KMA Extreme Climate Services and User-specific Applications on Energy Sector

Sunhee BAE, Bo Young YIM, Jong Seo PARK
Climate Extremes Analysis and Assessment Team, KMA
01 Introduction of Extreme Climate Service

02 Current status and Plan

03 Extreme Climate Service: User-Specific Applications on Energy
Introduction of Extreme Climate Service

Early Detection (monitoring) and Warning (prediction) Services for Extreme Climate based on Probabilistic Long-Range Forecast

1. More frequent and severe extreme climate/weather in recent decades
2. Large-scale impact and damage
3. Increasing demand for extreme climate/weather service

- Scientific Understanding of Extreme Climate
- Detection and Prediction Technology of Extreme Climate
Climate elements, such as temperature and rainfall are unusually (abnormally) higher or lower than climatology (yr 1981~2010)

- Over 90 percentiles
- Below 10 percentiles
For Example: 2016 Summer Extreme High Temp.

JJA Tmax: 29.7°C (Ranked TOP 3)

- **June Temp**: Ranked Top 7 (Top 1: yr 2010)
- **July Temp**: Ranked Top 12
- **August Temp**: Ranked Top 2 (Top 1: yr 2013, Top 2: yr 2016, Top 3: yr 1994)

High Temp:
- 7.21~7.30
- 8.1~25 High temp.

KMA (45 Stations)

Climate Extremes Analysis and Assessment Team / KMA
Current status and Plan

: Progress for Extreme Climate Service (since 2014)

Early Detection and Warning Technology for Extreme Climate
- development of characteristics analysis and application technology for extreme climate early detection using observational data
 → cases study for extremes & understanding of mechanisms
- development of technology evaluating a predictability of operational model (GloSea5) for extreme climate early warning
 → Improvement of predictability of extreme climate in GloSea5

Operational System Development
- development & improvement of operation system to support extreme climate services and provide early detection & warning information on extreme climate

Services & Application
- design & development of service and verification system of extreme climate early warning
Current status and Plan

Summery of the Extreme Climate Services

○ Trial Operation Date: ‘17.11.23~
○ Service Target: the Public and Energy-related (electricity, gas) Government

○ Way to Serve
 - public: KMA Homepage(www.kma.go.kr)
 - Energy Sector: another on-line system
 ※ User-specific application:

○ Issue Cycle & Period

<table>
<thead>
<tr>
<th>Kinds</th>
<th>Issue date</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Info.</td>
<td>Every Thu.</td>
<td>A Week(Mon~Sun)</td>
</tr>
<tr>
<td>Monthly Info.</td>
<td>Every 23rd</td>
<td>A month</td>
</tr>
</tbody>
</table>

 Unit Prediction Period (later)
 The week after next week (4 weeks) Next month (3 months)
User-specific Application: Ex. Energy

* To investigate features of extreme climate that affect energy consumption.

.. The 90/95 percentiles may be reasonable criteria in climate system. But, How about user-specific application? → Have to use different criteria of extreme climate reflecting the features of a target.

Ex. Weekly Electric Power consumption prediction (Seoul)

[Relationship between climate elements and power]

<table>
<thead>
<tr>
<th></th>
<th>Tmean</th>
<th>Tmax</th>
<th>Tmin</th>
<th>RH</th>
<th>Cloud Amount</th>
<th>radiation</th>
<th>Wind Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yr</td>
<td>0.801*</td>
<td>0.675**</td>
<td>0.795**</td>
<td>-0.257**</td>
<td>-0.205*</td>
<td>0.213*</td>
<td>0.207**</td>
</tr>
<tr>
<td>~ 2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Electric Power consumption: Summer (JJA) → climate variables: mean T, min T, relative humidity

* Gas consumption: Winter (DJF) → climate variables: min T
* Forecasting information including both intensity and occurrence day of extremely hot or cold temperatures that cause maximum of electric power or gas consumption

