NOAA-16号赤外サウンダによる鉛直温度・露点温度分布算出 -NOAA衛星データ処理の近況-

永山 隆治*1、吉崎 德人*1

Calculation of vertical temperature and dew point profile, using infrared sounder of NOAA-16 —Present data processing of NOAA satellites—

NAGAYAMA Ryuji*1, YOSHIZAKI Yoshito*1

Abstract

NOAA-16 has launched in September 2000. Present polar orbiter series of satellites had began with TIROS-N (launched in October 1978), and continued with NOAA satellites. From NOAA-15, these sensors have been improved. Test result about calculation of vertical temperature and dew point profile, using infrared sounder (HIRS) of NOAA-16, will be reported.

要旨

2000年9月、極軌道衛星NOAA-16号が打ち上げられた。現在の形の極軌道衛星は、1978年10月に打ち上げられた TIROS-N衛星に始まり、その後のNOAA衛星シリーズへと続いている。NOAA-15号以降はこれらの改良型といえるもので、 センサー群の強化が図られている。本稿では、NOAA-16号の赤外サウンダ(HIRS)を用いた鉛直温度・露点温度分布 算出の試験結果について報告する。

1. はじめに

NOAA-15号以降、NOAA衛星の搭載するTIROS Operational Vertical Sounder (TOVS)のマイクロ波測器 が強化され、その名称もAdvanced TOVS (ATOVS) となった。気象衛星センターでは、2001年3月にNOAA -16号のデータ受信を開始、同年10月から赤外サウンダ による鉛直温度・露点温度分布算出を行っている。こ の報告では、ATOVSとTOVSとの違いを紹介し、NOAA -16号の鉛直温度・露点温度分布算出の結果について 報告する。

2. NOAA-K, L, Mシリーズの搭載機器

NOAA衛星はNOAA-K(軌道投入後NOAA-15号)か ら新シリーズの衛星となった。ATOVSはNOAA-15号 以降の衛星に搭載されている。しかし、NOAA-15号は 送信アンテナのトラブルなどで十分なデータ提供が出 来なかったため、気象衛星センターにおいては実質的 にNOAA-16号が初めてのATOVSデータ処理と言え る。

High Resolution Infrared Radiation Sounder (HIRS) は、使用する周波数に変更はあるものの、チャンネル数や分解能の変更はない。

Advanced Very High Resolution Radiometer (AVHRR)は、バージョンが2から3へアップデート し、チャンネル3がスプリット(昼夜切り替え)とな り、チャンネル数は5から6に増えた。

Microwave Sounding Unit (MSU)とStratospheric Sounding Unit (SSU)は廃止された。代わりに、MSU

^{(*1} 気象衛星センターデータ処理部システム管理課)

^{(*1} System engineering division, Meteorological Satellite Center) 2001年9月11日受領、2002年12月28日受理

の改良版である Advanced MSU (AMSU) が搭載され ている。AMSUはAMSU-AとAMSU-Bから構成され る。AMSU-Aは50.3~57.3GHzの12チャンネルに、 23.8、31.4、及び89GHzを加えた15チャンネルを有す a_{\circ} AMSU-B/ $t_{183.3\pm 1}$ GHz, 183.3 ± 3 GHz, 183.3 ± 3 7GHzの3チャンネルに加えて、157GHz及び89GHzの 合計5チャンネルを有する。

MSU のチャンネル数は4 だったが、AMSU のチャン ネル数は、AMSU-A とAMSU-B を合わせて20に増加 した。解像度もMSU が約100kmであったのに対して、 AMSU-A は約45km、AMSU-B は約15kmと大幅に向上 している。

表 1~6 に、TOVS及びATOVSの測器構成、および ATOVSの各測器の観測周波数などを示す。

3. NOAA-16号のデータ処理

NOAA-16号は2000年9月21日に打ち上げられ、2001

表1 TOVS の測器構成(NOAA·14 号以前)

年3月20日に正式に運用開始となった。

気象衛星センターでは、2001年3月28日にNOAA-16号 のデータ受信を開始した。同時に海氷画像(AVHRR/3, AMSU-B)と火山灰解析用画像(AVHRR/3)の配信 と、海面水温(AVHRR/3)について、処理係数決定の ためのデータ累積開始を開始した。2001年8月2日に は、オゾン全量(HIRS/3)と気温・水蒸気鉛直分布 (HIRS/3) について、処理係数決定のためのデータ累 積を開始した。

2001年8月30日に気温・水蒸気鉛直分布データ算出 の試験運用に入り、10月17日に正式に運用開始されて いる。その結果、NOAA-14号とNOAA-16号の2つの NOAA衛星データが受信・処理されることになった。 しかしその直後の10月19日以降、NOAA-14号の AVHRRデータにノイズが混入するようになってしま ったため、11月8日からNOAA-14号に替わってNOAA -12を受信している。ただし、NOAA-12はHIRSが動い

