気象衛星資料による台風の中心位置から200km以内でのウィンドプロ ファイルの推定

An Estimation of Surface Wind Profile within the Range of 200km from a Typhoon Center Using GMS Images.

中鉢 幸悦^{*} Koetsu CHUBACHI

Abstruct

In this report, we represent a technique to estimate surface wind profile to the point 200km from a typhoon center. This technique uses typhoon cloud parameters extracted from GMS images such as "eye size", "CDO size", "cloud system size" etc.. A radius at which the maximum wind speed is measured (hereafter called Rm) is estimated by regression analysis between Rm (700mb) measured by aircraft and cloud parameters. In order to derive regression equations, the typhoons were classified by the cloud patterns into three categories, i.e EYE-pattern, CDO-pattern and OTHERS. In case of EYE-pattern, a well-defined relationship between measured Rm and estimated Rm is obtained with correlation coefficient of 0.712 and RMSE of 0.17°1at.. However in case of CDO-pattern and OTHERS, much less relationships are obtained. These results are acceptable because high correlation, as well known, exist between Rm and "eye size".

When a typhoon reaches mature stage, it is assumable that the 700mb Rm is very close to surface Rm, and V at Rm (i.e. maximum wind speed) is able to obtain in from CI number by Dvorak technique, then we can delienate a surface wind profile around typhoon center by using a following equation,

$V \cdot r^{x} = Const.$

Assuming x as 0.6, we compare the calculated surface wind profile with sea surface wind distribution measured by aircraft (subjectively estimated by meteorologist) and wind distribution of flight level (700mb).

Results show that this technique makes a good estimation when a typhoon has an eye.

1. はじめに

台風周辺の風速分布(台風の規模)は、台風の位置、 強度(中心気圧)と並んで重要な情報である。気象衛 星センターでは、15分間隔の画像によって、台風周辺 の下層風と上層風を一日一回算出しているが、台風の 中心から200km以内では、厚い対流雲とそこから吹き出 す上層雲に阻まれて下層雲の算出は非常に困難である (内田、1988)。また、台風雲パラメータ(萩原他、1989) を抽出して回帰式により暴風域、強風域の大きさの推 定を行っているが、やはり中心に近い領域での風速分 布を推定するには不十分である。 こうした理由から中心から200km以内での風速分布 曲線(以下 wind profile とする)の推定を試みた。

wind profile を得るためには、①中心付近の最大風 速、②中心から最大風速の出現位置までの距離(以下 Rm とする)、③ Rm から200kmまでの風速の減衰率を 知る必要がある。①は Dvorak 法で得られる CI 数か ら求めることが可能であり(木場、1990)、また③は後 で述べるように角運動量保存の式で求めることができ る。従って、②の Rm が推定できれば wind profile が 推定できることになる。

この調査では、台風雲パラメータを使って Rm の重 回帰分析を行った。また、その結果をもとに中心から

* 気象衛星センター解析課

200km以内の地上(海上)の wind profile を求め、飛行 機観測から得られた地上(海上)風及び700mb高度の 風速分布と比較検討した。

2. Rm を推定するための重回帰式の作成

2.1 重回帰分析に用いた資料

用いた資料は、1980~1985年の6年間の00、06UTC の台風雲パラメータと気象庁が最終的に決めたベスト トラックから得られた中心気圧及び米軍(JTWC:合 同台風警報センター)が行った飛行機による台風観測 データ(RECO)である。RECOについては、00、06UTC のそれぞれ前後3時間以内の観測を00、06UTCの観 測と見なした。この結果、衛星の観測時刻と飛行機の それは最大3時間のズレが生じることになるが、この 程度の時間差では台風の構造は大きく変化しないと考 えてこの時間差は無視した。

