気象衛星センター 技術報告38号 2000年3月

GMS-5VISSRキャリブレーションの現状 ^{栗原 茂久*}、徳野 正己*

The Status of Calibration of VISSR on board GMS-5 Shigehisa Kurihara, Masami Tokuno

Abstract

GMS-5 acquires calibration data in orbit and the calibration table is made from the data in the ground station. The calibration table is delivered Medium-scale Data Utilization Station (MDUS) users with Stretched-VISSR (S-VISSR) and is used in Data Processing Center (DPC) for producing several satellite products. Thus the calibration data is indispensable to users for utilizing the S-VISSR data of GMS-5.

This paper describes the status of calibration of VISSR (Visible and Infrared Spin Scan Radiometer) on board GMS-5 and a matter to pay attention for using the calibration data on the following subject.

-Techniques for calibrating visible and infrared channels' data

- -Correction of the calibration tables of infrared channels' data observed before
- -The necessary care to be taken and problems encountered on applying infrared channels' calibration tables (including observations for satellite wind estimation) and S-VISSR fixed calibration tables operationally
- -A doubt about the response function of the water vapor channel
- -Long term trend of visible channel's data

要 旨

GMS-5は軌道上でキャリブレーションデータを取得し、地上で処理を行いキャリブレーションテーブ ルを作成している。作成されたキャリブレーションテーブルはDPCで利用されるほかストレッチド VISSR(S-VISSR)データに付加してユーザに配信されている。GMS-5のS-VISSRデータを利用する 上でキャリブレーションデータは必要不可欠なデータである。

ここでは、以下のようなGMS-5のキャリブレーション処理状況と利用上の留意点について報告する。

一可視及び赤外チャンネルキャリブレーションの方法

一過去データの赤外チャンネルキャリブレーションテーブルの修正

一赤外チャンネルキャリブレーションテーブル(風観測時も含む)及びS-VISSR固定キャリブレーショ

*気象衛星センター システム管理課

(1999年12月28日受領、2000年1月12日受理)

ンテーブルの運用上の問題点

一水蒸気チャンネルの応答関数に対する疑問点

- 可視チャンネルデータの経年変化

1. はじめに

静止気象衛星「ひまわり5号」(以下GMS-5という) が1995年3月18日に打ち上げられ、同年6月から運用 に利用されている。GMS-5に搭載されている可視赤 外スピン型放射計(VISSR)は表1に示すようにGMS からGMS-4までに搭載されていたものと比較して改 良されている。主な改良点は、赤外スプリットチャン ネル(赤外1及び赤外2チャンネル)や水蒸気チャン ネル(赤外3チャンネル)の搭載である。その利点を 生かして、スプリットウィンドウ法(McMillin et al., 1984)による海面水温算出精度の向上、赤外スプリッ ドチャンネルの輝度温度差による火山灰検出(Potts, 1993, Tokuno, 1997)、水蒸気チャンネルの画像データ を利用した大気の水蒸気量の情報及び水蒸気風の算出 等(気象衛星センター技術報告特別号,1996)が可能と なってきた。また、可視チャンネルの検出器は光電子 増倍管(Photo Multiplier Tube (PMT))からより 感度が安定なシリコン光ダイオード(Tsuchiya,1982) に変更となり、可視チャンネルデータを用いて算出さ れる日射量の精度向上が期待されている。このような プロダクトの精度を維持するためには、検出器で取得 されたデータの較正処理(以下キャリブレーション処 理という)が必要不可欠である。

ここでは、現在までに気象衛星センターで行われて きているGMS-5のキャリブレーション処理状況と利 用上の留意点についてまとめたので報告する。

表1 GMS 1-4とGMS 5の検出器の特徴

赤外1及び赤外2の観測波長域は大気の窓領域を2分しているので赤外スプリッドチャンネル、赤外3は水蒸 気の吸収帯にあるので水蒸気チャンネルと呼ばれている。

	チャンネル	波長帯(μm)	解像度	(km)*1 センサ素子
GMS1-4	可 視 赤 外	0.5-0.7 10.5-12.5	1.25 5	光電子増倍管 水銀カドミウムテル ル化合物(HgCdTe)
GMS5	可視	0.5-0.9	1.25	シリコン光 ダイオード
	赤外1(窓會	頁域) 10.5-11.5	5	HgCdTe
	赤外2(窓翁	頁域) 11.5-12.5	5	HgCdTe
	赤外 3 水素 吸収	§気 6.5-7.3 【帯〕	5	HgCdTe

注 *1:衛星直下点での解像度である

2. VISSRキャリブレーションの概要

スピン型衛星であるGMS-5に搭載されている VISSRは、衛星の回転に伴って、北から南へ観測を行 う。観測の際にVISSRの検出器に入ってきたエネル ギーは衛星に搭載されているVISSRデジタルモジュ レータ (VDM) でデジタル化され、地上の指令収集 局(CDAS)に送られる。CDASでは送られてきたデー タにキャリブレーション情報やナビゲーション情報な どの付加やデータのレベル値の変更などが行われ、そ の後、それらのデータはGMS-5を経由して中規模利用 局(MDUS)に配信される。衛星からCDASに送られ きたVISSRのデータは、CDASを介してデータ処理セ ンター (DPC) にも送られ、キャリブレーション情報 やナビゲーション情報の作成、WE-FAXの作成、各種 プロダクトの作成などに利用される。