測器		ピクセル数/ライン	チャンネル数	
TOVS	High Resolution Infrared Radiation Sounder Ver.2 (HIRS/2)	56	20	
	Microwave Sounding Unit (MSU)	11	4	
	Stratospheric Sounding Unit (SSU)	8	3	
Advanced Very High Resolution Radiometer /2 (AVHRR/2)		2048	5	

表2 ATOVS の測器構成(NOAA-15 号以降)

測器			ピクセル数/ライン	チャンネル数
ATOVS	High Resolution Infrared Radiation Sounder Ver.3 (HIRS/3)		56	20
	Advanced Microwave Sounding Unit (AMSU)	AMSU-A1	30	13
		AMSU-A2	30	2
		AMSU-B	90	5
Advanced Very High Resolution Radiometer /3 (AVHRR/3)			2048	5+1

表3 AVHRR/3 チャンネル波長

パラメーター	Ch.1	Ch.2	Ch.3A	Ch.3B	Ch.4	Ch.5
波長帯(µm)	0.58-0.68	.725-1.0	1.58-1.64	3.55-3.93	10.3-11.3	11.5-12.5
解像度(km)	1.09	1.09	1.09	1.09	1.09	1.09

チャンネル	中心波数	波長(um)	半值幅(CM ⁻¹)
番号	(CM ^{·1})		
1	669	14.95	3
2	680	14.71	10
3	690	14.49	12
4	703	14.22	16
5	716	13.97	16
6	733	13.64	16
7	749	13.35	16
8	900	11.11	35
9	1,030	9.71	25
10	802	12.47	16
11	1.365	7.33	40
12	1,533	6.52	55
13	2,188	4.57	23
14	2,210	4.52	23
15	2,235	4.47	23
16	2,245	4.45	23
17	2,420	4.13	28
18	2,515	4.00	35
19	2,660	3.76	100
20 (注)	14,500	0.690	1,000
注1. 可視チャンネル			

表4 HIRS/3 周波数特性

表5 AMSU·A 周波数特性

チャンネル 番号	周波数(MHz)	水平・垂直偏波(注)	測器の搭載コン ポーネント
1	23,800	V	A2
2	31,400	V	A2
3	50,300	V	A1-2
4	52,800	V	A1-2
5	53,596±115	Н	A1·2
6	54,400	Н	A1-1
7	54,94 0	V	A1-1
8	55,500	H	A1·2
9	f ₀ =57,290.344	Н	A1-1
10	fo±217	Н	A1·1
11	f ₀ ±322.2±48	H	A1-1
12	f ₀ ±322.2±22	Н	A1-1
13	f ₀ ±322.2±10	H	A1·1
14	f ₀ ±322.2±4.5	Н	A1-1
15	89,000	V	A1-1
注1 H 垂直偏波	V 水平偏波		

表6 AMSU-B 周波数特性

チャンネル番号	中心周波数 (GHz)	Polarization angle (注)	
16	89.0±0.9	90-Ө	
17	150.0±0.9	90-0	
18	183.31±1.00	90-Ө	
19	183.31±3.00	90-0	
20	183.31±7.00	90-0	
注: polarization angle は、水平からの偏波(衛星の走査方向と平行な、電磁場ベクトル)の角度と定 義されている。θは天頂から測った走査角である。この表では、polarization angle が 90-0.で、走査角 に垂直であることを表す。			

METEOROLOGICAL SATELLITE CENTER TECHNICAL NOTE No.40 MARCH 2002

ていないため、これを用いた鉛直分布データ算出は行 っていない。

3.1 NOAA-16号 HIRSのピクセルずれの問題

NOAA-16号のHIRS/3の視野は、正規の位置から走 査方向に1ピクセルずれており、第2~56ピクセルが、 正常な第1~55ピクセルの位置に対応する。このずれ は地表では、衛星直下点で約20km、走査端で約70kmの ずれ量となる。HIRSの(ピクセル、ライン)から地表 の(経度、緯度)に変換するナビゲーション処理に補 正が必要となる。図1にHIRSピクセルずれの例を示 す。これを見ると、AVHRRと比較して、補正前のHIRS のずれが確認できる。

また、MSCのTOVS処理では、HIRSの視野内に含まれ る数百のAVHRR画素のデータを使用して雲量を計算 するため、予めHIRSとAVHRRの位置関係をテーブル 化しておく必要がある。したがって、このテーブルに も補正が必要である。図2にHIRSとAVHRRの相対的 な位置関係のテーブルを示す。実際の処理では、HIRS のずれ補正を施している。

