新周波数標準装置の概要と特徴

高桑 健一*

The summary and characteristic of new Frequency standard unit

Kenichi Takakuwa

Abstract

The 2000 fiscal year, we have renewed Frequency standard unit in CDAS because of superannuating and JJY signal was shifted from HF band to VLF band.

The equipment supplies the highly precise reference frequency and the standard time to the satellite communication facility in CDAS. It is made each the parts into duplex construction in order to raise reliability.

In this renewal, the reference oscillator is updated from the crystal oscillator to the high accurate cesium atom oscillator, and this system doesn't require calibration. Accuracy of frequency and time to be generated by this oscillator doesn't get out of order only 1 second in fifteen thousand years.

JJY signal offers the standard frequency and the standard time. The signal is used comparison monitoring of frequency accuracy and synchronous calibration of time.

1. はじめに

気象衛星通信所 (CDAS) の周波数標準装置は、旧装置の老朽化及び時刻の較正に使用しているJJY信号の 短波帯から長波帯への移行に伴い、平成12年度に更新 された。

本装置は、CDAS内の衛星通信及び伝送処理を行う 多くの設備に、基準となる高精度の基準周波数、スケ ジュール運用及び相互同期のための正確な標準時刻を 供給している。装置各部は、冗長構成とし、信頼性の 高いシステムとしてある。

更新においては、装置の基準発振器を、水晶発振器 から、1次標準器としても使用されている高確度・高 安定度のセシウム原子周波数標準器とし、較正を必要 としないシステムとした。この発振器が出力する周波 数と時間の基準の正確さは1万5000年に1秒しか狂わ ないというものである。

*気象衛星センター 施設管理課 Meteorological Satellite Center, Facilities Division 2001年7月4日受領、2002年1月28日受理

長波JJY信号は、独立行政法人 通信総合研究所が管 理する標準周波数局から送信されている標準周波数並 びに標準時を提供する信号で、周波数確度の比較監視 と時刻の同期較正に利用している。

旧装置で使用していた短波JJY信号の送信局は、平成 13年3月をもって移行期間を終え、これに代わる長波 標準周波数局が、平成11年6月より、従来の実験局か ら、JJY信号を供給する本運用局となった。

2. システム概要

2.1 装置構成

本装置は、周波数標準部と標準時刻部で構成されて いる。各部は、それぞれ基準周波数と標準時刻を生成 し、CDAS内の各装置に供給する。図1に、装置外観構 成図を示す。

図1 装置外観構成図

2.2 周波数標準部

周波数標準部は、図2の機器で構成される。各ユニ ットは、信頼性を上げるため、ホットスタンバイ方式 の冗長構成としてあり、主系に障害のあった場合は、 瞬時に冗長系へ切り替わる機能を有する。

セシウム基準発振器は、発振する周波数の確度が、 1兆分の2という高い性能を持ち、この高精度1MHz /5MHz/10MHz基準周波数を発生・出力し、分配器に おいて、各1MHz/5MHz/10MHz切替分配器及び合成 器に分配している。合成器では、それぞれの用途に合 わせた周波数を合成し、ローカル基準切替分配器に出 力している。各切替分配器からは、基準信号を必要と する各装置へ出力している。

基準発振器の周波数は、その確度を監視するため、 長波受信機で受信した長波標準電波40KHzのJJY信号 と比較を行っている。周波数の比較では、基準発振周 波数及びJJY信号とも高確度のため、直接、周波数を比 較するのではなく、位相の比較をしている。

これは、以下の関係による。

位相差: $\Delta \phi = 2\pi \cdot \Delta f t$ Δf :周波数差 t:時間

位相比較では、セシウム基準発振器の10MHz出力 と、長波受信機において40KHzを基準に発振出力した 10MHzを、周波数変換器で100MHzに変換後、オシロス コープの表示及び位相計で比較をしている。さらに、 位相計の比較値は、ペンレコーダに記録している。周 波数を100MHzに変換するのは、オシロスコープの表 示では、以下の式のように、高い周波数の方が、時間 当たりの偏差が比較し易いからである。

(先の式より)
$$\frac{\Delta \phi}{t} = 2\pi \cdot \Delta f$$

周波数差⊿fが10倍になると、位相差⊿ φ も10倍となる。

図2 周波数標準部 構成図

制御装置では、各ユニットからの監視情報を集約・ 記録すると共に、ステータス信号をCDASの監視制御 装置に出力している。

2.3 標準時刻部

標準時刻部は図3の機器で構成される。本部におい ても、各ユニットは、ホットスタンバイ方式の冗長構 成としてあり、主系に障害のあった場合は、瞬時に冗 長系へ切り替わる機能を有する。

時刻信号発生器では、周波数標準部/セシウム基準 発振器から高精度の10MHz基準周波数を入力し、この 周波数を分周して生成した1PPS信号(1Pulse Per Second:1 [パルス/秒])に、協定世界時UTC(Coordinated Universal Time)の通算日・時・分・秒の時 刻情報を乗せて、直列時刻信号及び並列時刻信号にコ ーディングして、各信号分配器に出力している。標準 時との時刻同期には、周波数標準部/長波受信機から のJJY時刻情報を使用している。

各信号分配器は、各信号を、それぞれの信号切替器 に分配している。各信号切替器からは、時刻を必要と する各装置へ出力している。

タイムマーカ発生器では、設定に基づいた時刻に、 マーカーパルスを発生する。マーカ信号は、ペンレコ ーダ等の時刻記録に利用するものである。

3. 機能

3.1 周波数標準部

(1) セシウム基準発振器

セシウム原子発振器より、高確度、高安定の正弦波 を発生し、1 MHz/5 MHz/10MHzの各規準周波数を基 準信号モニタへ出力する。また、発振周波数より1 PPS 信号を生成し、制御装置へ出力する。

図3 標準時刻部 構成図

(2) 長波受信機

長波40kHzのJJY信号を受信して、JJY信号より時刻 情報を取り出す。また、高確度な40kHz周波数を基準と して、10MHzの周波数を発振し出力する。時刻データ と1PPS信号は、標準時刻部の時刻信号発生器に供給 している。10MHz周波数と1PPS信号は、セシウム基準 発振器の発振周波数と1PPS信号の比較監視用にも使 用している。

(3) 基準信号モニタ

セシウム基準発振器からの、1 MHz/5 MHz/10MHz の周波数を2系統の1,5,10MHz分配器に出力し、 それぞれの周波数をモニタできる端子が設けてある。 また、周波数監視に用いる10MHzを周波数変換器に出 力している。