キャリブレーション情報の作成とは、衛星で観測さ れるカウント値と温度等エネルギーに関係する物理量 を関連づけるテーブルの作成をいう。それを行うため には、はじめにカウント値と物理量を対応づける関係 式の係数が求められ、次に求められた係数からカウン ト値と物理量を関係づけるキャリブレーションテーブ ルの作成等が行われる。

可視及び赤外チャンネルついてDPC及びCDASで 行われているキャリブレーション処理について以下に 述べる。

2.1 可視チャンネルのキャリブレーション処理

VISSRの可視チャンネルは、南北方向35µrad,東西 方向35µradの瞬時視野角(IFOV)(直下点で約 1.25kmの空間分解能)を持ち、観測されたデータは 衛星上で6ビットのデジタルデータに変換され地上に 送られる。可視チャンネルは4個の検出器で構成され ているので、キャリブレーション処理をするための関 係式も検出器毎に存在する。以下に可視チャンネルの キャリブレーション処理を示す。

まず、VISSRに入射した観測対象からのエネルギー (反射量)は検出器で電圧値に変換される。反射量と 電圧が線型関係にあるので、反射量と電圧の関係は式 (1)で表すことができる。

$$\mathbf{V} = \mathbf{a} \mathbf{A} + \mathbf{V}_0 \tag{1}$$

ここでAは反射量、V₀は反射量がゼロと見なされる 宇宙空間を測定した場合の電圧値であり、aは係数で ある。

次に、式(2)に示すように、VDMにおいて電圧値は カウント値に変換される。

$$\mathbf{C} = \mathbf{b}_0 + \mathbf{b}_1 \sqrt{\mathbf{V}} \tag{2}$$

ここで、Vは電圧、Cはカウント値、 b_0 、 b_1 は係数である。係数 b_0 、 b_1 は衛星の打ち上げ前の地上試験で測定された値で定数である。

式(1)、(2)より、反射量とカウント値の関係は式(3)で 表すことができる。

$$A = \frac{(C - b_0)^2}{b_1^2 a} - \frac{V_0}{a}$$
(3)

可視チャンネルについては、衛星に搭載されている プリズムを通して太陽光を50%に減衰させ、その輝度 を測る「太陽校正機能」と呼ばれる機能が衛星に備わっ ている。宇宙空間の輝度を測定することでVoを求める ことができるので、この機能を使用することにより、 式(3)により係数aを原理的に決めることが可能である。 この処理を行うことが可視チャンネルのキャリブレー ション処理であるが、実際には「太陽校正機能」を使 用しても太陽光の輝度を高い精度(絶対精度)で求め ることが現在では困難なため、係数a及びVoは衛星打 ち上げ前の地上試験で測定した値を使用している。

式(3)の係数が固定のため、カウント値と反射量を関 係づける可視キャリブレーションテーブルは固定とな る。また、可視チャンネルは4つの検出器を使用して 観測しているため、それぞれの検出器毎に固定された 可視キャリブレーションテーブルを使用することにな る。そのため、4つの検出器の感度が異なる場合、そ のままのカウント値を使用して画像データを作成・表 示すると、検出器間の感度差により縞模様が発生する。 この縞模様の発生を最小限にするためにノーマライズ と呼ばれる処理をDPCで行っている。この処理では、 まず基準となる検出器を選択し、その検出器のキャリ ブレーションテーブルを基にして、他の3つの検出器 のキャリブレーションテーブルを変更する処理が行わ れる。GMS-5では、運用前の調査結果に基づき、感 度が他の検出器より安定であると判断された検出器2 が基準検出器として選択されている。DPCの運用では、 可視検出器間の感度差が現在に至るまで大きく変化す ることがなかったので、この処理は運用開始直後に1 回行われただけである。

DPCでは上述したように検出器毎に4つのキャリ ブレーションテーブルが用意されているが、MDUSに 配信されているS-VISSRでは、後述する固定テーブル の利用者に配慮するために、標準キャリブレーション テーブルが新たに1つ用意され、検出器毎の4つの キャリブレーションテーブルを標準キャリブレーショ ンテーブルに置き換える処理が行われる。この処理で は、各検出器で観測されたカウント値はDPCで使用さ れている各検出器毎のキャリブレーションテーブルに 従って反射量に変換され、変換された反射量は標準 キャリブレーションテーブルに従ってカウント値に変 換される。また、この一連の処理でMDUSに配信され るS-VISSRの可視データの作成処理が行われる。

2.2 赤外チャンネルのキャリブレーション処理

GMS-5には赤外チャンネルとして、赤外1 (IR1,10.5-11.5μm)、赤外2 (IR2,11.5-12.5μ m)、赤外3 (IR3 (WVとも呼ぶ),6.5-7.3μm) の3チャンネルが搭載されている。それぞれ、南北方 向140μrad、東西方向140μradのIFOV (直下点で約 5kmの空間分解能)を持ち、観測されたデータは衛 星上で8ビットのデジタルデータに変換され地上に送 られる。以下に赤外チャンネルのキャリブレーション 処理を示す。

まず、VISSRに入射した観測対象からのエネルギー (放射輝度)は検出器で電圧値に変換される。電圧と 検出器が観測する放射輝度とは線型関係であるので、 電圧と放射輝度の関係は式(4)で表すことができる。

$$\mathbf{V} = \mathbf{d} \, \mathbf{E} + \mathbf{V}_0 \tag{4}$$

ここで、Eは検出器が観測する放射輝度、V₀は放射輝 度がゼロと見なされる宇宙空間を観測したときの電圧、 dは係数である。

次に、式(5)で示すように、VDMにおいて電圧値は カウント値に変換される。

$$\mathbf{C} = \mathbf{C}_0 + \mathbf{C}_1 \, \mathbf{V} \tag{5}$$

ここで、C₀、C₁は地上試験で求められた係数である。 式(4)、(5)よりカウント値と放射輝度の関係は式(6)で 表すことができる。

$$E = \frac{C - C_0}{C_1 d} - \frac{V_0}{d}$$
(6)

