アース・エッジ検出法による VISSR 画像の

位置合わせについて

高橋大知

1. はじめに

気象衛星「ひまわり」に発生していた、スピン軸と衛 星機械軸のズレ(ティルト)は、 VISSR 画像に大きな 影響を与えている。とりわけ、ティルトの小変動は、 VISSR 画像の画素と地球表面上の 緯経度との対応づけ

(座標変換)に悪影響を与えている。ここでは、VISSR 画像の赤外画像から、アース・エッジを検出して、VIS SR 画像の地球画像の位置を知ることにより、座標変換 情報を書き換えて、座標変換誤差を小さくする方法を述 べる。

2. 位置合わせ導入の経緯

1977年7月14日、アメリカで打ち上げられた気象衛星 「ひまわり」に、スピン軸と衛星機械軸のズレ(ティル ト)が発生していた。このティルトの影響により、VIS SR 画像に、地球画像が東西に流れて歪むスキューと、 南北東西に平行移動する変位がみられた。このため、当 初の目標である、「座標変換誤差は、赤外画像で1ライ ン以内(可視画像で4ライン以内)」という精度の達成 が困難になる。そこで、地上施設の改修により、スキュ ーと東西変位を補正することとした。

しかし、運用開始後、座標変換誤差の解析によって、 安定しているとみられたティルトに小変動が起きている ことが分かった。このティルトの小変動は、テレメトリ ・データに含まれる「スピン軸と、衛星一太陽をむすぶ 線のなす角」によってもみられた。(図 2-1 参照)この ティルトの小変動により、座標変換に、赤外画像で、数 ラインから十数ラインの誤差を生じている。このため、 気象衛星センター (MSC) から出力される、FAX 画像 及び気象データの位置精度に悪影響が現われた。(写真 7-1 (a), (b) 参照)

この座標変換誤差を小さくするためには, VISSR 画 像各々に対し,撮影後,その画像から,ランドマーク抽 出処理と姿勢決定予測処理をして,その画像に合った座 標変換情報を作成しなくてはならない。しかし,この方 法では,昼間の可視画像が必要なため,夜間の画像に対 して処理ができない。また,処理に時間がかかり過ぎ て,画像の即時性が失なわれる。そこで,「アース・エ ッジ検出法による VISSR 画像の位置合わせ」が考え出 された。

3. VISSR 画像の地球画像の位置情報

VISSR 画像フレーム内の, 赤外地球画像がどこに有 るかという情報として, 次のものを求める。

- 1) 地球画像の東西の中心線の式
- 2) 地球画像の南北の中心ライン
- 3) 地球画像の南北幅
- 4) 地球画像の東西幅

以上,四つの情報をアース・エッジ情報から求める方 法を述べる。

VISSR 画像は,衛星から送られてくる画像データを, 気象衛星通信所 (CDAS) に有る S/DB (Synchronizer and Data Buffer)を介して,MSC に有る FAC Ō M 230 -75 計算機に入力される。赤外画像の各ラインには,こ の S/DB によって,アース・エッジ情報が付加されて いる。この情報は,赤外で32レベル以上の輝度を持つ画 素が,8つ以上連続している位置によって,地球西端情 報と地球東端情報としている。ただ,この情報は,ノイ ズによって,地球画像の端以外の所を示す場合が有る。 そこで,位置合わせを実行するに当って,S/DB の付加 したアース・エッジ情報のG額性をチェックして,適正 なアース・エッジ情報のみを検出する。

ここで、 VISSR 画像各ラインのアース・エッジ情報 の、地球西端情報を WEE_t 、地球東端情報を EEE_t と して (iはラインナンバー)、地球画像の東西中心 線 の 式を

$$J = A \times I + B$$

とすると,

$$A = \frac{\sum i^2 \cdot \sum CWE_i - \sum i \cdot \sum (i \cdot CWE_i)}{n \cdot \sum i^2 - (\sum i)^2}$$
$$B = \frac{n \cdot \sum (i \cdot CWE_i) - \sum i \cdot \sum CWE_i}{n \cdot \sum i^2 - (\sum i)^2}$$

である。なお, nは地球画像の北から南までの総有効ラ イン数である。又, CWE₁ は

 $CWE_i = (WEE_i + EEE_i)/2$

で与えられる。(図 3-1 参照)

図 3-1 VISSR 画像の地球画像の東西中心線の式 を求める場合の概念図

次に,地球画像の南北中心ラインを求める。この場合,地球画像に,スキューの影響が残っていては良くない。従って,各ラインのアース・エッジ情報の中心点 *CWE*¹ を固定値にしてから求める。ここでは,VISSR フレーム中心ピクセルナンバーの3344を用いている。つまり,