(4) 1, 5, 10MHz分配器

2系統ある基準信号モニタからの各1,5,10MHz 入力信号を、切り替えて選択する。各信号は、分配後、 各1MHz/5MHz/10MHz切替分配器と合成器に出力 している。切り替えには、自動と手動があり、OPRモ ード選択時には自動切替、MAINTモード選択時には手 動切替となる。通常運用ではOPRモードであり、保守 等で手動切替をする際は、MAINTモードとする。

OPRモード時は、選択している主系が、-3dB低下 すると信号不良と判断し、瞬時に自動で冗長系へ切り 替わる。切替においては、1,5,10MHzの内、いず れかの主系信号が不良になると、1,5,10MHzの全 ての信号が切り替わる。

なお、片系不良時はCAUTION、両系不良時はFAULT のステータス信号を制御装置へ出力する。

(5) 合成器

 2系統ある1,5,10MHz分配器からの10MHz入力 信号を、切替選択し、この10MHzを基準として、IF搬 送波、アップコンバーター及びダウンコンバータ用 の、71MHz,67.1MHz,54.5MHz,44.76MHz,8.4 MHz,7.22MHzの各ローカル基準周波数を発振する。 発振には、高精度のPLLによる間接合成方式を採用している。各周波数は、ローカル基準切替分配器に出力する。切替動作は、1,5,10MHz分配器と同様である。

(6) 1 MHz/ 5 MHz/10 MHz 切替分配器

各1MHz/5MHz/10MHz切替分配器とも、2系統あ る1,5,10MHz分配器からの1MHz/5MHz/10MHz 各入力信号を、系統毎に出力信号数分に分配し、分配 後の出力信号、各々において系統を切替選択する。切 替動作は、1,5,10MHz分配器と同様であるが、自 動での切替では、出力信号毎に個別で切り替わる。手 動切替時は、全ての信号を一括して切り替えられる 他、個別での切り替えが可能である。各信号は、CDAS 内の基準周波数を必要とする装置へ出力している。

(7) ローカル基準切替分配器

2系統ある合成器からの各ローカル基準周波数を、 信号毎に切替選択しCDAS内のローカル信号源を必要 とする各装置へ出力している。切替動作は、前項の1 MHz/5MHz/10MHz切替分配器と同様に一括と個別 の切替機能を有する。

(8) 周波数変換器

セシウム基準発振器とJJY受信器から、それぞれ2系 統の10MHz信号を100MHzに逓倍し、オシロスコープ と位相計へ出力している。

(9) オシロスコープ

周波数変換器からの100MHz周波数を4現象で表示 し、セシウム基準発振器とJJY受信器との周波数位相差 (周波数偏差)を比較監視している。

(10) 位相計

周波数変換器からの100MHz周波数を入力し、セシ ウム基準発振器とJJY受信器との周波数位相差を電圧 信号にし、ペンレコーダに出力している。

(11) ペンレコーダ

位相計からの、位相差電圧信号をチャート紙に記録 している。なお、時刻記録には、タイムマーカ発生器 からのマーカ信号を使用している。

(12) 制御装置

制御装置では、周波数標準部及び標準時刻部の各ユ ニットからの監視情報、セシウム基準発振器とJJY受信 器との周波数位相差及び1PPS位相差を、パーソナル コンピュータに記録すると共に、ステータス信号を CDASの監視制御装置MS-175に出力している。 このステータス信号は、以下の6信号である。

ア.	POWER ON	:	装置電源ON
イ.	ALARM	:	電源アラーム
ウ.	OPR	:	運用状態
エ.	MAINT	:	メンテナンス状態
オ.	CAUTION	:	片系不良
カ.	FAULT	:	両系不良

また、ALARM及びFAULT時は、ブザーで報知する。

3.2 標準時刻部

(1) 時刻信号発生器

本器は、周波数標準部からの10MHzセシウム基準発 振周波数、JJY時刻情報を入力し、並列時刻信号BCD 30bit (計算機が直接取込める2進化10進符号、BCD: Binary Cord Decimal並列時刻コード)及び直列時刻信 号IRIG-B122 (アメリカのミサイル開発グループによ る、IRIG: Interrange Instrumentation Group直列時刻 コード)を、直列信号分配器と並列信号分配器に出力 している。また、タイムマーカ発生器にも並列時刻信 号を出力している。IRIG時刻コードの信号フォーマッ トを表1と図4に示す。

時刻は、JJY信号を利用しての標準時への同期較正を 行える他、手動での設定も行える。この場合、1PPS信 号に対して±0.5秒以内でセットを行えば、自動的に1 PPS信号に対し秒信号が同期される。発生時刻(UTC) は、年、曜日、通算日、時、分、秒をパネル面に表示 する。

また、JJY電波エンベロープ信号の音声モニタが可能 であり、信号の受信状況を確認できる。

(2) 直列信号分配器

2系統ある時刻信号発生器からの直列時刻信号を、 切替選択し直列信号切替器へ出力する。切り替えに は、自動と手動があり、OPRモード選択時には自動切 替、MAINTモード選択時には手動切替となる。通常運 用ではOPRモードであり、保守等で手動切替をする際 は、MAINTモードとする。OPRモード時は、選択して いる主系が、-3dB低下すると信号不良と判断し、瞬 時に自動で冗長系へ切り替わる。

なお、片系不良時はCAUTION、両系不良時はFAULT のステータス信号を制御装置へ出力する。

また、入力された時刻信号をデコードし、通算日、 時、分、秒を、パネル面に表示する他、信号のモニタ 端子を有する。

(3) 並列信号分配器

2系統ある時刻信号発生器からの並列時刻信号を、

切替選択し並列信号切替器へ出力する。切替機能は、 直列信号分配器と同様であるが、信号状態の判断のた め、CLKパルスを監視し、このCLKが断の時、信号不良 と判断する。

(4) 直列信号切替器

2系統ある直列信号分配器からの直列時刻信号を、 それぞれの系統毎に出力信号数分に分配し、分配後の 出力信号各々において系統を切替選択する。選択した 信号は、CDAS内の時刻信号を必要とする各装置へ出 力している。

切替動作は、直列信号分配器と同様であるが、自動 での切替では、出力信号毎に個別で切り替わる。手動 切替時は、全ての信号を一括して切り替えられる他、 個別での切り替えが可能である。

(5) 並列信号切替器

2系統ある並列信号分配器からの並列時刻信号を、 それぞれの系統毎に出力信号数分に分配し、分配後の 出力信号、各々において系統を切替選択する。選択し た信号は、CDAS内の時刻信号を必要とする各装置へ 出力している。

