とみられる雲域がオホーツク海南部にあって東進している。この雲域の 通過後北海道の西海上の日本海に筋状雲が発生した。写真では内浦湾から西に伸びている相対的に 太い対流雲列がある。この相対的に太い対流雲列の南側では筋状雲は弱い。1時間毎の画像でこの 対流雲列を追跡すると、この対流雲列は南下しており、乱気流発生時頃に函館空港にかかっていた。 尚レーダー観測では対流性エコーが渡島半島に散在しているが、線状構造とは認識されていない。

気象衛星センター 技術報告 第19号 1989年11月

写真11 1985年2月22日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は寒気場の対 流雲列。

羽田空港で14時17分に強いウィンドシァーが発生した。写真では、日本周辺は強い典型的な筋状 雲となっており、東北から近畿地方にかけて雲頂温度が低く活発である。太平洋側にも対流雲列が あり、その内のやや活発なものが東京湾北部を横切っている。写真に示した時間の前後3時間の観 測でもこの対流雲列はあるが、写真に示した時間のものが最も明瞭である。この対流雲列付近で強 いウィンドシァーが発生した。

写真12 1987年3月27日08時40分の可視画像(左側)と11時40分の可視画像(右側)。雲の特徴の分類は 小雲渦。

千歳空港で10時15分に並みの乱気流が発生した。写真では、北海道西の日本海に極弱い筋状雲があり、その中で08時40分の画像では渡島半島のすぐ西海上に、11時40分の画像では石狩湾付近に下層雲の小雲渦がある。この小雲渦周辺で乱気流が発生した。

写真13 1986年5月14日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類はコンマ状雲 前面の上層雲域。

千歳空港で14時58分に並みの乱気流が発生した。15時の地上天気図では沿海州南端付近に発達した低気圧がある。写真ではこの低気圧に対応して明瞭な発達したコンマ状の厚い雲域がある。乱気流はこの厚い雲域の東側の上層雲域で発生した。

写真14 1987年6月20日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類はコンマ状雲 前面の上層雲域。

千歳空港で15時40分に並みの乱気流が発生した。15時の地上天気図では日本海南西部に低気圧及 び関東南岸に北東進している発達中の低気圧が解析されている。写真ではこれらの低気圧に対応し て日本海南西部に下層雲の雲渦、関東南岸にフックがあり、それらの前面に厚い雲域が広がってい る。乱気流はこの厚い雲域の北側の上層雲域で発生した。可視画像で千歳付近及びその南海上の下 層雲は層雲又は霧である。

写真15 1988年7月17日08時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は擾乱に伴う 下層雲域の北東縁

函館空港で8時56分に並みの乱気流が発生した。09時の地上天気図では能登半島の北西海上及び 関東の南海上に低気圧が解析されている。写真では、これらの低気圧に対応して2つの雲渦が見ら れる。日本海の雲渦前面の東北地方には、積雲を含む下層雲域が拡がっている。この雲域の北東の 縁は津軽海峡付近にある。レーダー観則では青森県に散在するCuが東西に伸びている。乱気流はあ まり特徴的ではない下層雲域の北東縁付近で発生した。尚40N以北の薄い雲域は層雲または霧であ る。

写真16 1988年5月1日14時40分の可視画像(左側)と17時40分の赤外画像(右側)。雲の特徴の分類は 霧域の明瞭な境界

函館空港で17時25分に強い乱気流が発生した。写真では、寒冷前線に対応して沿海州から南南西 に雲バンドが伸びており、東進している。14時40分の可視画像では、この雲バンド前面に霧又は層 雲が広がっており、その明瞭な東縁が稚内から津軽海峡にある。17時40分の赤外画像では、雲バン ド前面の北海道から東北地方の日本海沿岸に上層雲がかかって霧又は層雲は不明である。毎時の可 視画像によると、霧又は層雲域に上層雲が重なり又日没の為不明瞭であるが、霧又は層雲が持続し ており、極ゆっくり北東進していると推定される。乱気流は寒冷前線に対応する雲バンドの東側 200~300㎞の霧又は層雲域の明瞭な縁付近で発生したと推定される。

写真17 1987年11月24日11時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は「山脈に沿う雲」