また、放射輝度と温度の関係は式(7)で表すことができる。

E
$$(\lambda, \mathbf{T}) = \varepsilon \frac{\int \Psi(\lambda) B(\lambda, \mathbf{T}) d\lambda}{\int \Psi(\lambda) d\lambda}$$
 (7)

ここで、 ε 、 Ψ (λ)、B(λ ,T) はそれぞれ観測 対象の射出率(地球観測時は1.0で固定)、検出器の応 答関数、プランク函数である。 λ 、Tはそれぞれ波長 及び温度を表す。式(6)、(7)を使用することによりカウ ント値と温度を関係づける変換テーブルが作成可能で ある。式(6)の係数 C₀、C₁は固定であると考えられるが、 係数V₀,dは観測毎に変化する。そのため、赤外チャン ネルのキャリブレーション処理では、観測毎に係数V₀ とdを求める必要がある。

まず宇宙空間を観測した時に行う校正処理で係数 V₀を求める。この処理では、宇宙空間を観測した時の カウント値を求め、放射輝度を0と仮定し、おのおのの 値を式(6)に代入して得られる式(8)によりV₀を求める ことができる。

$$\mathbf{V}_0 = (\mathbf{Csp} - \mathbf{C}_0) / \mathbf{C}_1$$
 (8)

ここで、Cspは宇宙空間を観測したときのカウント値 である。

次に衛星内部にある基準黒体を観測した時に行う校 正処理で係数dを求める。この処理では基準黒体を観 測したときのカウント値と温度を求める。求められる 温度は検出器やスキャンミラー等の温度を考慮した基 準黒体の温度(有効シャッタ温度、Te、と呼ぶ)であ る。Teに対応する放射輝度は、Teを式(7)に代入し得ら れた式(9)により求めることができる。これらの値を式 (6)に代入し得られる式(0)により係数dを求めることが できる。

$$E_{b\ell} (\lambda, Te) = \varepsilon \frac{\int \Psi(\lambda) B(\lambda, Te) d\lambda}{\int \Psi(\lambda) d\lambda} \quad (9)$$

$$d = \frac{C_{\mathfrak{b}\ell} - C_{\mathfrak{o}}}{C_{\mathfrak{1}} E_{\mathfrak{b}\ell}} - \frac{V_{\mathfrak{o}}}{E_{\mathfrak{b}\ell}} \tag{0}$$

ここで、C_bは基準黒体を観測したときのカウント値、 E_bは基準黒体の放射輝度である。

上記の処理は風観測、臨時観測を除いた定常観測(1 日24回)時に毎回DPCで行われ、カウント値と温度を 関係づけるキャリブレーションテーブルが作成される。 しかし、S-VISSRデータがCDAS で作成されるため、 上記の処理が画像作成までに間に合わないので、図1 に示すように、前日の同じ時間帯に作成されたキャリ ブレーションテーブルが使用される。このテーブルで は低温側が低輝度レベルに、高温側が高輝度レベルに 対応づけしている。DPCではこのキャリブレーション テーブルが使用されるが、S-VISSRの場合には上記の キャリブレーションテーブル作成の後に、利用者が使 用し易いように反転とシフトという処理が行われ、そ の後に、S-VISSR用にキャリブレーションテーブルが 作成される。

図2は反転処理の概念図である。図に示されている ように、反転処理とは例えば0レベルを255レベルに、 1レベルは254レベルのように、観測した輝度レベル

図1 キャリブレーションテーブルの作成とその反映のタイミング 風観測(W06)には前日の定常観測のキャリブレーションテーブル(CT06)が使用されている。 (以下観測レベルと呼ぶ)のnレベルを255-nレベルに 反転させる処理のことである。この処理により、観測 レベルを反転されたレベル(以下反転レベルと呼ぶ) に変換するテーブルが作成される。この結果、低温側 が高輝度レベルに、高温側が低輝度レベルに対応する ことになる。

図2 反転処理(赤外チャンネル)の概念図 (Tnは観測レベルnでの温度)

nレベルが255-nレベルに反転される。この処理により、観測レベル を反転されたレベルに変換するテーブルが作成される。

処理1 この場合 222 レベルが 223 レベルになる (レベル差は+1)

反転後レベル	S-VISSR レベル	温度
255	255	
254 レベル差	+1 255	T' 254
253	> 254	T'253
2	2	
224 レベル	225 レベル	T'224
2	2	
1 +1	2	T' 1
0	1	T' 0
L	Li	

処理 2

図3 シフト処理(赤外チャンネル)の概念図 (T'nは反転レベルnでの温度)