(凡例) IRIG-B122 ····· 100ppsパルス,正弦波振幅変調,1kHzキャリア,BCDコード

		第第第	432	符符符	合合合
	 	第	ī	符	合

	第1符号	第2符号		第3符号		第4符号		
レート指定		フォーマット指定		キャリア分解能		コード表現 ^{*2}		
Α	1 kpps	0	パルス幅コード	0	キャリア無し	0	BCD, CF, SBS	
В	100pps	1	正弦波振幅変調 ^{※1}	1	100Hz/10ms(周期)	1	BCD, CF	
D	lppm			2	1kHz/1ms	2	BCD	
Е	10pps			3	10kHz/0.1ms	3	BCD, SBS	
G	10kpps			4	100 kHz $/10 \mu$ s			
Н	lpps			5	$1 \text{MHz}/1 \mu \text{s}$			

※1 正弦波振幅変調では、bitの "0" と "1" により、振幅変調パルスの幅を変える

 ※2 BCD(Binary Code Decimal)time-of-yearコード
 : 1年周期の2進化10進符号で通算日、時、分、秒を表す SBS(Straight Binary Seconds)time-of-dayコード
 : 1日周期で時刻を秒で表す CF(Control Function)
 : 様々な制御、識別、他の特別な目的機能

表1 IRIGタイムコード フォーマット符号内容

図4 IRIGコードフォーマット B

切替動作は、前項の直列信号切替器と同様である が、信号状態の判断のため、CLKパルスを監視し、この CLKが断の時、信号不良と判断する。また、出力する時 刻信号の1つを選択し、通算日、時、分、秒を前面パ ネルに表示する。

(6) タイムマーカ発生器

本器は、2系統ある時刻信号発生器からの並列時刻 信号を切替選択し、5系統のマーカ信号を出力する。 入力信号の切替は、自動(OPRモード)と手動(MAINT モード)で可能である。マーカ信号は、それぞれの系 統で5種類のマーカを設定でき、各々のマーカ毎に間 隔/電圧/パルス幅を可変できる。マーカ信号は、ペ ンレコーダ等の時刻記録に使用する。

4. 性能

- 4.1 周波数標準部
- (1) 基準発振周波数 1 MHz, 5 MHz, 10MHz
- (2) 周波数確度 2.0×10⁻¹²以下
- (3) 周波数安定度
 - ア. 2標本標準偏差 σ_y (τ) (短期安定度)
 - 1.0×10⁻¹¹以下(1sec*1)
 - 1.0×10⁻¹¹以下 (10**sec**)
 - 5.0×10¹²以下 (10²sec)
 - 1.6×10¹²以下 (10³sec)
 - 5.0×10¹³以下 (10⁴sec)
 - 2.0×10¹³以下 (10⁵sec)
 - 8.0×10¹⁴以下 (フリッカフロア*2)
 - 図5(a)に特性グラフを示す。
 - *1 括弧内の時間は、平均

- 化時間 (τ) (7) モニタ端子 *2 平均化時間をそれ以上 延ばしても安定度が変化 (8) JJY受信周波数 (9) ステータス信号 しないポイント イ.SSB位相雑音(5MHz) -106dBc/Hz 1Hz 10**Hz** -135dBc/Hz 4.2 標準時刻部 100**Hz** -145 dBc/Hz(1) 総合時刻修正精度 1kHz -155 dBc/Hz-160 dBc/Hz(2) 自動修正範囲 10**kHz** 100**kHz** -160dBc/Hz (3) 時刻表示 図5(b)に特性グラフを示す。 (4) BCD直列出力 (4) 高調波歪 -40dBc以下 (5) BCD並列出力 -80dBc以下 (5) 非高調波歪 (6) 出力周波数 1 MHz, 5 MHz, 10MHz ア.基準周波数 $(50 \Omega / 13 dBm, 75 \Omega / 0 dBm)$ イ、ローカル基準周波数 (6) クロック信号 71MHz, 67.1MHz, 8.4MHz, 7.22MHz.
 - 54.5MHz (1962MHz/36), 44.7666666MHz (1611.6MHz /36) (75 Ω / -10 dBm)

10-10

10-11

10-12

10-13

10-14

10

 $\sigma_{v}(\tau)$

2標本標準備差

40**kHz**

6 bit. メイク接点 (POWER ON, ALARM, OPR, MAINT, CAUTION, FAULT) 出力系統2:MS-175への出力1,予備出力1

- ±2.5ms以下
- ±0.5s以内
 - 年,曜日,通算日,時,分,秒
- IRIGフォーマットB122 $(600 \Omega \cdot 50 \Omega \swarrow 2.8 V_{PP})$ 24時制 BCD 30bit並列時刻 コード 日:10bit,時:6
 - bit, 分:7bit, 秒:7bit (オープンコレクタ出力/ア
 - ンフェノール50Pコネクタ)
 - 1 Hz / 1 kHz
- (7) インヒビットパルス出力
 - 並列時刻信号の最下位ビット と同時の100µsパルス(チャ タリング 防止用)

(a) 時間領域安定度

図5 基準発振器 周波数安定度(a),(b)

4.3 外部出力インターフェイス

設備と信号インターフェイスを、周波数標準部及び標 準時刻部、各々について表2、表3に示す。

周波数標準装置から、信号を供給している衛星通信

切替分配器名										
信号周波数 Q dBm No.		No.	切替分配器 1系	切替分配器 2系						
ローカルま										
71NHz			1	WEFAX変調装置 1系	WEFAX変調装置 2系					
67.1MHz		1	$\frac{1}{2}$	S-VISSR装置 1系	S-VISSR装置 2系					
54.5MHz	1		3	送信周波数変換装置 ANT1-1系	送信周波数変換装置 ANT1-2系					
54.5MHz	1		4	送信周波数変換装置 ANT2-1系	送信周波数変換装置 ANT2-2系					
44.76MHz	75	-10	5	受信周波数変換装置 ANT1-1系	受信周波数変換装置 ANT1-2系					
44.76MHz			6	受信周波数変換装置 ANT2-1系	受信周波数変換装置 ANT2-2系					
8.4MHz			7	中間周波数分配装置 ANT1-1系	中間周波数分配装置 ANT1-2系					
8.4MHz			8	中間周波数分配装置 ANT2-1系	中間周波数分配装置 ANT2-2系					
7.22MHz			9	コマンド系装置 1系	コマンド系装置 2系					
1 MI z 切替分配器										
			$\lfloor 1$	VISSR復調処理装置 1系	VISSR復調処理装置 2系					
1			2	テレメトリ系装置 1系	テレメトリ系装置 2系					
					DCP復調装置 2系					
1 MHz	75	0	4	御星展度ナータ変換装置	└────────────────────────────────────					
			10	例距装直						
			H							
}			+ °							
1			1	$\frac{MISAI - IRt_{-2}\pi}{MTSAT - 2\pi}$	$\frac{MISAI - IK \pi T m}{MTSAT - 2 H}$					
1			<u><u></u></u>	MTSAT = 2H	· MISAI 2州					
1 MHz	50	13		予備						
			5	予備	▶ ↓					
			6	予備	予備					
	1		7	予備	予備					
5 MH z 切者	春 分記	器								
			l	網同期装置 1系	網同期装置 2系					
	1		2	緊急情報衛星同報装置	システムアナライザ					
5MHz	75	0	3	予備	予備					
			4	予備	予備					
		ļ	5	予備	予備					
				<u>MTSAT-1Rモニタ用*</u>	<u>MTSAT-1R用予備*</u>					
1			2	MTSAT-2用	<u>MTSAT-2用</u>					
EMIT-	50	0 13	$-\frac{3}{3}$	MTSAT-2用						
ZHING	90		⊢4		│					
			⊢°		了					
			┝╬		了"隅					
10112	「袪ム」	1 1 99		E 1 1 1						
101129	vier 77'E	s∟¢ář 	ī	予備	予借					
10MHz	75	0	⊢;	「「」」「畑」」	(
1 010110		ľ	1 3		↓ → ////////////////////////////					
		<u> </u>	t i		TCU 255					
			12	イメージャデータ変調器 1系*						
			3	LRIT変調器 1系 [*]	LRIT変調器 2系 [*]					
			4	授 似データ変調器 1系*	擬似データ変調器 2系*					
		1	5	スペクトルアナライザ*	ベクトルアナライザ*					
			6	MTSAT-1Rモニタ用 [*]	MTSAT-1R用予備 [¥]					
10MHz	50	13	7	MTSAT-2用						
			8	MTSAT-2用	MTSAT-2用					
			9	予備	予備					
		1	10	予備	予備					
				予備	· 予備					
			$ \frac{12}{12} $							
		1	i 13	1 77 偏						