 $WE_i = WEE_i + (3344 - CWE_i)$ $EE_i = EEE_i + (3344 - CWE_i)$

として, 修正アース・エッジ情報の地球西端情報 WE_i と地球東端情報 EE_i を求めてから計算する。図 3-2 に 示すように,地球南北中心ラインを求める場合,地球画 像を,北半球からと南半球からに分けて行なう。北半球 (南半球)からは,そのライン(*i*)の地球西端情報 が,

 $WE_{j-1} < WE_{i} \leq WE_{j}$ (北半球からの場合) $WE_{j+1} < WE_{i} \leq WE_{j}$ (南半球からの場合)

となる南半球(北半球)のライン (j) を求め, CNSW₁ として

上図は,北半球から南半球へ検索する場合 下図は,南半球から北半球へ検索する場合

 $CNSW_i = (i+j)/2$

を求める。同様に,地球東端情報からは,

 $EE_k \leq EE_i < EE_{k-1}$ (北半球からの場合) $EE_k \leq EE_i < EE_{k+1}$ (南半球からの場合)

となる南半球(北半球)のライン(k)を求め, CNSE_k として

 $CNSE_i = (i+k)/2$

を求める。この CNSW_i と CNSE_i は,西及び 東端付 近の情報が多く,中央付近のものが少ない。しかし,南 北中心ラインを表わす情報としては,中央付 近 の も の

— 57 —

図 3-3 VISSR 画像の地球画像の南北中心ライン を求める場合の重みづけに関する区題割り 最終的には、第1区間と第32区間のデータ は捨てる。

が、より信頼性が高い。そこで、中央付近ほど大きな重 みづけをして、地球画像の南北中心ラインを求める。図 3-3 に示すように、地球画像を、東西方向に 32の区間に 分ける。各区間ごとに、区間平均南北中心ラインとして *CNS*₁ を求める。(*1* は区間番号) つまり、

$$CNS_{l} = \sum_{i}^{l} CNSW_{i}/N_{i} \quad (l=1\sim16)$$
$$CNS_{i} = \sum_{i}^{l} CNSE_{i}/N_{i} \quad (l=17\sim32)$$

で, *N*_i は各区間ごとの南北中心点情報量(個数)である。これから

$$CNS = \frac{\sum_{l=2}^{31} [CNS_l \times (16.5 - |l - 16.5|)^2]}{\sum_{l=2}^{31} (16.5 - |l - 16.5|)^2}$$

となる重みづけをする。この時,第1区間と第32区間の 情報は用いない。

次に、地球画像の南北幅を求める。地球画像の南北方 向の情報は、南北中心ラインを求める時と同様に、中央 付近つまり、南北両極付近の情報がより信頼性が高い。 そこで、両極付近のそれぞれ、5ラインを用いて、地球 画像の南北幅を求めることとした。各々5つのアース・ エッジ情報から、地球は球であると近似することによ り、図 3-4 の様に、RN と RS を求める。つまり、地球

図 3-4 VISSR 画像の地球画像の 南北幅を求める 場合の概念図 地球画像を円形として近似して, ピタゴラ スの定理を用いる。

画像の南北中心ライン CNS を用いて,

$$RN = \sum_{t=1}^{5} \sqrt{\frac{((CNS-i) \times \text{Lang})^2 + ((EE_t - WE_t)/2 \times \text{Pang})^2}{(5 \times \text{Lang})}}$$

$$RS = \sum_{t=1}^{5} \sqrt{\frac{((k-CNS) \times \text{Lang})^2 + ((EE_k - WE_k)/2 \times \text{Pang})^2}{(5 \times \text{Lang})}}$$

と求める。ここで

Lang;ライン方向ステッピング角

Pang;ピクセル方向サンプリング角

である。(図 3-4 参照) これらから,地球画像の南北 幅 RNS は,

$$RNS = RN + RS$$

で求められる。

また,地球画像の東西幅は,地球画像の南北中心ラインに最も近いラインの,地球西端情報と地球東端情報から,

で求める。

4. 座標変換情報

VISSR 画像各々には、画素と緯経度を対応づけるた

- 58 --

めの,座標変換情報が付加されている。この情報は,下 記の三つの情報で構成されている。

- 衛星に固有な定数(画像フレームサイズ・ステッ ピング角・サンプリング角及び VISSR 取り付け ミスアライメント量等)
- 2) 三点測距により求めた軌道情報
- 3) ランドマークから求めた姿勢情報

