2015 seasonal prediction using CNU/KOPRI Seasonal Prediction System

Korea Polar Research Institute Baek-Min Kim

Experiment Design

- CAM3
- Atmospheric initial condition: NCEP FNL analysis
- 15-member ensembles (initial time-lagging method)

- CAM3
- Atmospheric initial condition: NCEP FNL analysis
- 15-member ensembles (initial time-lagging method)
- Snow & Soil: Land surface (soil moisture) is initialized by nudging snow depth (JRA55) and atmospheric condition (NCEP FNL analysis); training was done for the period 2015.10.01~28

- CAM3
- Atmospheric initial condition: NCEP FNL analysis
- 15-member ensembles (initial time-lagging method)
- Snow & Soil: Land surface (soil moisture) is initialized by nudging snow depth (JRA55) and atmospheric condition (NCEP FNL analysis); training was done for the period 2015.10.01~28
- Sea ice: Statistically predicted using S-EOF technique (CNU Jeong's group)

- CAM3
- Atmospheric initial condition: NCEP FNL analysis
- 15-member ensembles (initial time-lagging method)
- Snow & Soil: Land surface (soil moisture) is initialized by nudging snow depth (JRA55) and atmospheric condition (NCEP FNL analysis); training was done for the period 2015.10.01~28
- Sea ice: Statistically predicted using S-EOF technique (CNU Jeong's group)
- SST inside of Arctic: SST consistent with sea-ice with quadratic fit (Jun et al. 2014)
- SST outside of Arctic : 1) anomaly persistent (Sep. 2015) (GLB run); 2) climatological condition (ART run)

- CAM3
- Atmospheric initial condition: NCEP FNL analysis
- 15-member ensembles (initial time-lagging method)
- Snow & Soil: Land surface (soil moisture) is initialized by nudging snow depth (JRA55) and atmospheric condition (NCEP FNL analysis); training was done for the period 2015.10.01~28
- Sea ice: Statistically predicted using S-EOF technique (CNU Jeong's group)
- SST inside of Arctic: SST consistent with sea-ice with quadratic fit (Jun et al. 2014)
- SST outside of Arctic : 1) anomaly persistent (Sep. 2015) (GLB run);
 2) climatological condition (ART run)
- Control run: 100-yrs run with climatological mean SST/Sice

Boundary conditions & Snow

SIC anomalies used for simulations

Sea ice concentration in October 2015 (NSIDC)

Sea surface temperature (B.C. of ART & GLB runs)

Sea surface temperature

GLB run minus ART run

Observed snow depth from JRA55

Observed snow cover anomalies (Rutgers Snow Lab.)

Results

Simulated SAT anomalies from ART run

Simulated SAT anomalies from GLB run

Simulated Z500 anomalies from ART run

Simulated Z500 anomalies from GLB run

ΔZ500, DJF 2015

ΔZ500, JAN 2016

ΔZ500, NOV 2015

ΔZ500, DEC 2015

Simulated SnowDP anomalies from ART run

+

ь.

Analysis

Warm Barents/Kara Sea Pattern=Scand Pattern

Kug et al. (2015, NG)

Warm Barents/Kara Sea Pattern=Scand Pattern

30

25

20 15

10

10

-20 -25

-30

80N

60N

40N

150E

Daily OISST Anomaly Intv2: 01NOV2015 AVHRR - only

SCAND pattern: A typical pattern of cold Eurasia!

Thanks to Dr. Woo of KMA

10 Cases composite of less sea-ice cover in the Laptev Sea

Black dots (95%) Gray Dots (90%)

Thanks to Dr. Woo of KMA

Composite for negative year of Oct-Laptev SIC index

-1

-2 -3 -4 -5

Oct BF anomaly

Dec BF anomaly

- * Shading : blocking frequency anomaly
- * Grey dots : 95% significant values

Summary

- CNU/KOPRI dynamical seasonal prediction system predicts cold SAT over most part of eastern Eurasia this winter.
- Cold anomaly is mostly persistent over Siberia/Mongolia (northern East Asia)
- Weaker and intermittent cold anomaly is expected over Korea, Northern China & Japan

Summary

- Analysis indicates that
 - North Atlantic SST pattern this year favors cold Eurasian teleconnection pattern
 - characteristic less sea-ice over Laptev sea favors cold Eastern Eurasia
 - Larger extent of snow cover this year may help colder
 Eastern Eurasia condition this year
- Caveat: Our modelling system still does not give a credible prediction results if SST anomalies play a dominant role for the global teleconnection

Simulated SLP anomalies from ART run

Simulated SLP anomalies from GLB run

Simulated Z50, Z30 anomalies from GLB run