※MTSAT-1Rへの出力は、Back Up用

表2 周波数標準部 出力インターフェイス

切替器名				外部出力先 装置名			
信号名 出力 Ω/コネクタ No.		切替器 1系	切替器 2系				
直列信号切替器	8						
			1	テレメトリ系装置 1系	テレメトリ系装置 2系		
		600	2	テレメトリ用磁気テープ記録装置	DCP監視制御ワークステーション		
			3	震度データ変換装置	予備		
			4	予備	予備		
				<u>TCU 1系*</u>	<u>TCU 2系*</u>		
直列時刻コード	2 QV		<u>-</u> 2	ネットワークタイムサーバ 1系*	<u>ネットワークタイムサーバ。2系*</u>		
IRIG-B122	2.0Vp-p		3	タイムコードリーダ 1系*	タイムコードリーダ 2系*		
		50	4	<u> TTCシミュレータ* TTCシミュレータ TTCシミュレータ TTCシミュレータ </u>	<u>MTSAT-1Rモニタ用*</u>		
		50	5	MTSAT-2用	<u>MTSAT-2用</u>		
				MTSAT-2用	予備		
					予備		
光动运员切转用	L		9				
业列语亏切替着	8						
			1	<u>コマンド系装置 1系</u>	コマンド系装置 2系		
	オープ ンコレクタ		2	VISSR復調処埋装置 1系 (VISSR加亜畑)	VISSR復調処理装置 2系 (VISSR/0) (VISSR/0) (VISSR/0)		
並列時刻コード				データインターフェイフ共産	(VISSK処理来)		
BCD 30bit			3	テレメトリエノア盤 1系	テータインターフェイス装置 テレメトリI/F盤 2系		
CLK INZ/IKHZ		アンフェノール	4	緊急情報衛星同報装置 1系	緊急情報衛星同報装置 2系		
※1Hz:No.1,3~ 8,10 1kHz:No.2,9		50Pコネクタ	5	監視制御装置	測距装置		
			6	管制コンソールNo. 5	石垣島測距局機能強化装置		
			7	DCP機能強化装置	予備		
			8	予備予備	予備		
			9	予備	予備		
			10	予備	予備		

※MTSAT-1Rへの出力は、Back Up用

表3 標準時刻部 出力インターフェイス

5. セシウム原子周波数標準器

5.1 原子発振器

本装置の基準発振器で使用しているセシウム原子周 波数標準器は、その発振原理に、量子力学における、 原子のエネルギー準位間の遷移によるスペクトル線の 放出と吸収の周波数を利用しており、セシウム原子の 周波数は、9,192,631,770 [Hz] である。原子発振器で は、最外殻電子が1個である原子(セシウム、ルビジ ウム、水素)が、発振器として作り易く用いられてい る。この原理を応用した原子周波数標準器は、極めて 精度が高い。以下に、主なものとその特長を記す。

(1) セシウム原子周波数標準器

長期の安定度が優れている。

(2) ルビジウム原子周波数標準器

短期・長期の安定度とも良い。

(3) 水素メーザ型周波数標準器 短期の安定度が優れている。

また、図6に発振器毎の周波数安定度特性を示す。 各々、平均化時間 τ と安定度との間に特徴がある。な お、それぞれの原子発振器とも、従属発振器として水 晶発振器を使用している。

以上の原子発振器の中で、セシウム原子発振器は、 平均化時間 r が10日以上における長期の安定度が最も 優れている。このため計測の標準体系であるトレーサ ビリティーにおいて、1 次標準器として使われている。

図6 発振器の周波数安定度

5.2 動作原理

セシウム原子発振器では、前項の発振原理におい て、原子の超微細構造準位間遷移の周波数、(F=4、 $m_F=0$) ⇔ (F=3、 $m_F=0$)を用いる。

※F:電子の全角運動量に原子核スピンをベクト ル合成した電子の全角運動量

m_F:磁気量子数

これは、原子核の周りを回る電子が、エネルギーの 一番低い基底軌道で、その電子スピンの向きを変える ことによって放出する電磁波の周波数になる。

以下、図7の構成図に従って、発振器の動作原理を 説明する。

- セシウム炉で、セシウム原子を加熱して蒸気に
 し、セシウムビームを出力する。
- (2) 偏向磁石Aによって、原子を偏向させ、エネルギー 準位 (F=4、 m_F =0)を下向き、(F=3、 m_F =0)

を上向きにし、中央スリットを通過させる。

- (3) 地磁気の影響を遮断した磁気シールドケース内の 2個の空洞共振器は、ラムゼイ(Ramsey)方式と呼 ばれ、両側に配置されたC磁場によって、σ遷移のみ を検出できるようにする。
- (4) 水晶発振器の周波数を位相変調し、周波数合成及 び逓倍されたマイクロ波で、空洞共振器が励振され ることによって、原子のエネルギー準位が、それぞ れ(F=4、m_F=0) → (F=3、m_F=0)、(F= 3、m_F=0) → (F=4、m_F=0) に遷移する。
- (5) 偏向磁石Bによって、エネルギー準位(F=4、
 m_F=0)を下向き、(F=3、m_F=0)を上向きに偏向させる。
- (6) (5)項によって、セシウムビームが検出器に到達する。この際、(4)項のマイクロ波周波数と遷移周波数が一致すると(共鳴周波数)、検出電流が最大となる。
- (7) ここで、マイクロ波に変調発振器の低周波数fmで 周波数変調をかけた上で、マイクロ波周波数を上下

