JMA Ensemble Prediction System for Long-range Forecast

Takayuki Tokuhito Climate Prediction Division, JMA

 Introduction
 Predictability
 Forecasting model
 JMA's Ensemble Prediction System (EPS) for long-range forecast
 Hindcast

1.Introduction

DEFINITIONS OF METEOROLOGICAL FORECASTING RANGES 1. Nowcasting 0-2 hours 2. Very short-range weather forecasting Up to 12 hours 3. Short-range weather forecasting Beyond 12 hours and up to 72 hours 4. Medium-range weather forecasting Beyond 72 hours and up to 240 hours 5. Extended-range weather forecasting Beyond 10 days and up to 30 days 6. Long-range forecasting From 30 days up to two years 7. Climate forecasting **Beyond two years**

Difference between Short- and Long-range Forecast

- Long-range weather forecast (from 30 days up to two years) describes averaged weather parameters, expressed as a departure (deviation, variation, anomaly) from climate values for that period.
 - On the other hand, forecast up to 10 days, such as nowcasting, very short-range weather forecast, shortrange weather forecast, and medium-range weather forecast, describe weather parameters (not deviation, not averaged).
 - Note that extended-range weather forecasting (beyond 10 days and up to 30 days) describes weather parameters, *usually* averaged and expressed as a departure from climate values for that period.

2. Predictability

Uncertainty of Forecast

Errors in Initial Condition Errors in Raw Observational Data Errors in Objective Analysis Procedure – Sparse Observation over Ocean Errors in Forecast Model – Limitation in the Spatial Resolution – Errors in Physical Processes

Predictability

Concept of the Ensemble prediction Multi-Initials within Errors in Observation

Two kinds of Predictability

< Predictability of 1st kind >

Originates from Initial condition

Deterministic forecast fails beyond two weeks due to the growth of errors contained in the initial states. Chaotic behavior of atmosphere comes from its strong non-linearity.

< Predictability of 2nd kind >

Originates from lower boundary condition

Effective for longer time scale; Month to season

predictability

Relative importance of Initial Condition and Boundary Condition

Lower Boundary Condition of Atmosphere

 Land Surface Soil Temperature Soil Moisture Snow Cover, Snow Depth Vegetation (Grass, Tree etc.)

Most IMPORTANT to the atmospheric variability ! Advantage of Ensemble Prediction System (EPS) over Statistical method

- Probability forecast
 - Intrinsically stochastic behavior of atmosphere can be predicted with ensemble technique .
- Forecast with physical consistency
 - NWP model can represent global circulation in a physically consistent way.
- Improvement based on advance of technology
 - Observation, Study on climate system, Model, Computational power,

3. Forecasting model

AGCM and CGCM

Two-Tiered Way

Atmospheric General Circulation Model (AGCM)

Coupled ocean-atmosphere General Circulation Model (CGCM)

Ocean model is coupled

Merits and Defects of Two Methods **One-tiered method** (Use of CGCM) Method 1 **Merit** : Ideal if SST prediction is correct. **Defect**: (1) SST errors cannot be corrected. (2) Needs large computer resources. Method 2 Two-tiered method (Use of AGCM) Merit : (1) Predicted SST can be corrected. (2) computer resources can be saved. **Defect**: Air to sea interactions are neglected for atmospheric prediction.

Persisted anomaly of SSTs (1)

SST changes slowly compared to atmosphere.

-> Persisted anomaly is useful for extended-range forecasting.

Persisted anomaly of SSTs (2)

• When there is a time lag of over 3 month, Persisted anomaly is not necessarily useful.

Importance of air to sea interactions Maps show correlation coefficient between precipitation and SST in summer.

Analysis

JMA-AGCM (initial month: May) JMA-CGCM (initial month: May)

JMA-CGCM reduces the overestimated positive correlation coefficient in the Western North Pacific.

What can a model predict?

Circulation in Tropics and mid- and high-latitudes

Where does the signal of long-range forecast come from ?

Response of atmosphere to the slowly varying boundary conditions

Especially, the deviation of SST in the tropics such as ENSO
→ Deviation of convective activity of large scale
→ Deviation of divergence of large scale
→ Deviation of tropical circulation

direct and indirect influence on the circulation in the mid- and high- latitudes

JMA's Dynamical Seasonal Forecast makes use of numerical weather prediction model

- Dynamical seasonal forecast makes use of a reduced horizontal resolution version of NWP model (AGCM) for short-range and medium range forecast: TL159 version for one-month forecast, and TL95 version for 3month and cold/warm season forecast.
- The same physical processes such as cumulus parameterization, radiation and cloud, boundary layer, gravity wave drag, and so on are used.
- Development of the NWP model is cooperation of Numerical prediction Division, Climate Prediction Division, and Meteorological Research Institute.