この条件で得られた資料数は、105個の台風について 373組となった。また、検証用データとして、同様の条 件で1986年の24個の台風について108組のデータを別 に用意した。目的変数 Rm は、飛行高度(700mb)の Rm を用いた。これは、飛行機観測では、地上の Rm が 観測されないためである。700mbと地上 Rm の差は、 台風がある程度発達した場合には小さいので(山岬、 1983)、無視できると考えた。説明変数としては、台風 雲パラメータと中心気圧を用いた。Table.1に採用し た説明変数を示した。ただし、説明変数の選択に際し ては各変数の相関マトリックスと Rm に対するそれ ぞれのパラメータの関係を示す散布図を作成し、その 相関の有無と分布状況から線形的な関係にある変数の みを説明変数とした。また、台風雲パラメータの中に は、眼の明瞭度、上陸の有無といった非計量データも ある。こうしたデータについては、初めは層別因子と して回帰式に取り入れることを試みた。しかし、従属 資料としての相関はかなり上がるものの、結局データ を細分化してしまい、統計値の危険率が大きくなり、 有意性が失われてしまった(独立資料の検証では、ほ とんど相関がなくなってしまう)。このことから、非計 量データは除外し、計量データのみを取り扱った。

2. 2 雲パターンによる層別化

Rm は、台風の強度(最大風速、中心気圧)と相関が あることが知られている(山岬、1983)。重回帰分析に よって Rm を求める際には、台風の強度によって層別

Table 1	Predictors	for t	he n	nultiple	regression
analysis of	Rm. No.	1-19	are	the typł	noon cloud
parameters	s extracted	from	GMS	S images	3.

No.	Predictor	
1	EYE-CRCL	Circularity of eye.
2	EYEMX	Major axis of eye.
3	EYEMN	Minor axis of eye.
4	EYEAV	Average of major axis and minor axis.
5	CDO-CRCL	Circularity of CDO.
6	CDOMX	Major axis of CDO.
7	CDOMN	Minor axis of CDO.
8	CDOAV	Average of major axis and minor axis.
9	SYS-CRCL	Circularity of cloud system.
10	SYSMX	Major axis of cloud system.
11	SYSMN	Minor axis of clould system.
12	SYSAV	Average of major axis and minor axis.
13	CU-N	Northern convection cloud size.
14	CU-E	Estern convection cloud size.
15	CU-S	Southern convection cloud size.
16	CU-W	Western convection cloud size.
17	CU-AV	Average of convection cloud size.
18	BAND	Distance to frontal cloud band.
19	ROTAT	Rotation of cloud band.
20	LATS	Location (latitude) of typhoon center.
21	PRES	Minimum sea level pressure.

化しておくことが有効と考えられる。一方、台風の雲 パターンは台風の強度によって変化することもよく知 られており、特に眼の有無、CDOの有無は、台風の強 度を示す重要な指標として利用されている。そこで台 風の強度で層別化する代わりに、ここでは雲パターン で層別化した。また、Table.1に示した台風雲パラメー タの中には、雲パターンに特有の変数がいくつかあり、 眼に関するパラメータ、CDOに関するパラメータ、そ れ以外のパラメータとほぼ3種類に分類される。この ことから、眼の有無、CDOの有無で層別化すること が、適当であると考え、次の3つのカテゴリーに分類 した。

 ① EYE パターン(眼に関するパラメータを有する 雪パターン)説明変数Na1~21を使用
 ② CDO パターン(眼に関するパラメータを有しな い雲パターン)説明変数Na 5 ~21を使用 ③その他のパターン(CDOを持たない雲パターン) 説明変数Na 9 ~21を使用

2.3 重回帰分析の方法

重回帰分析は、変数増加法によって行い、残差平方 和の減少に最も寄与するような説明変数を一つずつ加 えていきながら、F検定で予測式の有効性を検定して 最大6個までの偏回帰係数を求めた。したがって重回 帰式によっては、説明変数の数が6個より少ない場合 も出てくる。

2. 4 重回帰式とその特徴

Table.2に重回帰式の偏回帰係数及び推定値と観測 値の重相関係数を、また、Fig.1a、1b、1cにそれぞれ のカテゴリーにおける Rmの推定値と観測値の散布 図を示した。

なお、Rm と説明変数の関係を見るために比較的相 関の高い例を Fig.2、Fig.3に示した。Fig.2は Rm と 眼の長径を1/2にした半径の散布図であり、Fig.3は EYE パターンにおける中心気圧と Rm の関係を示し た散布図である。これらの図、表から次のような特徴 を挙げることができる。

