TCC training seminar, 16-20 November 2015

Introduction and basic operation of iTacs

- iTacs: Interactive Tool for Analysis of Climate System -

Shoji Notsuhara Tokyo Climate Center Japan Meteorological Agency

Contents

<Introduction>

<Exercise 1>

Draw a 2D (latitude-longitude) map

<Exercise 2>

Draw a 1D (time-series) chart

<Exercise 3>

Implement regression analysis

What's iTacs?

Less time to manipulate the data,

more time to diagnose the climate system!

- A web-based application for analyzing and monitoring climate.
- Available on web browsers. No additional software or plug-ins are required.
- Persons at National Meteorological and Hydrological Services can use iTacs (ID and Password are needed).

What's iTacs?

What can be done by using iTacs?

- Various datasets are available.
- Various types of charts can be drawn.
- Various statistical analyses can be performed.

Available data

- Atmospheric analysis data
 - JRA-55 since 1958
 - Outgoing longwave radiation data provided by NOAA since 1974
- Oceanic analysis data
 - Sea surface temperature data by COBE-SST since 1891
 - Oceanic condition analyzed by MOVE/MRI.COM-G2 since 1958
- Forecast data
 - Outputs of JMA's one-month prediction model
- Others
 - Major SST Indices, CLIMAT reports, and user-input data (CSV format)

(See for details)

JRA project http://jra.kishou.go.jp/JRA-55/index_en.html

COBE-SST <u>http://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html</u> / <u>http://ds.data.jma.go.jp/tcc/tcc/library/MRCS_SV12/index_e.htm</u>

MOVE/MRI.COM-G2 http://ds.data.jma.go.jp/tcc/tcc/products/elnino/move_mricom-g2_doc.html

Samples of charts

• Various types of charts can be drawn.

DATA1 SST set HIST lat = -90:90 lon = 0:360 level = 1:1 time = 2013070100:2013070100 ave = 1MO

• Various statistical analyses can be performed.

iTacs is a very convenient and useful tool and it will strongly help you to understand climate systems.

Let's exercise basic operation of iTacs!

In November 2015, new version: iTacs ver.5 has been released. So we exercise using iTacs ver.5.

How to access

• Registered users can access iTacs from the Tokyo Climate Center (TCC) website.

TCC websit	e (<u>http://ds.data.jma.go</u>	.jp/tcc/tcc/inde>	<u>k.html</u>)	
 ● 気象庁 Japan Retrieved Space / Space 	Telkyo Climate Center WNO Regional Climate Center in RA II	(Asia) • TCC home • About	WMO	
Home World Climate Climate System Monitorin HOIE Mata are WMO RCCs? Whats WWO Recloared Climate Centers (RCCs) are centers of excellence that create regional products including long-range forecasts that support 9 Augu	Entrance		Press release Links	
regional and national climate activities, and thereby strengthem the capacity of WMO Members in a given region to deliver better climate services to national users. RCC Functions RCC Fun	iTacs (Interactive To	ol for Analysi		
services and training. Update Operational Activities for Long-range Forecasting Operational Activities of Climate Monitoring Ioperational Data Services, to support operational LRF and Climate monitoring Update Update Update Voltate Voltat	Announcement	iTacs (http:	://extrem	e.kishou.go.jp/tool/itacs-tcc2015/)
services 16 July Main Products · Update ClimatView Introduction to TTACS Imiteractive Tool, Ms	> 28 February 2014 - iTacs ver	iTacs Log	gin	
GPC Tokyo (a Global Producing Center for Long-range forecasts (URF)) Tock (Balance Forecasts (URF)) Tock (Balance Forecasts (Balance Forecasts (Balance Forecasts) (Balance Forecasts) (Ba	iTacs version 5.0	User Name:		ndlysh Datavet Torecast Datavet
CR C Tables LRF products TCC News State	iTacs v5.0	Password:		Analysis Dataset
Mit Plot I	Tutorial Manual			Datast Bennent Data type Area Level Time unit Moning period JRA-55 IPersure Levels HEST Asia ISSDP MonThity RACC # T(Temperature) [C2 Lat: 10 -165 MonThity RACC # ISSDP MonThity 10 RACC #
Interactive Tool	 Sea surface temperature (SS Daily mean SST anomalies SE0-bDa stream function 	Login		Lon 190 - 190 Ave C Time filter 2014 2 3 2 Derivative: Clon Tat Analysis method: X
the Climate System	 850-hPa stream function and Difference of monthly mean 9 	Tokyo	Climate (Use parameter code Analysis Data Submit
	S00-bPa beight and anomalies			

Basic operation (1)

Basic operation (2)

Contents

<Introduction>

<Exercise 1>

Draw a 2D (latitude-longitude) map

<Exercise 2>

Draw a 1D (time-series) chart

<Exercise 3>

Implement regression analysis

Latitude-longitude map (1)

• Let's chart monthly sea surface temperature (SST) for July 2015.