図7 セシウム原子周波数標準器 構成図

に掃引させると(水晶発振周波数の変化)、検出器に fmが出力される。

- (8) 出力されたfmの位相は、入力の位相に対し、共鳴周 波数より高いと逆相、低いと同相となる。また、共 鳴周波数となった場合は、2fmが出力される。
- (9) 検出器出力を、位相弁別器に通すことによって、 出力レベルとfmの位相の関係より、共鳴周波数から の高低差を土の直流信号として取り出すことができ る。
- (10) この差信号を±0にするように、水晶発振器を制御 することによって、共鳴周波数と一致させ、水晶発 振周波数をロックする。
- (11) この水晶発振器の周波数を、標準周波数出力とし 6.2 長期安定度 て用いる。

6. 発振器の精度

発振器の性能について、確度、安定度といった用語 を用いたが、これらは、発振器の精度を表すものであ

る。以下において、精度の各用語を説明する。

6.1 確度

確度は、公称周波数に対する不確かさのことで、図 8のように、公称周波数f₀との相対誤差⊿f_aの絶対値 $|\Delta f_a|$ を、 f_a で規格化して表す。

確度 :
$$\frac{|\Delta f_a|}{f_0}$$
 [無単位]

長期安定度は、周波数経時変化(エージング)によ る周波数ドリフトのことで、図9のように、ランダム 雑音による変動を取り除いた、ある期間 4のドリフト 量 △f₄、すなわちドリフト率を、公称周波数f₀で規格化 して表す。

長期安定度 :
$$\frac{\Delta f_d}{f_0}/t_d$$
 [/時間]

※時間は、日、月または年の単位

6.3 短期安定度

短期安定度は、ランダム雑音による周波数ゆらぎを 表す。この短期安定度は、時間領域における2標本分 散(アラン分散)、周波数領域におけるパワースペクト ル密度、この2つの定義がある。

6.3.1 2標本分散

2標本分散は、時間領域における周波数安定度の尺 度で、これは、ランダム雑音によって時間変動する、 周波数偏差のばらつき具合を統計し、分散の形で表さ れる。この値が小さい程、安定度が良い事になる。測 定する際は、値を取得する間隔、つまり、測定周期を 変えて、各々の時間間隔による分散を求める。

なお、周波数変動の測定では、瞬時周波数は測定で きないため、平均周波数を用いる。これは、図10(a) のように、 τ 秒間の位相差または時間の変動分より、 平均した規格化周波数偏差yを、次式で求める。 $\overline{y}_{k} = \frac{1}{\tau} \int_{t_{k}}^{t_{k}+\tau} y(t) dt = \frac{\left[\phi(t_{k}+\tau) - \phi(t_{k})\right]}{2\pi f_{0}\tau}$ $= \frac{\left[x(t_{k}+\tau) - x(t_{k})\right]}{\tau}$

 \bar{y} : τ 秒平均規格化周波数偏差 y(t):規格化瞬時周波数

 ϕ : 位相差 x: 時間変動 t: 測定時間

 f_0 : 公称周波数 τ : 平均化時間

安定度の一般形式は、測定個数をN個に限定した標本分散を1つのサンプルとして、これを繰り返し連続 測定し、時間平均したものとして表す。

$$\left\langle \sigma_{y}^{2}(N,T,\tau)\right\rangle = \left\langle \frac{1}{N-1} \sum_{n=1}^{N} \left(\overline{y}_{n} - \frac{1}{N} \sum_{k=1}^{N} \overline{y}_{k} \right)^{2} \right\rangle$$

 $\sigma_{\gamma}^{2}(N,T,\tau)$:分散 N:測定個数

T:測定周期

- \bar{y} :測定值 (τ 秒平均企画化周波数偏差)
- ※右辺、第2項は、標本平均を求めている
 (N-1)で割るのは、標本分散による
 < >は無限時間平均

— 97 —

N=2、 $T=\tau$ 、測定値を $\bar{y}_i \geq \bar{y}_{i+1}$ とし、整理すると、

$$\sigma_y^2(\tau) = \left\langle \frac{(\bar{y}_{i+1} - \bar{y}_i)^2}{2} \right\rangle$$

となる。この式による分散を、2標本分散またはア ラン分散と言い、短期安定度の定義となっている。

式より、2標本分散 $\sigma_{y}^{2}(\tau)$ は、平均化時間 τ だけ離 れた 2 つの規格化周波数偏差 \bar{y}_{i+1} と \bar{y}_{i} の差で求められ る。無限時間平均を行うのは、標本分散の値を統計的 に安定させるためで、無限の測定サンプルの平均を意 味する。なお、実際の測定では、有限の測定サンプル から求める。

この分散は、アラン (D.Allan) 氏によって提案され たものである。アラン氏は、アメリカ国家標準局NBS (National Bureau of Standards、*現、国立標準技術研 究所NIST: National Institute of Standards and Technology)の研究員で、標準器となるような安定した発振 器の周波数安定度の尺度として、上の式を示した。

測定値より求めた安定度を図にする場合は、分散の

平方根である標準偏差を用い、2標本標準偏差 σ , (τ) 。として表す。作図例を、図10(b)に示す。

図において、平均化時間 τ の値によって、両対数グ ラフの傾きが、 $-1 \sim 1/2$ に変化する。これは、後述す るが、周波数が変動するランダム雑音の種類に対応し ていて、それぞれ、 τ^{-1} が白色PM雑音とフリッカPM雑 音、 $\tau^{-1/2}$ が白色FM雑音、 τ^{0} がフリッカFM雑音、 $\tau^{1/2}$ がランダム・ウオークFM雑音の各雑音となってい る。

6.3.2 周波数パワースペクトル密度

周波数変動のパワースペクトル密度は、周波数領域 における安定度の尺度で、これは、周波数ゆらぎに含 まれる変動エネルギーを各周波数成分に分解し、フー リエ(Fourier)周波数fで表したものになる。

測定では、規格化周波数偏差y(t)をf~f+⊿fの狭 帯域フィルタに通した出力を、2乗平均して単位帯域 幅当たりに換算したもので表される。

$$S_{y}(f) = \lim_{\Delta f \to 0} \frac{1}{\Delta f} \langle y(t, f, \Delta f)^{2} \rangle$$
 [Hz⁻¹]