処理1) 固定テーブルと反転テーブルとで200Kより大きく、200K に最も近いレベル値を見つけ両者のレベルの差を計算する

処理2)計算されたレベル差の分だけレベル値を動かし、反転レベル とS-VISSRレベルの関係を示すテーブルを作成する。

シフト処理では反転レベル254,255がS-VISSRレベル255になる ように、異なる反転レベルが同じS-VISSRレベルになることがある。 またS-VISSRレベル0が無いように、存在しないレベルが発生する。 図3はシフト処理の概念図である。シフト処理は、 地上試験の結果を基に作成された固定キャリブレー ションテーブル(以下固定テーブルという)の利用者 のために、固定テーブルをなるべく上記のキャリブ レーションテーブルにあわせるために行われる。方法 としては、初めに200Kに対応する固定テーブルのレベ ル値と上記の反転レベルとの差(以降レベル差と呼ぶ) を求める(図3,処理1)。次に求めたレベル差の分だ け反転レベルを増減させてS-VISSRで使用されるレ ベル(以下S-VISSRレベルと呼ぶ)を作成する。この 処理で反転レベルとS-VISSRレベルの関係を示す テーブルを作成する(図3,処理2)。

実際の画像作成では、反転処理とシフト処理は同時 に行われる。図4に示すように、反転処理で作成され た観測レベルと反転レベルの関係を示すテーブルと、 シフト処理で作成された反転レベルとS-VISSRレベ

図4 実際の赤外キャリブレーション変更処理 反転処理とシフト処理が同時に行われる。

反転処理で作成された観測レベルと反転レベルの関係テーブルと、 シフト処理で作成された反転レベルとS-VISSRレベルのテーブルか ら、観測レベルをS-VISSRレベルに変換する"変換テーブル"とS-VISSRのレベルと温度の関係を示す"S-VISSRキャリブレーション テーブル"が作成される。 ルのテーブルから、S-VISSRのレベルと温度の関係を 示すS-VISSRキャリブレーションテーブルと観測レ ベルをS-VISSRレベルに変換する変換テーブルが作 成される。CDASでは、この変換テーブルを元に観測 された画像データをS-VISSR画像データに変更する 処理が行われる。

3. 赤外チャンネルデータ利用上の留意点

3.1 赤外チャンネルキャリブレーションの修正

1996年6月13日V6のGMS-5運用開始から1996年11 月29日V23の期間、2.2節の式(9)で使用する基準黒体の 射出率(ε)が誤って計算されていたため、温度が本 来の射出率で計算したものと比べて低く見積もられて いた。例えばキャリブレーションテーブルの温度で 300Kの場合に対応するレベル値の温度がIR1、IR2、 IR3それぞれ約1.7K、約1.8K、約1.1K低く見積もら れていた。このため、気象衛星センターでは上記期間 のキャリブレーションテーブルの再作成処理を行った。 この処理結果を使用して、利用者が保存している過去 の赤外データの温度を容易に補正できるように、表2 に示す通り簡易変換テーブルを用意した。この簡易変 換テーブルとは別に、すべての観測毎に修正された キャリブレーションテーブルも用意した。また、DPC で保存されているすべての画像データには修正された キャリブレーションテーブルが格納されている。

表2 簡易修正テーブル

このテーブルは1995年6月13日06UTCから1996年11月29日23UTCまでの赤外キャリブレーションテーブルを 修正するための補正量を示している。下式のように補正量を加えることにより温度の補正が可能である。 補正後温度(K)=補正前温度(K)+補正量

泪 r (V)		はて易	·(K)	迴度(K)		補正暑	(K)	温度(K)		補正量	} (K)	温度(K)		補正量	(K)	温度(K)		補正量	[(K)
/血皮(11)	ID1		WV		IR1	IR2	ŴV		IR1	IR2	ŴV		IR1	IR2	WV		IR1	IR2	WV
200	0.76	0.81	0.49	225	0.97	1.03	0.62	250	1.19	1.18	0.77	275	1.44	1.52	0.93	300	1.70	1.81	1.10
200	0.70	0.82	0.50	226	0.98	1.04	0.63	251	1.20	1.20	0.77	276	1.45	1.54	0.94	301	1.71	1.82	1.11
201	0.78	0.83	0.50	227	0.98	1.05	0.63	252	1.21	1.22	0.78	277	1.46	1.55	0.94	302	1.72	1.83	1.12
202	0.79	0.84	0.51	228	0.99	1.06	0.64	253	1.22	1.24	0.79	278	1.47	1.56	0.95	303	1.73	1.84	1.13
200	0.79	0.85	0.51	229	1.00	1.06	0.64	254	1.23	1.26	0.79	279	1.48	1.57	0.96	304	1.75	1.85	1.13
205	0.80	0.85	0.52	230	1.01	1.07	0.65	255	1.24	1.28	0.80	280	1.49	1.58	0.96	305	1.76	1.86	1.14
206	0.81	0.86	0.52	231	1.02	1.08	0.66	256	1.25	1.30	0.80	281	1.50	1.59	0.97	306	1.77	1.88	1.15
207	0.82	0.87	0.53	232	1.03	1.09	0.66	257	1.26	1.32	0.81	282	1.51	1.60	0.98	307	1.78	1.89	1.16
208	0.83	0.88	0.53	233	1.04	1.10	0.67	258	1.27	1.34	0.82	283	1.52	1.61	0.98	308	1.79	1.90	1.16
209	0.83	0.89	0.54	234	1.04	1.11	0.67	259	1.28	1.36	0.82	284	1.53	1.62	0.99	309	1.80	1.91	1.17
210	0.84	0.90	0.54	235	1.05	1.12	0.68	260	1.29	1.37	0.83	285	1.54	1.63	1.00	310	1.81	1.92	1.18
211	0.85	0.91	0.55	236	1.06	1.13	0.68	261	1.30	1.38	0.84	286	1.55	1.65	1.00	311	1.83	1.94	1.19
212	0.86	0.91	0.55	237	1.07	1.14	0.69	262	1.31	1.39	0.84	287	1.56	1.66	1.01	312	1.84	1.95	1.19
213	0.87	0.92	0.56	238	1.08	1.15	0.70	263	1.32	1.40	0.85	288	1.57	1.67	1.02	313	1.85	1.90	1.20
214	0.88	0.93	0.56	239	1.09	1.16	0.70	264	1.33	1.41	0.86	289	1.58	1.68	1.02	314	1.86	1.97	1.21
215	0.88	0.94	0.57	240	1.10	1.17	0.71	265	1.33	1.42	0.86	290	1.59	1.69	1.03	315	1.87	1.98	1.22
216	0.89	0.95	0.57	241	1.11	1.18	0.71	266	1.34	1.43	0.87	291	1.60	1.70	1.04	316	1.88	2.00	1.22
217	0.90	0.96	0.58	242	1.12	1.19	0.72	267	1.35	1.44	0.88	292	1.61	1.71	1.05	317	1.89	2.01	1.23
218	0.91	0.97	0.58	243	1.13	1.20	0.73	268	1.36	1.45	0.88	293	1.63	1.72	1.05	318	1.91	2.02	1.24
219	0.92	0.97	0.59	244	1.13	1.21	0.73	269	1.37	1.46	0.89	294	1.64	1./4	1.06	319	1.92	2.03	1.20
220	0.92	0.98	0.59	245	1.14	1.22	0.74	270	1.38	1.47	0.89	295	1.65	1.75	1.07	320	1.93	2.04	1.20
221	0.93	0.99	0.60	246	1.15	1.23	0.74	271	1.39	1.48	0.90	296	1.66	1.76	1.08				
222	0.94	1.00	0.61	247	1.16	1.24	0.75	272	1.41	1.49	0.91	297	1.67	1.77	1.08				
223	0.95	1.01	0.61	248	1.17	1.25	0.76	273	1.42	1.50	0.92	298	1.68	1.78	1.09				
224	0.96	1.02	0.62	249	1.18	1.26	0.76	274	1.43	1.51	0.92	299	1.69	1.79	1.10				