Summer

<table>
<thead>
<tr>
<th>Category</th>
<th>Weekly mean Energy (Electric Power) consumption (GW/day)</th>
<th>Remarks</th>
<th>Occurrence day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>165~</td>
<td>TOP 5%</td>
<td>2Days 3Days 45Days 6Days</td>
</tr>
<tr>
<td>Level 2</td>
<td>160~170</td>
<td>TOP 10%</td>
<td>4 3 3 2</td>
</tr>
<tr>
<td>Level 3</td>
<td>155~165</td>
<td>TOP 18%</td>
<td>3 3 2 1</td>
</tr>
<tr>
<td>Level 4</td>
<td>150~160</td>
<td>TOP 30%</td>
<td>2 2 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Season</th>
<th>Category</th>
<th>Weekly mean Energy (GAS) consumption (1000m³/day)</th>
<th>Remarks</th>
<th>Occurrence day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Level 1</td>
<td>2300~</td>
<td>TOP 2.5%</td>
<td>2Days 3Days 4Days 5Days~</td>
</tr>
<tr>
<td></td>
<td>Level 2</td>
<td>2100~2300</td>
<td>TOP 9%</td>
<td>4 3 3 2</td>
</tr>
<tr>
<td></td>
<td>Level 3</td>
<td>2000~2100</td>
<td>TOP 13%</td>
<td>3 3 2 1</td>
</tr>
<tr>
<td></td>
<td>Level 4</td>
<td>1900~2000</td>
<td>TOP 20%</td>
<td>2 2 1 1</td>
</tr>
</tbody>
</table>

Expected Energy Consumption Levels

- **Level 1**: TOP 5%
- **Level 2**: TOP 10%
- **Level 3**: TOP 18%
- **Level 4**: TOP 30%
User-specific Application: Ex. Energy

- Extreme climate forecast information to predict summer electric power and winter gas consumption
- Modify based on climate prediction model

Summer

<table>
<thead>
<tr>
<th>Tmean</th>
<th>2Days</th>
<th>3Days~</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 80%ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 90%ile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Winter

<table>
<thead>
<tr>
<th>Tmin</th>
<th>2~3Days</th>
<th>4Days~</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20%ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10%ile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weekly specific information on energy sector,

- In summer and winter season,
 more specific information (strength, duration of Ext. high or low temp.) will be added (20/80 percentile, Not only 10/90 percentile~)
- To expect Maximum power!!

Weekly detailed forecast (ex. Summer)

<table>
<thead>
<tr>
<th>Intensity of T mean(anomaly)</th>
<th>2Days</th>
<th>3Days~</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 80%ile (1.1~2.3°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over 90%ile (1.5~3.8°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The probability of 2 days occurrence with **over 80 percentile** (mean temperature) is **over 50%**
이상기후 감시·예측정보
2017년 8월 10일 발표

이상기후 전망
북태평양기후의 영향을 주로 받았음
(주 최저기온) 평년과 비슷했으며, 이상저온·고온 모두 발생가능성이 낮았음
(주 최고기온) 평년보다 높은 경향을 보이겠으며, 이상고온 발생가능성이 높았음

전망기간: 2017년 8월 21일 ~ 8월 27일

[Minimum Temp.] Probability of Extreme high or low temp. occurrence is under 30%

[Maximum Temp.] Probability of Extreme high temp. occurrence is over 30%

여름철 이상고온 상세전망

<table>
<thead>
<tr>
<th>평균기온 강도 (기온편차 기준)</th>
<th>2일</th>
<th>3일 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>30%미만</td>
<td>30% 이상 50% 미만</td>
<td></td>
</tr>
<tr>
<td>30% 미만</td>
<td>30% 이상 50% 미만</td>
<td></td>
</tr>
<tr>
<td>20% 미만</td>
<td>30% 이상 50% 미만</td>
<td></td>
</tr>
<tr>
<td>30% 미만</td>
<td>30% 이상 50% 미만</td>
<td></td>
</tr>
</tbody>
</table>

※ 기온 강도별 발생일수 전망은 발생가능성(확률) 백분율로 산출하였고, 백분율은 30%와 50%로 구분하여 예측정보를 제공합니다.

참고자료

전망기간(2017. 8. 21 ~ 8. 27) 이상저온 및 이상고온 기준 분포도

지난주(2017년 7월 31일 ~ 8월 6일) 이상기후 발생 현황

출처: 기상청, 2017년 8월 기준

상하호수, 해수, 지하수, 지표수의 이상기후 발생 가능성(확률) 전망을 30% 이상 50% 미만의 백분율로 제공합니다.
이상기후 감시·예측정보
2017년 10월 25일 발표

전망기간: 2017년 11월

이상저온 발생일수
- 40% 40% 20%
- 최적: 20% 30% 50%

이상고온 발생일수
- 30% 30% 50%

시작일이 발생일수 평균(3일) 초과하나 적절함
시작일이 발생일수 평균(3일)보다 적절함

[Days of Extreme low temp. occurrence] will be same or less than normal (3days)
[Days of Extreme high temp. occurrence] will be More than normal (3days)
Thank you~

Questions to

byyim@korea.kr
rosy@korea.kr