 $S_{r}(f)$ は、周波数パワースペクトル密度である。これ は、フーリエ周波数fのべき乗でも表される。

 $S_{\nu}(f) = h_{\alpha} f^{\alpha}$ ($\alpha = -2, -1, 0, 1, 2$)

h_a:スペクトル密度の強さ

フーリエ周波数fは、 α の値により、 $f^{-2} \sim f^{-2}$ とな り、それぞれ、発振器から発生するランダム雑音に対 応している。周波数変動のパワースペクトル密度の特 性図を、図10 (c) に示す。以下において、各雑音の説 明をする。

<雑音の種類>

(1) *f*²ランダム・ウオークFM雑音(周波数変調雑音)

この雑音は、名前のように、酔歩のように乱れた歩 き方を意味していて、非常に低周波(0.1Hz以下)で発 生する雑音。

(2) f⁻¹フリッカFM雑音

これは、共振デバイス内の位相または周波数の直接 変動、または、発振器・その他のコンポーネント内の 位相変動がFM変換された雑音。

(3) f⁰白色FM雑音

発振回路で発生し、パワースペクトル密度が、周波 数により変化しない、平坦な白色性の周波数雑音。

(4) f¹フリッカPM雑音(位相変調雑音)

増幅器の非直線性によるフリッカ雑音で生じる、位 相変調雑音を、周波数雑音に変換したもの。

(5) *f*² 白色PM雑音

搬送波周波数からの大きな周波数オフセットで、ノ イズ・フロアとなって現れる平坦な白色雑音の位相成 分を、周波数雑音に変換したもの。

6.3.3 位相パワースペクトル密度

周波数領域の安定度尺度である周波数変動のパワー スペクトル密度 $S_{f}(f)$ は、位相変動のパワースペクトル 密度 $S_{f}(f)$ 、つまり、位相ゆらぎの各周波数成分でも表 され、次の関係がある。

$$S_{y}(f) = \left(\frac{f}{f_{0}}\right)^{2} S_{\phi}(f)$$

また、位相パワースペクトル密度は、SSB位相雑音 · (Single Side Band Phase Noise) *L*(*f*)と関係があり、 次の式となる。

$$L(f) = \frac{S_{RF}(f_0 + f)_{PM}}{C} \cong \frac{S_{\phi}(f)}{2} \quad [dBc/Hz]$$

 S_{RF} :サイドバンドレベル C:搬送波レベル

周波数領域の安定度は、スペクトラムアナライザ等 を用いて位相を測定するが、測定値は、通常、周波数 パワースペクトル密度に変換せずに、SSB位相雑音、ま たは位相パワースペクトル密度の値を用いる。図11 (d) に位相変動のパワースペクトル密度の特性図を 示す。図において、各雑音の傾きは, $S_r(f) = (f/f_o)^2 S_r$ (f)の関係より、 $-4 \sim 0$ となる。

6.3.4 時間領域と周波数領域の相互変換

この時間領域と周波数領域の安定度尺度は、時間領

域における自己相関関数と周波数領域におけるパワー スペクトル密度の関係から、フーリエ (Fourier) 変換 及びウィーナー・ヒンチン (Wiener・Khintchine)の公 式によって、雑音の種類が既知であれば、表4のよう に相互に変換可能である。

変換に当たっては、PM雑音において、測定帯域幅 f_nが明確な事と、各々の領域で直接測定ができない、例 えば、周波数が搬送波に近過ぎて、通常の位相検知に よるスペクトル測定が行えない周波数領域(フリッカ FM雑音、ランダム・ウオークFM雑音)において、 時間領域での測定を行い、周波数領域に変換をする。

この発振器の安定度として、固有の分散である2標 本分散は、以上のように、雑音の種類が分かっていれ ば、周波数領域のパワースペクトル密度への変換が行 える。また、スペクトル分析を行う分野(気象現象な ど)への応用が期待できる。

	周波数領域	時間領域
雑音種別	パワースペクトル密度 <i>S_y(f</i>)	2標本分散 $\sigma_y^2(\tau)$
$S_{y}(f) = h_{\alpha}f^{\alpha}$ $h_{\alpha} = パワ - スペクトル密度の強さ$ $(-2 \le \alpha \le 2)$	$S_{y}(f) = a\sigma_{y}^{2}(\tau)$ $a = \Box$	$\sigma_y^2(\tau) = bS_y(f)$ $b = \Box$
f ² 白色PM雑音	$\frac{(2\pi)^2\tau^2}{3f_h}f^2$	$\frac{3f_h}{(2\pi)^2\tau^2}\cdot\frac{1}{f^2}$
ƒ ¹ フリッカPM雑音	$\frac{(2\pi)^2 \tau^2}{1.038 + 3\ln(2\pi f_h \tau)} f$	$\frac{1.038 + 3\ln(2\pi f_h \tau)}{(2\pi)^2 \tau^2} \cdot \frac{1}{f}$
ƒ⁰ 白色FM雑音	2τ	$\frac{1}{2\tau}$
ƒ⁻¹ フリッカFM雑音	$\frac{1}{2\mathbf{h}2}\cdot\frac{1}{f}$	2 ln 2·f
ƒ ⁻² ランダム・ウォークFM雑音	$\frac{6}{\left(2\pi\right)^2\tau}\cdot\frac{1}{f^2}$	$\frac{(2\pi)^2\tau}{6}f^2$

※ で:平均化時間, f:フーリエ周波数, f_k:測定帯域幅

※ 変換は、雑音の種類が既知であること

表4 周波数領域-時間領域 安定度変換表

7. 原子時計の精度

セシウム原子周波数標準器は、高精度の周波数に基づいた、正確な秒信号を刻む原子時計としても用いら れている。この一般商用の原子時計は、300年に1秒の 誤差と言われる。

原子時計の誤差を求めるには、図11において、原子 発振器の周波数オフセット(確度)、周波数ドリフト率 (長期安定度)及び雑音成分(短期安定度)で表され る相対周波数y(t)を、ある期間、時間積分したものとし て推定を行う。

y(t):相対周波数(誤差)*###化Lt=#の y。:周波数オフセット(確度) :周波数ドリフト率(長期安定度) y_(t):雜音成分(短期安定度) y(t)(+) $y_n(t)$ $y(t) = y_o + r t + y_s(t)$ 相 対 周 波 数 y, 公车里波教((調薬=0) (-) t tk t_{k+1}

図11 原子時計の相対周波数(誤差)

 $y(t) = y_0 + rt + y_n(t)$

y(t):相対周波数(公称周波数からの偏差を規格化したもの)

 $y_0: 周波数オフセット(確度)$

r:周波数ドリフト率(長期安定度)