この座標変換情報から,位置合わせに必要な情報として,

- イ)衛星直下点 (Sub Satellite Point; SSP) の緯経 度
- ロ) 座標変換情報が仮想する地球画像(グリッドパタ ーン)の南北幅

を算出する。

イ)の SSP の緯経度は,軌道情報の中に含まれてい る。先に VISSR 画像から求めた地球画像の南北中心ラ インに対応する走査時刻の SSP 緯経度を,5分ごとに 与えられている軌道情報から,補間して求める。

又, ロ)の南北幅は, MSC に有る座標変換サブルー チン(サブルーチン名; ZCNVGM)の機能のうち, 任 意の画素が地球撮像範囲内か, 宇宙空間撮像画素かの判 定機能を用いて求める。つまり, この座標変換サブルー チンにより, グリッドパターンの最北ラインナンバーと 最南ラインナンバーを求めることにより, その南北幅が 得られる。ここでは, 0.01ライン単位で算出する。

5. 位置合わせのための座標変換情報書き換えとその 効果

VISSR 画像の地球画像と 座標変換情報の仮想してい る地球画像 (グリッドパターン) との位置合わせは,座 標変換情報の一部を書き換えることによって行なう。座 標変換誤差の原因が,ティルトの小変動によるものであ ることから,姿勢情報と軌道情報の書き換えは行なわな い。

書き換える情報は、衛星固有の定数のうち、ステッピ ング角と、VISSR 取り付けミスアライメント量であ る。これらは、本来、衛星固有の定数であるが、ティル トの小変動に伴って、みかけ上、変化している。ステッ ピング角のみかけの変化は、南北17.4°有る地球を、カ バーするライン数の変化、つまり、地球画像の南北幅の 変化になる。例えば、通常の衛星のステッピング角 140 µrad では、2169 ラインで北から南まで走査し終わる。 しかし、それが、みかけ上、135µrad に変化している と、南北幅は、2250ラインになり、地球画像が伸びたこ とになる。従って、座標変換情報のステッピング角の書 き換えによって、地球画像の南北幅に合わせたグリッド

図 5-1 VISSR ステッピング角の変化に伴なう, 地球画像の南北幅の変化

パターンを作ることができる。(図 5-1 参照)

VISSR 取り付けミスアライメント量は、 *x* 軸まわり、 *y*軸まわり、 *z*軸まわりの三成分により成っている。各 ミスアライメント量成分は、スピン軸を *z*軸として、テ ィルト及びミスアライメントのない衛星に取り付けられ ている VISSR の基準視線方向注)を *x*軸とし、 *y*軸を右 手系になるように決めた時の、各軸を回転軸として取り 付けミスを測った角度により定義されている。(図 5-2 参照) *x*軸まわりミスアライメント量の存在は、ティル トによるスキューと同じ現象として現われる。又、 *y*軸 まわりミスアライメント量の存在は、 VISSR 画像フレ ームの中で、地球画像が、南又は北に変位して撮像され る。 *z*軸まわりミスアライメント量の存在は、地球画像 の東又は西への変位として現われる。それゆえ各ミスア ライメント量の書き換えによって、スキュー成分の誤差

注) 基準視線方向とは、VISSR ミラーの ステップに伴 って、ステップする VISSR 視線が、スピン軸に直角 になった時の方向をいう。

- 図 5-2 VISSR 取り付けミスアライメント量の定義 (1); ノミナルな VISSR の取り付け位置。扇型は
 - VISSR 視線ステップ面を示**す。**

Z軸;衛星スピン軸

X軸; VISSR 基準視線方向

表 5-1 座標変換情報の書き換えに伴 な う VISSR
 画像の地球画像に対するグリッドパターンの
 変化

書き換 書き え方 換え る情報	基準値より大 きな値にする	基準値より小 さな値にする	基準値
ステッピング 角	南北方向に縮 む	南北方向に伸 びる	140 μrad
X軸まわりミ スアライメン ト量	北極付近が東 へ南極付近が 西へスキュー する	北極付近が西 へ南極付近が 東へスキュー する	0°
Y軸まわりミ スアライメン ト量	北へ平行移動 する	南へ平行移動 する	0°
Z軸まわりミ スアライメン ト量	東へ平行移動 する	西へ平行移動 する	0°

及び,東西南北方向の平行移動による誤差を補正して, 地球画像とグリッドパターンを合わせることができる。 (表 5-1 参照)

第3章で述べた地球画像の位置情報のうち,東西幅に 対応して書き換えるべき座標変換情報のサンプリング角 については、VISSR 画像間での東西幅の変化が0.05% 程度なのと,ピクセル方向座標変換誤差が小さいことか ら,書き換えは行なわないこととした。又,座標変換情 報に含まれている VISSR 画像撮像開始時刻は,MSC 計算機による撮像開始予定時刻である。従って VISSR 画像が実際に撮像開始された時刻に書き換える。