- (1) EYEパターンでは、眼の長径(または直径)が最 も寄与率が高い。Fig.2によれば、Rmは眼の半径の やや外側に分布する傾向があり、眼の半径が大きく なると Rm も広がることがわかる。
- (2) EYE、CDOパターンでは共通した変数として中心気圧が挙げられる。なお、風速との関係も見るためにFig.4には、中心付近の最大風速(700mb)とRmの関係を示した。Rmは、最大風速が強まるほど、或いは中心気圧が深まるほど中心寄りに分布する傾向が見られる。このことから説明変数に700mbの最大風速を加えることは、かなり有効であると考えられるが、現在のところ衛星データから700mbの最大風速を推定する方法はない。しかし中心付近の気圧分布と風速分布は、ほぼ対応することが知られているので、回帰式による推定精度は大きく変わらないと考える。
- (3) EYE パターンでは、上記の変数のほか、CDO の短 径と長径の平均、対流雲域の大きさが、採用されて いる。
- (4) CDO パターンでは、CDO の長径、気圧、対流雲域の大きさ等が採用されたが、EYE パターンの重回帰

		1	2	3	4	5	6	5	Const.
	Predictor	EYEMX	PRES	CDOAV	CU-S	CU-E			
EYE pattern	Coef.	0.362	0.355	1.150	0.709	-0.640			-330.82
	Cor.coef.	0.692	0.715	0.733	0.744	0.757			
						Cases 8	88]	RMSI	E 0.17deg
	Predictor	CDOMX	PRES	CU-AV	LATS	CDOAV	BAN	1D	
CDO pattern	Coef.	-0.494	0.539	0.745	0.103	2.169	0.56	4	-552.86
	Cor. coef.	0.252	0.429	0.473	0.507	0.522	0.53	2	
						Cases 1	79	RMS	E0.21deg
	Predictor	CU-S	ROTAL	CU-W	LATS	CU-E			
OTHERS	Coef.	-0.494	0.539	0.745	0.103	2.169			-20.23
	Cor.coef.	0.556	0.611	0.622	0.632	0.645			
						Cases 10	06]	RMSI	E 0.39deg

Tble 2 Multiple regression equation and correlation coefficient between estimated Rm and measured Rm in the case of dependent sample.

Fig.1a Scatter diagram of Rm estimated by regression equation vs Rm measured by aircraft in the case of EYE pattern for 1980-85 (dependent sample). Numeral in Fig. show frequency.

Fig.1b Same as Fig.1a except for case of CDO pattern.

Fig.1c Same as Fig.1a except for case of OTHERS.

Fig.3 Same as Fig.2 except for minimum sea level pressure.

Fig.4 Same as Fig.2 except for maximum tangential wind speed.

式に比べると、かなり低い相関となった。 (5) その他の雲パターンでは、対流雲域の大きさ、雲 バンドの回転数、中心位置の緯度が採用された。最 終的な相関係数は0.65となり、CDOパターンと同様 に EYE パターンに比べて低い。

2.5 独立資料による検証

以上の結果から得られた重回帰式に1986年のデータ (108組)を代入して推定値を求め、観測値と比較し た。なお、説明変数は全て衛星資料から得たデータに 統一するために、ここでは中心気圧は Dvorak 法によ る CI 数から換算した値を使用した。Table.3にその結 果を示す。また、Fig.5a、5b、5c に散布図を示した。 Table.3から次のような特徴を挙げることができる。

Table 3 Correlation coefficient and RMSE between estimated Rm and measured Rm in the case of independent sample.

	Cor.coef.	RMSE	Cases
EYE pattern	0.712	0.17°	27
CDO pattern	0.521	0.21°	55
OTHERS	0.329	0.33°	26

Fig.5a Scatter diagram of Rm estimated by regression equation vs Rm measured by aircraft in the case of EYE pattern for 1986 (independent sample).

Numeral in Fig. show frequency.

Fig.5b Same as Fig.5a except for case of CDO pattern.

Fig.5c Same as Fig.5a except for case of OTHERS.