仙台空港で12時39分から13時50分の間に3回、17時58分から18時50分の間に4回の並みの乱気流 が発生した。15時の地上天気図では東進しながら急激に発達した低気圧がエトロフ島付近にあって、 寒冷前線は日本の東海上に解析されている。衛星画像では寒冷前線に伴う対流雲バンドの通過後日 本海に筋状雲が発生し、24日日中は強い状態が続いた。奥羽山脈に沿って雲がかかり山脈の両側が 晴天域となる「山脈に沿う雲」は9時頃から明瞭になり21時頃まで続いた。この「山脈に沿う雲」 で乱気流が多発した。

写真18 1987年11月22日11時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は「西側波状 雲パターン」

仙台空港で11時37分から13時55分の間に並みの乱気流が4回発生した。衛星画像では寒冷前線に 伴う雲バンドの通過後日本海には弱い筋状雲が発生した。03時頃から蔵王付近には不明瞭な「山脈 に沿う雲」が形成され、11時頃には「山脈に沿う雲」から太平洋側は「波状雲」に変化したが、宮 城県付近には波状雲はない。日本海側でも不明瞭ながら波状になっている(「西側波状雲パター ン」)。このような状態は日中持続した。この「西側波状雲パターン」で並みの乱気流が多発した。

写真19 1983年4月28日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は雲パンドの 北縁

新潟空港で14時15分に強の乱気流が発生した。9時の地上天気図では朝鮮半島の南西端の沿岸付 近にキンクを持つ前線が東シナ海北部から中国地方西海上に解析されている。その後このキンクは 東北東進し21時には日本海に低気圧として解析されている。写真では低気圧に対応する雲渦が朝鮮 半島南東部の沿岸にあり、前線性の雲バンドが中部、関東地方を通って日本のはるか東海上の低気 圧に対応する雲渦に連なっている。乱気流はこの厚い雲バンドの北縁付近で発生した。尚東北地方 南部の雲は中上層雲である。

写真20 1987年8月23日11時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は小擾乱に伴う雲域の北西縁

新潟空港で12時05分に並みの乱気流が発生した。9時の地上天気図では東西に伸びる前線上を東 進する低気圧が静岡付近に解析されている。写真では低気圧に対応して関東付近の上層雲のバルジ があり、関東南岸の活発な対流雲とともに東進している。この上層雲のバルジの後面の東北南部及 び北陸地方に下層雲が残っている。乱気流はこの下層雲域の北縁付近で発生した。 METEOROLOGICAL SATELLITE CENTER TECHNICAL NOTE No. 19 NOVEMBER, 1989

写真21 1985年11月23日11時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は波状雲周辺。

羽田空港で11時00分に強い乱気流が発生した。写真では寒冷前線に対応して40N147E付近から九 州の東岸にかけてあまり組織的ではない下層雲が伸びている。その後面の伊豆大島の東側に波状雲 があり、相模湾にも波状雲の崩れたような雲がある。後者の雲は08時40分の画像では波状であった。 これらの波状雲が乱気流と関連している可能性が考えられる。

写真22 1985年1月16日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は寒気場の対 流雲列。

羽田空港で15時02分に強いウィンドシァーが発生した。写真では発達した低気圧に対応する明瞭 な雲渦が稚内の西海上にあり、日本海は強い典型的な筋状雲となっている。東京付近から東海上に 伸びる一部途切れている細く弱い対流雲列がみられる。11時40分の画像ではこの対流雲列はなく17 時40分の観測では可視画像がないので不明である。この細い対流雲列が強いウィンドシァーと関連 している可能性が考えられる。

気象衛星センター 技術報告 第19号 1989年11月

写真23 1986年8月28日14時40分の可視画像(左側)と赤外画像(右側)。雲の特徴の分類は台風周辺の 対流雲列。

福岡空港で14時25分に並みの乱気流が発生した。写真では台風の雲渦が朝鮮半島西岸にあり、対 流雲列が九州南西海上から福岡付近を通り台風の雲域に入り込んでいる。11時40分の画像ではこの 対流雲列は対馬付近にあったもので、乱気流はこの対流雲列の通過時に発生した。

写真24 1985年8月6日14時40分の可視画像(左側)と17時40分赤外画像(右側)。雲の特徴の分類は台 風周辺の晴天域(Cb列の北西)。

福岡空港で16時08分に強いウィンドシァーが発生した。写真では台風の眼が奄見大島の東北東約300kmに見られる。17時40分の画像では福岡市の南約20kmに積乱雲があり、ここから鳥取付近までの線上に積乱雲が点在している。14時40分の画像では九州、中国及び四国地方には積雲が散在している程度で、17時40分までの間に急激に発達した。福岡空港は上記積乱雲から離れており、ウィンドシァーがこの積乱雲と関連するか不明である。