DATA1 SST sst HIST lat = -90:90 lon = 0:360 level = 1:1 time = 2015070100:2015070100 ave = 1MO

Latitude-longitude map (2)

- To set each item in "Data1" as follows.
 - Dataset SST
 - Element Sea Surface Data > Temperature (SST)
 - Data type HIST (meaning historical data)
 - Area ALL
 - Level 1
 - Time unit MONTHLY
 - Showing period "RANGE"; 2015 7; 2015 7

Latitude-longitude map (3)

- 1. Select "SST" in the "dataset" field.
 - Various datasets are available;
 CLIMAT, INDEX, JRA-55, K1EM, OCEAN-DATA, SAT, SST, USER-INPUT etc.
- 2. Select "element1" "Sea Surface Data " and "element2" "Temperature".
 - Available elements and their units will be shown in a listbox.

Latitude-longitude map (4)

Data 1

Dataset	Element	Data type		Area		Level	Time unit
SST	Sea Surface Data	HIST -	ALL			1 💌	
	□ Vector □ SD Derivative: □ Ion □ Iat	HIST NORM ANOM ANOM_SD	.at: -90 Ion: 0	- 90 - 360	Ave		Ave D Year-to-year
Analysis method: Analysis met	thod-						

3. Select "Data type" "HIST".

Available options are as follows:

- **HIST** : Historical actual analysis or observation data.
- **NORM** : Climatological normal data (averaged from 1981 to 2010).
- **ANOM** : Anomaly data (HIST NORM: difference from the climatological normal)
- **ANOM_SD** : Anomaly data normalized by their standard deviations.

Latitude-longitude map (5)

- 4. Select "Area" "ALL".
 - You can set/change the area more precisely with setting boxes.
- 5. Select "Level" "1".
 - Options in the "level" menu will change depending on you selection of "element".

Latitude-longitude map (6)

- 6. Select "Time unit" "MONTHLY".
 - There are several styles for range selection: DAILY, PENTAD DAY, MONTHLY and ANNUAL
- 7. Select "Showing period" "RANGE" and the year and month, "2015 07", for both upper and lower boxes.

Available options are as follows:

- **RANGE** : Setting the start and end points of the targeted time period.
- **YEARS** : Setting individual years.
- **INDEX** : Setting a SST index border to pick up years. (e.g. NINO.3)

Latitude-longitude map (7)

Finally, click the "Analysis Data Submit" button and the image will be displayed.

Data1	
Dataset Element SST Sea Surface Data Image: Sea Surface Data Temperature (SST) [(*	Data type Area Level Time unit Showing period HIST ALL I MONTHLY RANGE Lat: -90 Ave Ave Ave 2015 7 Lon: 0 - 360 Ave Time filter 2015 7
□ Vector □ SD Derivative: □ Ion □ Iat	t
Analysis method: -Analysis method-	
Use parameter code	DATA1 SST sst HIST lat = -90:90 lon = 0:360 level = 1:1 time = 2015070100:2015070100 ave = 1M0
Analysis Data Submit	90N
	60N - Contraction - Contractio
	30N
Ionthly sea surface	
emperature (SST) for	305-
JIY 2015	60S-
	905 0 60E 120E 180 120W 60W

Latitude-longitude map (8)

• You can **change the area** to draw, directly typing latitude/longitude in the "Lat"/"Lon" boxes.

Latitude-longitude map (9)

• You can draw **consecutive months average SST** (e.g., June-July-August 2015).

Latitude-longitude map (10)

• You can draw anomaly chart.

Select "Data type" "ANOM"

Anomaly data (HIST minus NORM: difference from the climatological normal)

DATA1 SST sst ANOM lat = -45:55 lon = 100:300 level = 1:1 time = 2015060100:2015080100 ave = 3MO

Latitude-longitude map (11)

You can change intervals for contour/shading.

-2.5

-2

-1.5

-0.5

0.5

2.5

1.5

Contents

<Introduction>

<Exercise 1>

Draw a 2D (latitude-longitude) map

<Exercise 2>

Draw a 1D (time-series) chart

<Exercise 3>

Implement regression analysis

Time-series chart (1)

 To chart the interannual variation of three-month mean SST anomaly averaged in the tropical Indian Ocean (20S – 20N, 40E – 100E) for December – February from 1979/1980 to 2014/2015.