- EYEパターンでは相関係数が0.712、RMSE が 0.17度となり、従属資料の値に比べて相関係数は、 やや下がるが、RMSE は変わらない。
- (2) CDO パターンは相関係数が0.521、RMSE が0.21 度となり、従属資料の場合はほとんど変わらない。
- (3) その他のパターンでは相関係数が0.329、RMSE が0.33度となり、従属資料の値に比べて相関係数、 RMSEともに、大きく低下した。 以上の結果、EYEパターン以外は、回帰式の有効性

は期待できないが、EYE パターンでは統計的に意味の ある値を得た。

なお、今回使用した1980年~1986年のデータの中で、 959mb 以下の台風(台風の強さの分類で強い台風また はそれ以上としている)の例を調べると143例中82%が EYE パターンであったことから、強い台風の大部分に ついてはここで求めた回帰式で Rm が推定できる。

上記の理由から、次の3章はEYEパターンについてのみ記述した。

3. 地上(海上)における wind profile の作成

3.1 作成方法

前述のように、台風の中心付近の wind profile を求 めるためには、最大風速、Rm、風速の減衰率を知るこ とが必要である。このうち最大風速は Dvorak 法の CI 数から統計的な関係で求めることができる。前章で求 めた Rm は、飛行高度面のものであるが、ハリケーン における Rm の高度差について山岬(1983)は、高さ によってほとんど変わらなく、強いハリケーンほどそ の傾向が強いこと、また弱いハリケーンは、高さと共 に外側に傾く傾向があるが、地上と700mb では、殆ど 差はないことを述べている。このことから、700mb 面 で得た Rm を地上の wind profile にそのまま利用す ることは可能と考えられる。

また、風速の減衰率については、次のようにして求 められる。

Rm から外側では角運動量の保存式から求めた次の 式が成り立つ。

 $V \cdot r^{x} = Const.$

ただし、r:台風中心からの距離

- V:rにおける風速
- x:観測値から統計的に求められた値で
 Rmから外側では0.6前後(Kidder, 1980)、内側では-1.05 ±0.6とする
 ことが多い(山岬、1983)。

ここで、x = 0.6(Rm から内側で-1.05)、最大風速(従 属資料の場合はベストトラックから得た中心付近の最 大風速、独立資料の場合は CI 数から換算した値)を Vm とすると、任意の点rにおける風速 Vr は、次の式 で表せる。

$$Vr = Vm \cdot Rm^{0.6}/r^{0.6}$$

3.2 作成例

無作為に選んだ5個の台風(従属資料から3例、独 立資料から2例)について、rを0.1度から2.0度まで 0.1度ごとに Vrを求め、各台風の wind profile を作成 した。さらに、飛行機データの風速分布(各ポイント の観測値を直線で内挿してある)と比較検討した。

なお、飛行機データの地上の風速は、目視観測であ り5 Kt 単位で報じられている。このため、700mbのデ ータよりも精度が落ちると考えられるので傾向を述べ るのみにとどめた。

① T8128の例、従属資料 (Fig.6)

700mbの Rm の観測値は、地上よりもやや外側に 位置している。推定値は、その中間になり、誤差も 0.1度程度におさえられている。Rm から外側の風速 分布の推定を見ると、推定値は地上の観測値とほぼ 同じ傾向を示している。

② T8210の例、従属資料 (Fig.7)

Rm の推定値と700mb の観測値の差は0.03度と 殆ど一致しているが、地上で、比較すると差は0.22 度と RMSE より大きくなった。しかし、飛行機の地 上の最大風速は700mb に比べて小さすぎるので、地 上の Rm の観測値もやや信頼性に欠けると思われ る。

- ③ T8211の例、従属資料(Fig.8) 比較的風速の小さい例を戴せた。700mbにおける Rmの差は、0.13度とやや大きいが、地上では風速値 ともによく一致している。
- ④ T8613の例、独立資料(Fig.9)
 Rm の差は700mb、地上ともに0.11度で、風速の推定値も700mbでは、ほぼ一致している。
- ⑤ T8626の例、独立資料 (Fig.10)

Rm は、観測値とほぼ一致している。風速は、700 mb、地上ともに推定値の方がやや下回っているが、 飛行機観測では中心から1度前後の観測値がないの で、自然な profile が表現されていないと考えられ る。

