

Kiyotoshi TAKAHASHI

Climate Prediction Division Japan Meteorological Agency

- 1. Introduction of TCC downscaling product
- 2. Specification of one-month EPS product
- 3. Statistical downscaling method for TCC product

- Japan Meteorological Agency (JMA) has started probabilistic one-month forecast at stations in the southeast Asia for 7day-average surface temperature and 14day-avearge precipitation.
- The Model Output Statistics (MOS) technique based on the 20 years (1982-2001) hindcasts generate the forecasts.
- The Gauss-distribution method is used as the statistical tool of the MOS. The thresholds of tercile are determined as making each category become 33.3% of station's observation in 1982-2002.

Information on TCC web page

climate in the World Climate System Monitoring El Niño Monitoring NWP Model Prediction Global Warming Clima

OME > NWP Model Prediction > Probabilitic forecasts > Probabilistic forecasts map

Probabilistic forecasts map

« download text

Resolution of forecast model is not enough, roughly 100km.

It is difficult to predict accurately at station scale.

- From global to regional/local scale
 - Downscaling by Regional model (Dynamical downscaling)
 - Downscaling by Statistical method
 - Statistical guidance to forecasters

Statistical procedure should be important even if you use dynamical downscaling.

Outline of Statistical downscaling

Horizontal resolution	TL159 (about 1.125º Gaussian grid ~110km)
Vertical Layers	60 (Top Layer Pressure:0.1hPa)
Time integration range	34 days
Executing frequency	Once a week
Ensemble size	50 members
Perturbation method	Breeding of Growing Mode (BGM) & Lagged Average Forecast (LAF) method
SST	Persisted anomaly
Land surface Parameters	Initial conditions of land parameters are provided by a land surface analysis system. Observation of snow depth reported in SYNOP is assimilated.

Specification of Hindcast Experiment for one-month forecast

Model	JMA AGCM(TL159)
Target years	1982 to 2001, 20 years
Target months	All months (initial date is the 10 th , 20 th and end of every month)
Integration time	1 months
Ensemble size	5 members
Atmospheric initial condition	JRA-25 (the Japanese 25-year Reanalysis)
SST	Persisted anomaly
Land surface initial condition	Climatology; 10-year average of output from SiB forced by GANAL from 1997 to 2006

For Forecasts

3. Statistical downscaling for TCC product Multi-regression

Techniques used in statistical downscaling <u>Multiple regression formula:</u>

-Multiple regression : $\mathbf{Y} = \mathbf{A}_1 \mathbf{X}_1 + \mathbf{A}_2 \mathbf{X}_2 + \mathbf{P} + \mathbf{B}$

Y: dependent variable X: independent variable (predictor)

Method of variable selection : **Stepwise selection selected variables vary in locations and seasons**

Four seasons:

-winter dry season (Jan-Mar)
-pre-monsoon season (Apr-May)
-summer monsoon season (Jun-Sep)
-post-monsoon season (Oct-Dec)

3. Statistical downscaling for TCC product One month probabilistic forecasts at station points

Selectable predictors in Multiple Regression:

-model precipitation (to power of 1/4) or model 2m temperature

-topographical upward motion (U850 x slope of terrain) (eight kinds of terrain data from 0.083 to 1.25 degree)

Topographical factor = $\vec{U}850 \cdot \nabla h$

>0 upward motion
<0 downward motion</pre>

-MJO-Index (RMM1 and RMM2) (Wheeler and Hendon,2004) EOFs of near-equatorially averaged 200hPa velocity potential and 850hPa and 200hPa U (zonal wind) RMM1 and RMM2 are time coefficients of EOF1 and EOF2.

-NINO.3.SST anomaly (5S-5N,150W-190W) using previous month value

Anomaly of temperature tends to be distributed like normal distribution, but precipitation doesn't. We use precipitation to the 1/4 power.

Averaged 0 - 10N, 90E - 150E, in January

topographical upward motion (U850 x slope of terrain) (eight kinds of terrain data from 0.083 to 1.25 degree)

MJO : The Madden-Julian Oscillation (Madden and Julian, 1971, 1972)

The MJO is characterized by an eastward migration of large-scale convective activity with wave-number one. It is called as 30-60 day oscillation following the period.

(NOAA)

MJO-Index (RMM1 and RMM2) (Wheeler and Hendon,2004)

200hPa velocity potential (original index is used OLR) 850hPa zonal wind 200hPa zonal wind

EOFs of near-equatorially averaged (5S - 5N)RMM1 and RMM2 are time series of coefficients for EOF1 and EOF2.

-3

-2

- 1

o RMM1

3. Statistical downscaling for TCC product

Composition maps of stream function at 200hPa and OLR at each phase (1-12) of MJO in winter

2

3

Endoh and Harada (2005)

NINO.3.SST Anomaly (5S-5N,150W-190W) using SST anomaly at previous month

Taking the phase of ENSO into consideration

3. Statistical downscaling for TCC product NINO.3.SST (5S-5N,150W-190W)

El Nino regional impacts

WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

WARM EPISODE RELATIONSHIPS JUNE - AUGUST

La Nina regional impacts

COLD EPISODE RELATIONSHIPS DECEMBER - FEBRUARY

COLD EPISODE RELATIONSHIPS JUNE - AUGUST

(NOAA)

Observational data

-Observation data source APN Workshop data , ASEAN project on climate statistics, GSN(GCOS Surface Network), SYNOP reports, GAME project