3.2 前日のキャリブレーションテーブル使用に依存

する誤差

2.2節で述べたように、赤外キャリブレーション処理 では前日の同じ時間帯に作成されたキャリブレーショ ンテーブル(以後前日のテーブルと呼ぶ)が使用され る。図5は当日観測されたデータを使用して計算され たキャリブレーションテーブル(以後当日のテーブル と呼ぶ)と、前日のテーブルの比較の概念図である。 この図より、あるレベルに対する両者のテーブルの温 度差は、低温域から高温域になるに従って増大する傾 向にある。そのため低温域と高温域についてその温度 差がどの程度になるかを調査した。 図6は食の影響がない時間帯V0の高温域(IR1のレ ベル値150(約290K))での両者の温度差(ΔTx) (以後誤差と呼ぶ)の経年変化である。1995年6月16 日から1999年2月28日までの全部のデータ(データ数

 図5 前日と当日の同じ時間帯に作成された赤外キャ リブレーションテーブルの比較 T'(x):前日テーブル T(x):当日テーブル Δ(x):xレベルでの両者の温度差

1342個)を用いて統計処理した結果、誤差の平均値は 0.00K、標準偏差は0.15K、最大誤差は0.48Kであった。 同様にIR2の高温域である150レベル、低温域に相当す るIR1,IR2のレベル60(約235K),WVのレベル40(約 245K)について調査を行った。結果は表3に示すよう にIR2の高温域について、誤差の平均値は0.00K、標 準偏差は0.16K、最大誤差は0.56Kであった。IR1、IR2、 WVの低温域については、いずれの場合でも誤差の平 均値は0.00K、標準偏差は0.10Kであったが、最大誤 差はIR1とIR2(0.39K)が最も大きく、つづいてWV (0.31K)の順であった。

次に食期間について同様の調査を行った。GMS-5 のようなスピン衛星では、春期(2月の下旬から4月 の中旬まで、年により正確な日時は変動する)と秋期 (8月の下旬から10月の中旬まで)それぞれ約50日間 生じる食の影響により、食が明けた直後の観測である V16(16UTC観測)での有効シャッタ温度(Te)の変 化が大きくなる。V16のTeは図7に示すように約283K から約295Kまで周期的に大きく変化している。これに

図6 V0の時刻での前日と当日に作成された赤外キャリブレーションテーブルの差 (IR1, 150 levelのデータを1995年6月16日から1999年2月28日までをプロットしたもの)

伴い、カウント値と放射輝度の関係を示す式(6)の係数 dも図8にあるように周期的に大きく変化している。 1995年8月30日から1999年3月6日までの食期間の V16のデータ(340個)を使用して同様に前日のテーブ ルと当日のテーブルとの温度差について統計処理を 行った。表3に示すようにIR1、レベル150に対応する 誤差の平均値は0.00K、標準偏差は0.23K、最大誤差 は0.81Kであった。同様にIR2の高温域について、誤 差の平均値は0.00K、標準偏差は0.24K、最大誤差は 1.02Kであった。このようにIR1、IR2の高温域につい

て、V16(食期間)の誤差はV0の場合と比較して標準 偏差は1.5倍程度、最大誤差は1.8倍程度大きかった。 IR1、IR2、WVの低温域については、いずれの場合で も誤差の平均値は0.00K、標準偏差は0.15K程度で あったが、最大誤差はIR2(0.65K)が最も大きく、 つづいてIR1(0.52K)、WV(0.40K)の順であった。 このように低温域についてもV0の場合と比較して標 準偏差は1.5倍程度、最大誤差は1.3~1.7倍程度大き かった。