6. 位置合わせ処理

アース・エッジ検出により求めた地球画像の位置に, 座標変換情報のグリッドパターンを合わせるのは,ステ ッピング角・ミスアライメント量と VISSR 画像撮像開

Y軸;X軸とZ軸から決められた右手系の軸

- (2); X軸まわりミスアライメント量(α)を示す。X
 軸は紙面に垂直で上向き,太線はノミナルな
 VISSR 視線ステップ面を示す。
- (3); Y軸まわりミスアライメント量(β)を示す。Y
 軸は紙面に垂直で上向き,太線の扇型はノミナ
 ルな VISSR 視線ステップ面を示す。
- (4); Z軸まわりミスアライメント量(γ)を示す。Z
 軸は紙面に垂直 で 上 向 き,太線はノミナルな
 VISSR 視線ステップ面を示す。

- 60 -

始時刻の書き換えにより行う。ここでは,前二者の書き 換え処理を,現在,MSC システムに組み込まれている プログラムに即して説明する。

図 6-1 は,そのプログラムのフローチャートの一部で ある。各ブロックの説明をする。

図 6-1 位置合わせ処理プログラムのフローチャート

(I)ブロック; VISSR 画像と座標変換情報を読み込む。VISSR 画像撮像開始時刻を書き換える。VISSR 画像から,地球画像位置情報(地球画像の南北幅を除く)の算出。座標変換情報から SSP の緯経度を算出する。

(II) ブロック; SSP の緯経度を座標変換サブルーチン により、ラインナンバーとピクセルナンバーに変換する SSP(φ , λ) \rightarrow SSP(I, J)

(皿)ブロック;地球画像位置情報とSSP(I, J)との 差から、 y軸まわり及びz軸まわりミスアライメント量 の書き換えを行なう。地球画像位置情報から

 $PWE = A \times CNS + B$

として

 $\Delta Ymis = (I - CNS) \times Lang$ $\Delta Zmis = (PWE - J) \times Pang$ を算出して、それぞれ

 $Ymis = Ymis + \Delta Ymis$ $Zmis = Zmis + \Delta Zmis$

とする。

(Ⅳ)ブロック; ミスアライメント量の書き換え後の
 SSP のラインナンバー・ピクセルナンバーを算出する

 $SSP(\varphi, \lambda) \rightarrow SSP(I, J)$

(V)ブロック; y軸まわり及び z軸まわりミスアライ メント量の書き換え処理終了を判定する。判定基準は

|CNS - I| < 0.01|PWE - J| < 0.01

である。

(VI)ブロック;地球画像の南北幅 RNS を算出する。

(WI)ブロック; グリッドパターンの南北幅 NSR を算 出する。

(WII) ブロック; RNS と NSR とからステッピング角 の書き換えを行なう。

 $Lang = Lang \prec \frac{NSR}{RNS - RC}$

ここで、RC は、極付近の大気層の厚さに関する定数で

RC = 3.294

である。これは経験的に決めた。

(IX)ブロック;(II)ブロックから(WD)ブロックまでを 三回実行する。サンブリング角の書き換えは、三回で収 れんしている。

以上の処理で, x軸まわりミスアライメント量の書き 換えが行なわれていないのは,姿勢決定予測処理で,十 分な精度の値が決定されていることと,ティルトの小変 動による影響が小さいことから,書き換えないこととし た。

7. 位置合わせ後の座標変換精度

位置合わせ後の座標変換精度の評価は, FAX 写真と, ランドマーク抽出処理によって行なった。

1) FAX 写真による座標変換精度の評価

FAX 写真による精度評価は、グリッドずれの大きな VISSR 画像に対して、位置合わせ前の FAX 写真と、 位置合わせ後の FAX 写真を作成することで行なった。

— 61 —

写真 7-1(a) 位置合わせ前の FAX 写真(1979年9月26日182 ボッ海湾付近)

写真 7-1(b) 位置合わせ前の FAX 写真(1979年9月26日18Z 北海道付近)

気象衛星センター 技術報告 第3号 1981年3月

写真 7-1(e) 位置合わせ後の FAX 写真(1979年9月26日18Z ボッ海湾付近)

写真 7-1(d) 位置合わせ後の FAX 写真(1979年9月26日18Z 北海道付近)

図 7-1 ランドマーク抽出処理で得られた座標変換精度データ(1980年3月12日~3月21日) 実線; VISSR 画像のランドマーク位置から, 位置合わせ後の座標変換情報で推定され たランドマーク位置を引いた, ライン方向誤差