以上、5例を示したが、飛行機による700mbと地上 の間の Rm の差はほとんどなく、推定値ともほぼ一致 している。風速の変化についても、傾向を良く示して いる。なお、5例では地上の風速値と700mbの風速値 は殆ど同じ値を示している。一般に地上風は摩擦によ って700mbの風速よりも15%程度減少すると言われ ている(Gray, 1987)が、1981~1986年までのベストト ラックの最大風速と飛行機の700mbのそれと比較した結果、ほとんど差は認められなかった。

Fig.6 Example of estimated wind profile for T8128, 06UTC 16 DEC. 1981. Solid curve represents wind profile. Thin and heavy dashed line represent wind distribution measured by aircraft at 700mb and surface respectibly.

Fig.7 Same as Fig.6 except for T8210, 06UTC 29 JUL. 1982.

Fig.8 Same as Fig.6 except for T8211, 06UTC 7 AUG. 1982.

Fig.9 Same as Fig.6 except for T8613,00UTC 21 AUG. 1986.

Fig.10 Same as Fig.6 except for T8626, 00UTC 3 DEC. 1986.

4. まとめ

台風周辺の風速分布は、台風の位置、強度(中心気 圧)と並んで重要な情報である。しかし、中心に近い 領域では、これまで衛星資料から風速分布を推定する ことは不十分であった。そこで、気象衛星資料を利用 して台風の中心から200km以内での wind profileの推 定を試みた。得られた結果は以下のようにまとめられ る。

(1) 飛行機データから得られた最大風速の推定位置を 目的変数、台風雲パラメータを説明変数として、3つ の雲パターンに層別化し重回帰式を作成した。

独立資料で各重回帰式を検証した結果、EYE パター ンでは、重相関係数が0.712、RMSE は0.17度となっ た。しかし、変数として EYE サイズを持たない CDD パターンや OTHERS では、EYE パターンの相関より もかなり下回った。これは、EYE サイズが他の変数に 比べて Rm に対する寄与率が非常に高い理由による。 (2) EYE パターンに限り、5 個の台風について700mb 面で推定した Rm を地上(海上)に利用し、wind profile を作成した。Rm における最大風速は、従属資料で は、ベストトラックから、独立資料では Dvorak 法に よる CI 数から換算した値を利用し、任意の点 r にお ける風速 Vr については、次の式から求めた。

 $Vr = Vm \cdot Rm^{0.6} / r^{0.6}$

飛行機観測による地上、700mbの風速分布と比較検 討した結果、良い精度で推定できることが確かめられ た。

謝 辞

本調査に関する適切な助言に対して、データ処理部 萩原解析課長、解析課木場調査官、システム管理課原 田補佐官、気象大学校の島村教授に、1986年の台風の 強度解析についての協力に対して、解析課菊池技術専 門官に、また、台風雲パラメータの作成に対して、気 象衛星センター解析課の諸氏に深く感謝の意を表する。

参考文献

- Kidder, S.Q., W.M.Gray and T.H.Vonder Haar, 1978: Estimating tropical cyclone central pressure and outer winds from satelite microwave data, Mon. Wea. Rev., 106, 1458-1464
- Weatherford C.L. and W.M.Gray, 1987: Typhoon Structure as Revealed by Aircraft Reconnais-

気象衛星センター 技術報告 第21号 1990年12月

sance. Part I : Data Analysis and Climatology, Mon. Wea. Rev., 116, 5, 1032-1043

- 内田裕之、1988:短時間間隔の画像による台風周辺の 詳細風計算の有効性の検証、昭和62年度台風解析 技術開発報告書、気象庁予報部、気象衛星室、気 象衛星センター、(非出版物)
- 木場博之、1990:台風の CI 数の中心気圧及び最大風 速の関係、研究時報42、2掲載予定
- 萩原武士、小佐野慎吾、明石秀平、木場博之、原田知 幸、1989:気象衛星資料による台風の強風域半 径・暴風域半径の推定、研究時報41、3、89-99
- 山岬正紀、1983:台風、気象学のプロムナード10、56 -64