以上のように誤差は、低温域から高温域になるにつ

表3 前日と当日の同じ時間帯に作成されたテーブルの温度差の統計処理結果 上段は通常時、下段は食期間を表している

チャンネル	レベル	温度 (K)	誤差平均 (K)	標準偏差 (K)	最大誤差 (K)	レベル	温度 (K)	誤差平均 (K)	標準偏差 (K)	最大誤差 (K)
IR1(V0)	150	290	0.00	0.15	0.48	60	235	0.00	0.10	0.39
IR2(V0)	150	290	0.00	0.16	0.56	60	235	0.00	0.10	0.39
WV(V0)	-	-	-	-	-	40	245	0.00	0.10	0.31
IR1(V16 食)	150	290	0.00	0.23	0.81	60	235	0.00	0.15	0.52
IR2(V16 食)	150	290	0.00	0.24	1.02	60	235	0.00	0.15	0.65
WV(V16 食)		-	-	-	-	40	245	0.00	0.14	0.40

れて増大し、食の影響を受けるV16では更に増加する ことがわかった。またIR2の誤差が他の赤外チャンネ ルと比較して最も大きかった。赤外輝度温度データを 時系列に解析する場合や赤外データから物理量を算出 し評価する場合などにはこれらの誤差に留意する必要 がある。

図8 カウント値と放射輝度とを関係づける係数dのV16での変化 斜線部分は食期間を示している

3.3 風観測時のキャリブレーション

GMS-5では1日4回(00,06,12,18UTC)の定常観 測の30分前に衛星風算出のために必要な観測(風観測 という)を実施している。図1に示されているように、 風観測時に使用されるキャリブレーションテーブルは CDASの計算機処理能力の問題により、30分後の定常 観測に使用されるキャリブレーションテーブルと同じ テーブルが使用されている。 を使用することによる影響を調べるために、観測時間 の差がどの程度キャリブレーションテーブルに影響を 与えるのかを調査した。

表4は1時間前の観測時に取得されたデータを使用 して計算されたキャリブレーションテーブルと、次の 観測時に取得されたデータを使用して計算されたキャ リブレーションテーブルを用いて、高温域及び低温域 のレベル値に対する両者のテーブルの温度差(誤差) の統計量を示している。IR1で高温域に相当する150レ

風観測時に定常観測のキャリブレーションテーブル

表4 観測されたテーブルと1時間前のテーブルの温度差 (同--レベル値に対するV0とV1との差)

チャンネル	レベル	温度	誤差平均	標準偏差	最大誤差	レベル	温度	誤差平均	標準偏差	最大誤差
		(K)	(K)	(K)	(K)		(K)	(K)	(K)	(K)
IR1	150	290	0.00	0.13	0.46	60	235	0.00	0.11	0.52
IR2	150	290	0.00	0.14	0.60	60	235	0.00	0.10	0.46
WV	-	-	-	-	-	40	245	0.00	0.11	0.39

ベルでの誤差の平均値は0.00K、標準偏差は0.13K、 最大誤差は0.81Kであった。同様にIR2の高温域につ いて、誤差の平均値は0.00K、標準偏差は0.14K、最 大誤差は0.60Kであった。IR1、IR2、WVの低温域に ついては、いずれの場合でも誤差の平均値は0.00K、 標準偏差は0.10K程度であったが、最大誤差はIR1 (0.52K)が最も大きく、つづいてIR2(0.46K)、WV (0.39K)の順であった。

しかし、風観測で使用される定常観測のキャリブ レーションテーブルは3.2節で述べたように前日の テーブルであるため、風観測においては30分の観測時 間差による温度差と前日のテーブルを使用することに よる温度差の両方を考慮しなければならない。最も大 きな影響は雲頂温度等から衛星風の高度を推定する際 に生じると考えられる。両者の最大誤差の和が1K程 度であるので、気温減率を0.6K/100mと仮定するとこ の誤差による高度の推定誤差は最大200m程度となる と推定される。

3.4 S-VISSR固定テーブルの誤差

2.2節で述べたようにS-VISSRで使用されるキャリ ブレーションテーブルは、200Kにおける固定テーブル との温度差が最小になるように作成される。そのため、 高温部ほど実際のキャリブレーションテーブルと固定 テーブルの差は大きくなる傾向にある。

図9は運用開始直後の1995年7月2日から1999年10 月2日までのS-VISSRのIR1キャリブレーション テーブルの240Kから300Kまで20K毎に対応するレベ ル値と同じレベル値に対応する固定テーブルの温度と の温度差を示している。図からわかるように温度が高 くなると両者の温度差も大きくなる傾向にある。1996 年5月1日に軌道上の特性を反映するため固定テーブ ルに変更が加えられた。この影響により、変更前は両

図9 S-VISSRのIR1キャリブレーションテーブルと固定テーブルの同じレベルでの温度差 V0のデータを使用してキャリブレーションテーブル240K, 260K, 280K, 300Kに対応す るそれぞれの温度差を示している

者の温度差がIR1の300Kで最大4K程度と大きく、ま た固定テーブルのほうがS-VISSRのテーブルに比べ て温度が高かったが、変更後は両者の温度差がIR1の 300Kで最大-2.5K程度と全体に小さくなったが、逆に 固定テーブルの方がS-VISSRのテーブルと比較して 温度が低くなる傾向になった。さらに、1月や7月に 固定テーブルの温度がより低くなるような季節変動も あることがわかった。