5. JMA's Ensemble Prediction System (EPS) for seasonal forecast

Introduction of a CGCM

The long-range forecasting model was changed from an AGCM (two-tiered method) to a CGCM (one-tiered method) and unified with the El Niño prediction model in February 2010.

	descriptions	
Old model	JMA-GSM (AGCM): T _L 95L40, Prescribed SST anomaly, SV (51 mem) Periods: max. 7 months	
Current model	JMA/MRI-CGCM , JMA-GSM (AGCM): T _L 95L40, MRI.COM(OGCM): Ion 1.0° x lat BGM+LAF (51 mem) Periods: 7 months	0.3-1.0° , L50

The JMA's EPS for Long-range Forecast Outlook

JMA Long-range Forecasting Model

Coupled ocean-atmosphere General Circulation Model (CGCM)

Specifications of the NWP model for Long-range forecast

Model	JMA/MRI-CGCM	
Horizontal resolution	AGCM: TL95 (about 1.875° Gaussian grid ~180km) OGCM: 1.0deg in lon. X 0.3-1.0 deg in lat.	
Vertical Layers	AGCM: 40 (Top Layer Pressure:0.4hPa) OGCM: 50	
Time integration range	7 months	
Executing frequency	Every five days (9 members for each initial date)	
Ensemble size	51 members from six different initial dates.	
Perturbation method	Breeding Growing Mode (BGM) & Lagged Average Forecast (LAF) method	
SST	One-tiered method	
Land surface Parameters	Climatology	
Note		

Schema of aggregation for the ensemble members in the EPS for long-range forecasting

6. Hindcast

Hindcast

 "Hindcast" is a set of systematic forecast experiments for past cases.

 Hindcast is performed to estimate systematic bias and skill of the model.

Specification of 7-month EPS Experiment (Hindcast for Long-range Forecast)

Model	JMA/MRI-CGCM (TL95)
Target years	1979 to 2008, 30 years
Target months	All months (initial date is the middle and end of every month)
Integration time	7 months
Ensemble size	10 (5 BGM & 15-day LAF)
Initial condition	
Atmosphere	JRA-25/JCDAS (JMA Climate Data Assimilation System)
Ocean	MOVE/MRI.COM-G (Ocean Data Assimilation)
Land surface	Climatology
Verification data	JRA-25/JCDAS, COBE-SST, GPCP

Systematic Bias

- Systematic Bias = Model climate Observed Climate
- Model climate, which is estimated from hindcast data, is not necessarily in agreement with observed climate.
- The longer execution time of forecasting model is, the larger departure form observed climate is.

Time Series of Spatial Correlation in Hindcast

Aug. 29 initial, 90-day mean (1-month lead time)

black: analysis Blue: forecast

Time Series of Spatial Correlation in Hindcast

Aug. 29 initial, 90-day mean (1-month lead time)

Z500 Zonal Mean 20-30N COR=0.57 Z500 Zonal Mean 40-50N COR=0.29

black: analysis Blue: forecast

Skill of forecasting model and lead-time

Lead-time (day)

The map show time series of ACC on Z500 in the Northern hemisphere . R30 indicates 1-month mean Z500. R90 indicates 3-month mean Z500. Period of the retrospective forecast is 22 years (1984-2005).

Skill of 3-month mean SST (ACC)

- a) show ACCs with a four-month lead time for Jun-August.
- b) and c) show time series of ACCs (average for 12 initial months).
- Period of the retrospective forecast is 22 years (1984-2005).

The JMA/MRI-CGCM shows better skill than JMA's two-tier old model.

Skill of 3-month mean Precipitation (ACC)

- a) show ACCs with a four-month lead time for Jun-August.
- b) and c) show time series of ACCs (average for 12 initial months).
- Period of the retrospective forecast is 22 years (1984-2005).

The JMA/MRI-CGCM shows better skill than JMA's two-tier old model.

Prediction skills should be checked before you use the products.

2) Improvement of the EPS for seasonal forecast is required.

Thank you!