京線; VISSR 画像のランドマーク位置から、位置合わせ前の座標変換情報で推定され たランドマーク位置を引いた、ライン方向誤差

図 7-2 位置合わせ処理によって補正されたライン方向誤差量(1980年3月12日~3月21日)

図 7-3 ランドマーク抽出処理で得られた座標変換精度データ(1980年4月19日~4月28日) 実線; VISSK 画像のランドマーク位置から、位置合わせの座標変換情報で推定された ランドマーク位置を引いた、ライン方向誤差

破線; VISSR 画像のランドマーク位置から, 位置合わせ前の座標変換情報で推定され たランドマーク位置を引いた, ライン方向誤差

図 7-4 位置合わせ処理によって補正されたライン方向誤差量(1980年4月19日~4月28日)

作成された FAX 写真に抽入されている海岸線は, 写真 7-1 (a), (b) に見られるように, 位置合わせ前では, 8 ラ イン程度(日本付近で 50 km 程度) 実際の海岸線とズ レている。同じ時刻の VISSR 画像に対し, 位置合わせ 後, 作成した FAX 写真では, 図 7-1(c), (d) に見られる ように, ほとんど一致していることが分かる。

2) ランドマーク抽出処理データによる座標変換精度 の評価

ランドマーク抽出処理は,毎日,姿勢決定予測処理を 行なうために、行なわれている。この処理から得られる ランドマーク情報を用いて、精度の評価を行なった。こ こでは、1980年3月12日から3月21日までの10日間を、 食期間のデータとして、又、1980年4月19日から4月28 日までの10日間を,通常期間のデータとして,用いてい る。図 7-1 は、3 月12日からのデータで、 VISSR 画像 のランドマーク位置から, 座標変換が推定したランドマ ークの位置を引いた可視ライン数である。この図からわ かることは、実線で示した位置合わせ後の誤差が、-1.5 ライン程度のバイアス誤差を残すものの, ほぼ一定 している。しかし,破線で示した位置合わせ前の誤差 は、変動が多く、個々の画像についても、大きな誤差を 持つものが多いことがわかる。図 7-2 は、同期間の位置 合わせ処理による, ライン方向補正量を示す。この図 と、図7-1の破線のパターンが一致することから、位置 合わせ処理が有効なことがわかる。また、4月19日から のデータは、図7-3と図7-4に示す。この二つの図から も、3月12日からの期間と同様なことが言える。次に、 これら二期間の、座標変換誤差について、それぞれライ ン方向平均誤差とピクセル方向平均誤差を,表7-1に示 す。

8. おわりに

当初の目標である「座標変換誤差は,赤外画像で1ラ イン以内(可視画像で4ライン以内)」という精度は,ア ース・エッジ検出法による VISSR 画像の位置合わせに よって達成された。この処理は,1980年2月25日から, 表 7-1 位置合わせ前及び,位置合わせ後の,ラン ドマーク抽出処理から得られた座標変換誤差 データの平均及び標準偏差(1980年3月12日 ~21日と4月19日~4月28日)

単位は可視のライン及び可視のピクセルで ある。

		平	均	標 準	偏差
		位置合 わせ前	位置合 わせ後	位置台 わせ前	位置合 わせ後
1980年 3月12日 ~ 3月21日	ラ方 イ向 ン	-0.533	-1.504	4. 973	0. 822
	ピル ク方 セ向	2, 416	-0.469	1. 775	0. 882
1980年 4月19日 ~ 4月28日 4月28日	ラ方 イ向 ン	0. 879	-1.164	2. 616	0. 518
	ピル ク方 セ向	2, 822	-0.104	0.951	0. 808

MSCのバッチ計算機システムに「自動修正プログラム」 として組み込まれた。これにより、食期間に大きな問題 となっていた、気象抽出データの位置精度低下が、カバ ーされることとなった。また、オンライン系計算機シス テムでは、1980年8月25日から、LR-FAX 等を作成す る前に実行されるよう組み込まれた。

この自動修正プログラムは,自由に使用可能なよう に,サブルーチンとして組み込まれているので,今後, VISSR 履歴ファイルの VISSR 画像を利用する場合も, 位置合わせ処理が可能である。

9. 謝辞

この位置合わせ処理を、システムに組み込むに当っ て、精度評価に、気象衛星センターシステム管理課の前 田紀彦調査官の協力が得られたことを感謝します。ま た、「自動修正ブログラム」として、システムに組み込 む際に、同システム管理課の、岩淵敏明、石川正勝の各 氏に、行なっていただいたことを感謝します。