また、同様にIR2及びWVについて調査した結果、 固定テーブル変換後は、IR2の300Kで最大-2.4K程度、 WVの250Kで最大-2.5K程度、両者の温度差が生じて いる。固定テーブルを利用する際これらの点に留意す る必要がある。

3.5 水蒸気チャンネルの応答関数

アメリカ海洋大気庁(NOAA)からGMS-5の水蒸 気チャンネルの応答関数が水蒸気の透過率の曲線に非 常に似ているとの指摘があった(Breon,1999:私信)。 応答関数は、真空中で検出器がある波長のエネルギー をどれぐらいの割合でとらえることができるかを示し たものである。この応答関数は衛星製作メーカーが打 ち上げ前、地上において検出器から4~6m離れた ターゲットから射出されるエネルギーを計測する事に より求められた。本来は、このような計測は、大気中 の水蒸気などによる吸収、散乱の影響を避けるため真 空中で行われるべきであるが、計測が大気中で行われ たため、ターゲットから射出されたエネルギーは、検 出器にすべて到達しなかったことが判明した。この結 果、計測された応答関数は水蒸気等の影響を受けたも のになってしまった。赤外1、赤外2チャンネルの観 測波長域は大気の窓領域であるため、計測中の水蒸気 の影響は非常に小さいと考えられるが、水蒸気チャン ネルの観測波長域は水蒸気吸収帯であるため計測中の 水蒸気の影響は大きいと考えられる。

気象衛星センターでも放射モデル (MODTRAN (Berk,1989, Kneizys,1988)) と1976年US標準大気

図10 放射モデルMODTRANを使用して計算した透過率とGMS-5のWVの応答関数 (透過率は1976年US標準モデルを使用。4m先のターゲットを水平方向に観測したときのもの) モデル (Kneizys,1988) を使用して、地表面 (1013hPa) で水平方向に路程4m地点での大気の透過率を算出し 水蒸気チャンネルの応答関数と比較した。図10は算出 された透過率と水蒸気チャンネルの応答関数を重ねあ わせたものである。Breonが指摘したように両者は類 似していることが確認できた。

現在、気象衛星センターでは大気中で測定した応答 関数のキャリブレーションへの影響及び補正の方法等 を検討している。

4. 可視チャンネルデータ利用上の留意点

4.1 可視チャンネルデータの経年変化

GMS-3及びGMS-4で観測された長期間の可視 データの解析により、PMTが使用されている可視検出 器の感度に顕著な経年変化が見られたと報告されてい る(Tsuchiya 1996)。一方、1章で述べたようにGMS-5の可視検出器はPMTからより感度が安定なシリコン 光ダイオードに変更になった。長期間の可視データの 利用には可視データにどのような経年変化が生じてい るかを把握する事は重要である。

そのため、ここではGMS-5の可視チャンネルデー タのレベル値がどのように経年変化しているのかを GMS-4と比較してみた。使用したデータはGMS-4 (1989年12月9日から1995年5月15日まで)及び GMS-5(1995年6月13日から1999年3月31日まで) のV6の全球画像データを用いて作成されたデジタル カウント値のヒストグラムデータである。個々のヒス トグラムについて、ゼロカウント値から累積度数40%、 70%、90%、98%、99.9%に対応するカウント値を求 めそのカウント値を反射量に変換し、その反射量の時 系列を比較する事でその経年変化を調査した。図11、 12はそれぞれGMS-4、GMS-5の運用開始からの上記 の反射量の変化を示している。図11のGMS-4の結果 から、反射量が低い領域に対応する累積度数が40%の ところで、運用開始時に2.75%だった反射率は運用開 始から5年半後には1.67%の反射率に低下した。同様 に反射率が高い領域に対応する累積度数99.9%のとこ ろでは、運用開始時に68.72%だった反射率は運用開始

図11 GMS-4の反射量の経年変化

全球ヒストグラムを作成し、反射量が低い側から累積度数40%, 70%, 90%, 98%, 99.9%に対応するそれぞれの 反射量(運用開始直後(1989年12月9日)から運用終了直前(1995年5月14日)までの06UTC帯のデータ)

図12 GMS-5の反射量の経年変化

全球ヒストグラムを作成し、反射量が低い側から累積度数40%, 70%, 90%, 98%, 99.9%に対応するそれぞれの 反射量(運用開始(1995年6月13日)から1999年3月31日までの06UTC帯のデータ)

から5年半後には51.89%の反射率に低下した。一方、 図12が示すように、GMS-5の場合、累積度数40%のと ころでは、運用開始時、運用開始から4年後とも1.56% の反射率で、反射率の低下は見られない。また、累積 度数99.9%のところでは、運用開始時に80.87%だった 反射率は運用開始から4年後には78.38%の反射率に 低下し、その低下の度合いは約1レベル程度である。 このように両者の結果から、GMS-5における可視 データのレベル値の経年変化は、GMS-4に比較して かなり小さいと考えられる。

5. まとめ

本稿では、現在DPC及びCDASで行われている GMS-5 VISSRのキャリブレーションの状況と利用 者がVISSRのデータを利用する際に留意することに ついて報告した。内容は以下のようにまとめられる。 (1)可視チャンネルは4個の検出器で構成されていて、 それぞれ固定のキャリブレーションテーブルが用意 されている。S-VISSRでは、4つのキャリブレー ションテーブルを1つの標準キャリブレーション テーブルに置き換えて処理されている。