 $y_n(t): 雜音成分(短期安定度)$

上の式を、時間tで積分すると、

$$x(t) = \int_{t_k}^{t_{k+1}} y(t) dt = \left[x_0 + y_0 t + \frac{1}{2} r t^2 + x_n(t) \right]_{t_k}^{t_{k+1}}$$

x(t):時刻誤差

 x_0 :時刻オフセット

 $x_n(t)$:時間の雑音成分

時間の雑音成分 $x_n(t)$ による時刻誤差の発散度合い を、時間の関数として、標準偏差 $\sigma_x(t)$ で表すと、各雑 音において以下の式となる。

・ f^{0} F M雑音: $\sigma_{x}(t,\tau) = \sigma_{y}(\tau)\sqrt{t\tau}$ ・ f^{-1} F M雑音: $\sigma_{x}(t,\tau) = \sigma_{y}(\tau)\frac{t}{\sqrt{\ln 2}}$ ・ f^{-2} F M雑音: $\sigma_{x}(t,\tau) = \sigma_{y}(\tau)\sqrt{\frac{t^{3}}{\tau}}$

以上の式より、時刻誤差の推定値を計算した例を表 5に示す。

	<i>t</i> =1日	<i>t</i> =1年	<i>t</i> =5年		
周波数オフセット(確度))	$y_0 t: y_0 = 2 \times 10^{-12}$	173ns	63.1μs	315 µ s
周波数ドリフト(長期安定)	度)	$rt^{2}/2:r = 1 \times 10^{-13}/\#^{*}$	11.8ps	1.58μs	39.4μs
FM雑音(短期安定度)による	EM f	$\sigma_y (10^2 \text{sec}) = 5.0 \times 10^{-12}$	14. 7ns	281ns	628ns
時刻誤差の発散度合い	FM J	σ_y (10 ⁵ sec) = 2.0×10 ⁻¹³	18.6ns	355ns	794ns
係毕佩定 σ_x	FM f^{-1}	σ_{y} (10day) = 8.0×10 ⁻¹⁴	8. 30ns	3.03μs	15.2μs

※周波数ドリフト率 rは、数値例。周波数オフセット及びFM雑音は、本基準発振器の性能値より。

表5 時刻誤差 計算例

8. 原子時系

8.1 秒の定義

セシウム原子発振器が発生する周波数は、その正確 さから、時間の基準になっており、SI単位系において は、「秒は、セシウム133原子の基底状態の二つの超微 細構造準位の間の遷移に対応する放射の周期の 9,192,631,770倍の継続期間である」となっている。

この定義は、1967年に、第13回 国際度量衡総会 CGPM (General Conference on Weights and Measures)によって、決定されたものである。これより以前 は、天体の運動より測られた天文秒を基準とし、1956 年の国際度量衡委員会CIPM (International Committee for Weights and Measures) では、地球自転に基づき 「秒は平均太陽日の1/86400」としていた。

さらに、1960年には、第11回CGPMで、地球公転に基 づいた「秒は、暦表時の1900年1月0日12時における 地球公転の平均角速度に基づいて算定した1太陽年の 1/31,556,925.9747」と改定された。そして、1967年に 現在の定義となったものである。

定義が、このように変わったのは、平均太陽時の誤 差が、地球自転の不規則変動や永年減速により、相対 周波数で10⁻⁸~10⁻⁷になるのと、地球の公転による暦表 時ET (Ephemeris Time)も、長期的に天体運動を観測 して求めるため、正確さは10⁻¹¹~10⁻¹⁰ (10年~20年の 観測)と、科学分野での時間基準において、その精度 が問題となってきたためである。

1950年代に開発されたセシウム原子発振器は、暦表 時のET秒を基準に、その周波数を9,192,631,770[Hz] と測定された。原子からの遷移放射による周波数は、 理論上は一定不変で、この原理を利用した原子発振器 は、現在では、確度10⁻¹⁵~10⁻¹²のものがある。

秒は、時間の基準であり、精密かつ正確である必要 性より、天文秒から、セシウム原子の高確度・高安定 の遷移周波数周期を積算した原子秒に改めたものであ る。これに基づく時系は、原子時TA (Atomic Time)と 呼ばれる。

図12 世界時UTと協定世界時UTC

8.2 協定世界時

現在、使用されている原子時系は、国際原子時TAI (International Atomic Time, 各国の原子時計を加重平 均した時系)と協定世界時UTC (Coordinated Universal Time)がある。この2つの原子時系は、1958年1月 1日0時0分0秒の世界時UT2 (季節変化を補正した UT)において、その原点が一致している。

世界時UT(平均太陽時)は、地球の潮汐摩擦等によ る永年減速(-1×10⁻¹⁰/年)により、TAIに比べ日々 遅れていくので、この遅れに対し、うるう秒を挿入し 世界時UT1(極運動を補正し瞬間自転軸方向を極とし たUT)に0.9秒以内に合わせるようにした時系が、現在 の協定世界時で1972年7月1日より使用されている。

これより以前の旧協定世界時は、UT2に合わせるように一定の周波数オフセットをし、1秒の長さを調整 して、時間偏差を0.1秒以内に保つようにしていた。図 12にこれらの関係を示す。

うるう秒の挿入は、国際地球回転事業IERS (International Earth Rotation Service)が決定し必要なときに 行う。その時期は、第1優先日が、UTCの12月31日ま たは6月30日 (JST:1月1日または7月1日)、第2 優先日が3月31日または9月30日 (JST:4月1日また は10月1日)となっている。

なお、うるう秒は、現在のところ、正のうるう秒(+ 1秒)による秒挿入(23:59:59→23:59:60→00: 00:00)だけであるが、将来的に、地球自転速度が速 くなった場合は、負のうるう秒(-1秒)による秒削 除(23:59:58→00:00:00)を行う。

9. 日本標準時

9.1 概要

日本標準時JST (Japan Standard Time)は、通信総合 研究所で管理されていて、協定世界時に対し(+)9 時間オフセットされている。この時刻信号は、国家標 準周波数原器の正確な秒クロックより作られ、長波JJY 信号、テレホンJJY信号に使用されている。また、日本 標準時は、通信総合研究所において、諸外国の時刻標 準及びGPS (Global Positioning System)の時刻との比 較が行われている。

9.2 国家標準周波数原器

本装置は、基準周波数発生器にセシウム周波数標準 器を使用しており、温度管理された恒温室に設置され てある。また、10台のセシウム周波数標準器を使用し、 各々の安定度に逆比例する加重平均をとった上で運用 している。この並列冗長とした構成により、万一、1 台が故障しても運用への影響がないシステムとしてあ る。