-Selection target stations
-Period for making climatology
1971 ~ 2001 : 24 years or longer with 330 days or more with available daily observation
-Period of hindcasts
1982 ~ 2001 : 16 years or longer with 330

days or more with available daily observation

312 station points including 151 Japanese stations

3. Statistical downscaling for TCC product How to make probability

Base method

Make probability directly from the anomaly of all ensembles members of forecasts

For example : probability of below normal (< -2)

How to make probability

Gauss-distribution method

Assumption : Observation , ensemble mean forecast and noise are normally distributed.

$$\sigma_{y}^{2} = \sigma_{s}^{2} + \sigma_{n}^{2} \qquad \mathbf{r}^{2} = \frac{\sigma_{s}^{2}}{\sigma_{y}^{2}} \qquad (\text{sizeof ensemble} \rightarrow \infty)$$

$$\sigma_{n}^{2} = (1 - r^{2})\sigma_{y}^{2} \qquad (\text{with the perfect model})$$

- $\sigma_{\boldsymbol{y}}$: Standard deviation of observation
- **x**s : Ensemble mean forecast (single or multiple regression)
- $\sigma_{\boldsymbol{S}}$: Standard deviation of Ensemble mean forecast
- σ_n : Standard deviation of noise
- **r** : Correlation coefficients (no-regression or single or multiple)

$$P(y) = \frac{1}{\sqrt{2\pi\sigma_n}} \exp\left(-\frac{(y-x_s)^2}{2\sigma_n^2}\right) \int_{-\infty}^{\infty} \mathbf{P}(\mathbf{y}) d\mathbf{y} = 1$$

How to make probability

Gauss-distribution method

$$P(y) = \frac{1}{\sqrt{2\pi}\sigma_n} \exp\left(-\frac{(y-x_s)^2}{2\sigma_n^2}\right)$$

$$\sigma_n$$
 is from hindcast result

For example

At a station, below normal threshold is -0.5, above normal is 0.5 Forecast is 0.3, σ_n is 1

For Verification : Cross validation method

For Verification : Cross validation method

Verification score

Probability of forecast is above or below the normal of the observation

$$BS_{\rm f} = \frac{1}{N} \sum_{i=1}^{N} (p_i - v_i)^2$$

BS : Brier skill

N : sample number

- p_i : probability of forecast
- v_i : binary probability of observations

 BS_{clim} is calculated assuming the climatological forecast probabilities (50%).

BSS > 0 reliable BSS < 0 not reliable (than the climatological forecast)

Correlation of 28days (2nd-29th day forecast) average of precipitation with station observation

Frequency ratio of selection of each predictor in the Southeast Asia and Japan

most frequent secondly frequent

Southeast Asia(%)	Model precipitation	Inner product of U and land slope gradient	MJO index	NINO3 SSTA
Winter dry season	93	45	32	51
Pre monsoon	80	43	60	46
Summer monsoon	83	59	61	22
Post monsoon	95	64	77	40

14 days average (2nd-15th) precipitation

28 days average (2nd-29th) precipitation

Southeast Asia(%)	Model precipitation	Inner product of U and land slope gradient	MJO index	NINO3 SSTA	
Winter dry season	77	61	46	67	
Pre monsoon	58	48	52	61	
Summer monsoon	50	56	82	39	
Post monsoon	89	66	70	50	
Japan(%)	Model precipitation	Inner product of U and land slope gradient	MJO index	NINO3 SSTA	
Japan(%) Winter dry season	Model precipitation 91	Inner product of U and land slope gradient 35	MJO index 58	NINO3 SSTA 56	
Japan(%) Winter dry season Pre monsoon	Model precipitation 91 76	Inner product of U and land slope gradient 35 28	MJO index 58 48	NINO3 SSTA 56 36	
Japan(%) Winter dry season Pre monsoon Summer monsoon	Model precipitation 91 76 96	Inner product of U and land slope gradient 35 28 52	MJO index 58 48 58	NINO3 SSTA 56 36 34	

3. Statistical downscaling for TCC product Verification of one month probabilistic forecasts at station points

28 days (2nd-29th) average precipitation Cross-validation

BSS (Above Median)

Verification of one month probabilistic forecasts at station points

28 days (2nd-29th) average precipitation Cross-validation Reliability Diagram (Above Median)

Verification of one month probabilistic forecasts at station points

Verification of one month probabilistic forecasts at station points

7 days (9th-15th) average 2mT Cross-validation Reliability Diagram (Above/Blow SD)

Verification of one month probabilistic forecasts at station points

Correlation of 14days (2nd-15th day forecast) average of precipitation with station observation

Verification of one month probabilistic forecasts at station points

14 days (2nd-15th) average precipitation Cross-validation I

BSS (Above Median)

Verification of one month probabilistic forecasts at station points

14 days (2nd-15th) average precipitation Cross-validation Reliability Diagram (Above Median)

Verification of one month probabilistic forecasts at station points

Verification of one month probabilistic forecasts at station points

14 days (2nd-15th) average Precipitation Cross-validation Reliability Diagram (Upper 33.3%)

Verification of one month probabilistic forecasts at station points

14 days (2nd-15th) average Precipitation Cross-validation Reliability Diagram (Upper 33.3%)

TCC's Support to NHMSs

- Through the TCC web page, users can access to the latest probabilistic forecast at selected stations over the Southeast Asia and Japan.
- Users can download a sample code for the statistical downscaling through the TCC web page <u>http://ds.data.jma.go.jp/tcc/tcc/products/guidancetst/download_src.html</u> with the manual documentation.
- TCC disseminates the use of this services through seminars and training courses.

Meeting in TMD on 6 March

Thank you for your attention