3.2 鉛直温度・露点温度分布の精度評価

算出アルゴリズムは、竹内(1991)によるものであ る。詳細については同論文を参照されたい。

NOAA-16号のHIRSから算出した鉛直温度・露点温 度分布について、ゾンデデータとの精度評価を行っ た。期間は2001年9月10日の昼軌道から10月8日の夜 軌道までの約1ヶ月である。同じ期間のNOAA-14号の HIRSから算出した鉛直温度・露点温度分布について も、同じ調査を行った。グラフは高度毎のバイアス、 RMSの1ヶ月の平均を表している(図3~6)。

比較対象はラジオゾンデの気温、および露点温度 で、ラジオゾンデ地点はあらかじめ8地点(八丈島、 南大東島、名瀬、石垣島、南鳥島、父島、那覇、グア

図1 NOAA-16号の同一軌道のAVHRR(チャンネル4)とHIRS(チャンネル8)の比較画像。雲の位置は2つの 画像で同一のはずだが、補正前のHIRSがわずかにずれているのが分かる。(例:朝鮮半島東の雲の位置↓)

NOAA-9, 10, 11, 12, 14, 15

図2 AVHRRに対するHIRSのフットプリント。黒い部分がAVHRRの走査幅で、黄色い丸がHIRSのフットプリントである。上段がNOAA-15号まで。下段がNOAA-16号。NOAA-16号のフットプリントが、1 ピクセル分ず れている。

ム)が選ばれている。期間中にゾンデ地点から半径50 km以内の範囲にHIRSのピクセルが存在し、そのピク セルで鉛直温度・露点温度分布が算出された場合に、 統計データとして用いられる。今回の計算で用いたデ ータ数はNOAA-14号・NOAA-16号共に、50hPaより低 層で65~69個、それより高層で25~50個程度である。

気温の鉛直分布バイアス・RMSを示す図3・図4 では、NOAA-14号とNOAA-16号でその差異は0.1度の オーダーであり、グラフの形状もよく一致している。 露点温度の鉛直分布バイアス・RMSを示す図5・図 6では、図6のRMSにおける差異が最大で2K程度 と、図4と比べるとNOAA-16号のRMSが大きくなっ ている。しかし、露点温度の誤差がこれまでも2~3 K程度と大きかったことを考慮すれば、NOAA-16号の 計算結果は妥当なものであろう。

4. その他のNOAA衛星データ利用状況

NOAA衛星データは、赤外サウンダによる鉛直温

度・露点温度分布以外に次のように利用されている。

(1) オゾン全量

HIRSから算出したオゾンン全量。 観測部環境気象課で、日本付近のオゾン全量分布の モニターに利用。

(2) 火山灰解析用画像

AVHRRの赤外チャンネルの画像。

地震火山部火山課で、日本付近の火山噴煙のモニタ ーに利用。

(3) 海氷画像

AVHRRの可視および赤外チャンネルの画像、AMSU -Bの89GHzチャンネルの画像。

気候・海洋気象部海洋気象情報室で、日本付近の海 氷のモニターに利用。

(4) 海面水温画像および格子点値

AVHRRの可視および赤外チャンネルのデータを使 用して雲域を除去し、赤外チャンネルから算出した画 像および格子点値。 気候・海洋気象部海洋気象情報室で、日本付近の海 面水温分布の解析に利用。

このほか、気象研究所との共同研究で行っているエ アロゾルパラメタ(光学的厚さ、オングストローム指 数)の算出結果も、日本付近の分布の把握のために、 近く観測部環境気象課に試験提供する予定である。

5. おわりに

NOAA-15号・NOAA-16号に搭載されているATOVS の概要について簡単に説明した。また、その主要構成 測器である赤外サウンダ(HIRS)による鉛直温度・露 点温度分布精度を知るために、1ヶ月間のデータを用 いて評価を行った。その結果、NOAA-16号の計算結果の妥当性が確認できた。

今後の開発課題はマイクロ波測器 (AMSU)を用いた 鉛直分布算出である。赤外サウンダでは雲に対し不透 明であるため晴天域でしか算出できなかったが、 AMSUを使用することで、薄い曇天域の算出が可能と なり、算出領域の拡大が期待できる。また、HIRSでは 算出できなかった上層(1~10hPa)の鉛直温度分布も 算出できる。AMSUを用いた鉛直分布算出が可能とな った後に、晴天領域におけるHIRSとAMSUの鉛直分布 算出結果の比較も行ってみたい。

図3~6 期間は2001年9月10日の昼軌道から10月8日の夜軌道まで

参考文献

NOAA, NESDIS, NCDC, 2000 : NOAA KLM USER'S GUIDE Table of Contents

http://perigee.ncdc.noaa.gov/docs/klm/index.htm

青木忠生他、1983:TOVSデータ処理システムの概

要, 気象衛星センター技術報告、特別号、1-156

伊東康之、1996:衛星によるマイクロ波放射計リモー トセンシングの現状と将来、気象研究ノート、第187 号、177-196

竹内義明、1991:物理法によるTOVS処理システムの 開発、気象衛星センター技術報告、23、37-69