9.3 標準時刻への利用

国家標準周波数原器の高確度な基準周波数より生成 された秒信号は、正確な時刻信号を作り、日本標準時 として、長波JJY信号、テレホンJJY信号、NTT時報サー ビス、テレビ・ラジオ放送等のメディアを通じて広く 利用者に提供されている。

10. 長波JJY信号

10.1 長波標準周波数局

この長波JJY信号は、通信総合研究所で遠隔管理され ている標準周波数局であり、標準周波数及び日本標準 時を送信している。

平成11年6月に、従来実験局のJG2AS信号であった ものが、JJY信号を送出する本運用局となった。送信局 は福島県の大鷹鳥谷山(おおたかどややま)にあり、 セシウム原子周波数標準器の高確度な基準周波数より 送信周波数及び時刻信号を生成し、時刻信号を重畳し た上で長波40kHzの周波数で送信している。

長波標準電波は、地表波の範囲(送信所から1000km 以内)では、10⁻¹¹~10⁻¹²(1日平均)の受信精度が可 能であり、旧短波JJY信号に比べ3~4桁の精度向上と なっている。時刻信号は、国家標準周波数原器から生 成された日本標準時と比較を行い、送信している時刻 の調整をしている。

また、長波標準周波数局の第2局が九州地方の福岡 県と佐賀県の県境、羽金山(はがねやま)山頂付近に 整備され、平成13年10月より、運用を開始している。 なお、第2局では、送信周波数を60kHzとしている。

10.2 長波標準電波送信装置

システム諸元は、以下のとおりである。

- (1) **呼出符号** : JJY (標準周波数局)
- (2) **空中線電力 :** 50kW
- (3) 周波数 : 40kHz (福島局)
- (4) 電波形式 : A1B

(5) 変調波の振幅: 最大100%,最小10%

(呼出符号送信時を除く)

- (6) 標準時 : JST (日本標準時)
- (7) 秒信号 : 常時
- (8) 周波数確度 : 1×10⁻¹²以下
- (9) 秒信号型式 : 0.2, 0.5, 0.8秒のマーク
- (10) タイムコード: 年,通算日,時,分,秒,曜日, うるう秒,パリティ

図13に、通常時のタイムコードフォーマット例を示す。

10.3 利用分野

長波標準電波は、JJY信号による標準時刻の提供と共 に、その高確度な周波数は、放送局や無線局の基準周 波数の較正に利用されている。また、タイムコードを 利用した"電波時計"へも利用されている。

図13 長波 J J Y タイムコード

11. おわりに

本装置の更新に当たっての、新旧装置の切替作業で は、各設備への基準信号が供給断となると、気象衛星 業務全体に影響が出るため、綿密な切替作業手順を作 成して、切替作業に細心の注意を払った上で、少ない 切替可能時間帯に合わせて接続替えを行った。

更新した装置からは、GMS系の他、MTSAT系設備への出力も用意し、今後とも衛星及び通信設備の安定した動作運用の礎として、大切な役割を担っている。

謝 辞

整備の期間を通じて、また、本稿をまとめるのに当 たり、施設管理課と気象衛星通信所の方々には、御指 導を仰ぎ、御協力を頂きました。この場を借りて深く 御礼申し上げます。

参考文献

- (1) 阿部伝家、1980:周波数標準装置、気象衛星セン ター技術報告(特別号I-2)、GMSシステム総合 報告I機器解説編その2、71-76.
- (2) 西田宏造、1989:周波数標準装置、気象衛星セン
 ター技術報告 特別号 I、GMSシステム更新総合報告 I通信機器編、97-99.
- (3) 日本通信機株式会社編:周波数標準装置 取扱説 明書.
- (4) 吉村和幸、古賀保喜、大浦宣徳、1989:周波数と時間 -原子時計の基礎/原子時のしくみ-、電子情報通信学会、コロナ社.
- (5) 今江理人、1999:原子時系と周波数標準、通信総 合研究所季報 VOL. 45 NOS. 1/2、時系と周波数標準 特集、19-26.
- (6) 相田政則、1999:時刻周波数標準の発生、維持、 供給/発生と公表の自動化システム、通信総合研究 所季報 VOL. 45 NOS. 1/2、時系と周波数標準特集、

51-58.

- (7) 今江理人、五十嵐通保、三木千紘、細川瑞彦、花 土ゆう子、今村國康、大塚淳、1999:時刻周波数標 準の発生、維持、供給/長波標準電波局新設計画、 通信総合研究所季報 VOL. 45 NOS. 1/2、時系と周波 数標準特集、73-82.
- (8) 今江理人、1999:周波数/時間標準と長波標準電波
 波 -標準電波の長波帯への移行とその応用に向けて-、第192回ITU-R(無線通信)研究会資料、
 郵政省・(財)新日本ITU協会編.
- (9) 小林三郎、1985:時刻コードの話、電波研究所ニ ユース 1985.1 No. 106.
- (10) 通信総合研究所 標準計測部 周波数標準課編、1999:標準電波の出し方について.
- (11) 横河・ヒューレット・パッカード社編:内蔵アラン分散解析機能による周波数安定度測定の簡便化、 タイムインターバルアナライザ技術資料、アプリケーション・358-12.
- (12) 武者利光、1980:ゆらぎの世界、講談社ブルーバ ックス.
- (13) 近藤浩、1997: 電気計測、森北出版、125-130.
- (14) 森屋俶昌、関和雄、1998:高周波計測 マイクロ 波通信からデバイスまで、東京電気大学出版局.
- John R. Taylor原著、林茂雄、馬場涼訳、2000:計 測における 誤差解析入門、東京化学同人.
- (16) 菅野文友、1980:信頼性工学、電子情報通信学会、 コロナ社.
- (17) 平山広之、森村正直、小林彬、1988: 雑音処理、計測自動制御学会、コロナ社.
- (18) F.R.コナー原著、広田修訳、1985:ノイズ入門、 森北出版.
- (19) 日野幹雄、1977:スペクトル解析、朝倉書店.
- 20) 小暮陽三、1999:なっとくするフーリエ変換、講談社.
- (21) 大村平、1969:統計のはなし、日科技連出版社.
- (22) 今野紀雄、2001: 図解雑学 確率モデル、ナツメ社.
- (23) 二間瀬敏史、2001: 図解雑学 時間論、ナツメ社.

- (24) 国際度量衡局編、工業技術院計量研究所訳・監修、1999:国際文書第7版(1998)国際単位系(SI) グローバル化社会の共通ルールー日本語版、日本規格協会.
- (25) 小泉袈裟勝、1979:単位のおはなし、日本規格協会.
- (26) 小泉袈裟勝、1985: 続単位のおはなし、日本規格 協会.
- (27) 高田誠二、1980:単位と単位系、共立出版.
- IRIG Standard 2000-95 IRIG Serial Time Code Formats Table Of Contents.