- (2)赤外チャンネルキャリブレーション処理は定時観測 (1日24回)に毎回DPCで行われ、キャリブレー ションテーブルが作成される。このテーブルは、低 温側が低輝度レベルに、高温側が高輝度レベルに対 応づけされている。S-VISSRでは、反転処理とシフ ト処理が行われた後にキャリブレーションテーブル が作成される。このテーブルでは、低温側が高輝度 レベルに、高温側が低輝度レベルに対応づけされて いる。
- (3)赤外チャンネルキャリブレーション処理に使用する 基準黒体の射出率の修正が行われ、1996年6月13日 V6~1996年11月29日V23の期間のキャリブレー ションテーブルの再作成が行われた。更に、利用者

が保存している過去の赤外データの温度を容易に補 正できるように、簡易変換テーブルも用意された。 (4)赤外キャリブレーション処理では、前日の同じ時間

- 帯に作成されたキャリブレーションテーブルが使用 されるが、これによる誤差は、低温域から高温域に なるにつれて増大し、食の影響を受ける時間帯では 更に大きくなる。また、IR2の誤差が他の赤外チャ ンネルと比較して最も大きく最大誤差は1K程度で ある。このため、赤外輝度温度データを時系列に解 析する場合や赤外データから物理量を算出し評価す る場合などにはこれらの誤差に留意する必要がある。
- (5)風観測時には30分後の定常観測に使用されるキャリ ブレーションと同じテーブルが使用される。これに よる誤差と前日のテーブルを使用する誤差による大 きな影響は雲頂温度等から衛星風の高度を推定する 際に生じると考えられる。両者の最大誤差の和が 1 K程度であるので、気温減率を0.6K/100mと仮定 するとこの誤差による高度の推定誤差は最大200m 程度になる。
- (6)S-VISSR固定テーブルは1996年5月1日に変更さ れたが、変更前はIR1 (300K) で最大4K程度S-VISSRテーブルに比べて温度が高かったが、変更後 は逆に最大で2.5K程度低くなる傾向になっている。 また、1月や7月に固定テーブルの温度がより低く なる季節変動が生じている。この傾向は、IR2及び WVについても同様であり、IR2 (300K) で最大2.4K 程度、WV ((250K) で最大2.5K程度、固定テーブ ルの方が低くなる傾向になっている。
- (7)GMS-5の水蒸気チャンネルの応答関数は水蒸気の 透過率と類似している。応答関数の計測を真空中で 行わなかったことが、主な原因と推測される。
- (8)GMS-5の可視検出器はPMTからより感度が安定な シリコン光ダイオードに変更になった。このため、 GMS-4までの可視チャンネルデータに見られたレ ベルの経年変化がかなり小さくなり、運用開始から 4年後でその低下の度合いは1レベル程度と推測される。

更に、次世代の気象衛星である運輸多目的衛星では、 赤外検出器のデータが8ビットから10ビットになり、 測定できる温度分解能が小さくなるため、キャリブ レーション処理に対する要求が今まで以上に高くなっ てくると考えられる。また、気候変動等の調査のため には全球的に精度の高い衛星データが求められるが、 そのためには全球的により精度の高いキャリブレー ションデータが必要である。そのため、全球的な均質 なキャリブレーションデータの作成とキャリブレーン データの品質向上のため、1997年の気象衛星運用国会 議では静止気象衛星と極軌道衛星NOAAなどの相互 キャリブレーションが提唱されている。日本を含む各 衛星運用国はこの提案に従って調査を実施している。

今後気象衛星センターは、これらの要望に対応する ため、より精度の良いキャリブレーションデータを提 供して行く考えである。

謝辞

水蒸気チャンネルの応答関数について貴重な指摘を いただいたNOAA/ERL Francois-Marie Breon氏 に感謝します。

参考文献

- Berk, A., L.S. Bernstein and D.C. Roberson, 1989: MODTRAN: A Moderate Resolution Model for LOWTRAN 7, GL-TR-89-0122.
- Kneizys, F. X., E.P. Shettle, L.W. Abreu, J.H. Chetwynd, G.P. Anderson, W.O. Galley, J.E.A. Selby and S.A. Clough, 1988: Users Guide to LOWTRAN 7, AFGL-TR-88-0177.
- Tsuchiya, K., M.Tokuno, H. Itaya and H. Sasaki, 1996, Calibration of GMS-VISSR, Featurees of MOS-VTIR and LANDSAT MSS, Adv. Space Res. Vol.17, No.1.1-10
- McMillin, M.L. and D. S. Crosby, 1984: Theory and Validation of the Multiple Window Sea Surface Temperature Technique, J. of Geo-

phys. Res., 89, 3655-3661.

- Meteorological Satellite Center, 1997, The GMS User's Guide Third Edition
- Tokuno, M., H. Itaya, K. Tsuchiya and S. Kurihara, 1997: Calibration of VISSR Onboard GMS-5, Adv. Space Res., 19,9,1297-1306.
- Potts, R.J., 1993: Satellite Observations of Mt. Pinatubo Ash clouds, Australian Met. Mag., 42, 59-68.
- Tokuno, M., 1997: Satellite observation of volcanic ash clouds, Meteorological Satellite Center Technical Note, 33,29-48.
- Tsuchiya, K., R. Ito and C. Ishida, 1982: Characteristics of the Detector of Multi Spectral Scanner (MSS) of Landsat in Space Environment. J. Meteorological Soc. Japan, SerII, 60, 1165-1174.
- 気象衛星センター技術報告特別号,1996:1-179.