Time-series chart (2)

Showing period							
RANGE 🔻							
79 - 2014 -							
12 - 2 -							
Please set each item in "data1" as follows.							
))							

- Dataset SST
- Element Sea Surface Data > Temperature (SST)
- Data type ANOM (meaning "anomaly", deviation from climatological normal)
- Area lat: -20 20; lon: 40 100 checking "Ave"
- Level 1
- Time unit "MONTHLY" checking "Year-to-year"
- Showing period "RANGE"; 1979 2014 (year); 12 2 (month)

Time-series chart (3)

Point 1: Checking "Ave" means averaging of values in the given latitudinal/longitudinal area.

- Point 2: Checking "Year-to-year" means year-to-year variation for the month(s) identified in "Showing period".
- Point 3: Numbers in the middle and bottom boxes indicate the range of year and month, respectively, to draw.

Time-series chart (4)

Data download

- Users can download the data used to create a map.
- A plain text file and GrADS format files (control file and data file) are

Contents

<Introduction>

<Exercise 1>

Draw a 2D (latitude-longitude) map

<Exercise 2>

Draw a 1D (time-series) chart

<Exercise 3>

Implement regression analysis

Regression analysis (1)

 To regress three-month mean sea level pressure (SLP) onto NINO.3 SST index for DJF from 1958/1959 to 2014/2015.

> DATA1 JRA-55 slp ANOM lat = -90:90 lon = 0:360 level = 1:1 time = 1958120100:2015020100 ave = 1YR(3*1MO)

DATA2 INDEX nino.3 ANOM lat = -90:90 lon = 0:360 level = 1:1 time = 1958120100:2015020100 ave = 1YR(3*1M0) analysis method = REGRESSION_ANALYSIS

Regression and correlation analysis

- Regression and correlation analysis are often used to examine climatological systems like teleconnections.
- Correlation coefficient means the degree of the correlation, and the regression coefficient means the gradient of the regression line.
 - Correlation coefficient around +1 or -1 means there is a clear linear relation between the targeted data pair, and the coefficient around zero means there is a few (or weak) relation between them.

Regression analysis (2)

Setting a response variable

- "Data1" is a **response** variable (SLP in this case).
- Select "JRA-55" in the Dataset box of "Data1".

Regression analysis (3)

 Select "Surface" and "SLP (Sea Level Pressure)" in the element box.

Dataset	Element		Data type		A
JRA-55	Surface	•	-Data_type- 💌	ALL	
_	-element2-	•		Lat: -90	-
	-element2- SLP (Sea Level Pre Ps (Surface Pressu	ssure) re) [h	[hPa] Pa]		•
	Ts (Surface Tempe T-Td (Surface 2m	eratur dew p	e) [C.Deg]	[K]	
Analysis method: Analysis me	et Us (Surface Zonal Vs (Surface Meridi Wss (Surface Horiz Torat (surface Tot	Wind) onal V contal	[m/s] Wind) [m/s] Wind Speed) [m/ cipitation) [mm/('s]	
Use parameter code	- Iprat (surface rot			idy]	

Regression analysis (4)

- Set each of the remaining items in Data1 as shown below.
 - Data typeHISTAreaALL
 - ≻Level 1
 - Time unit MONTHLY checking "Year-to-year"
 - ➢Showing period 1958 2012; 12 2

it	Data type	Area	Level	Time unit	Showing period
-	HIST 💌	ALL	1 🔹	MONTHLY 💌	RANGE 💌
Pressi 💌		Lat: -90 - 90 Ave 🗆		Ave Vear-to-year	1958 🔻 - 2014 💌
		Lon: 0 - 360 Ave 🗆		Time filter	12 🗸 - 2 🔽
С					
on 🗖 lat				"Year-to-	vear" must
				ho chock	od to draw a
_				DE CHECK	cu lu ulaw a
				regressio	n map

Regression analysis (5)

Select "REGRESSION_ANALYSIS" in the Analysis method box.

Datase	t	Element		Data type		Are	Level		
JRA-55	•	Surface SLP (Sea Level Pre	▼ SSL▼	HIST	Lat:	ALL -90 - 9 : 0 - 3	0 Ave 60 Ave	1	
		Vector SD Derivative: Ion	lat						
Analysis method:	Analysis met Analysis met DATA1_DATA SUBTRACT COMPOSITE	thod- thod- A2							
Analysis Data S	SIGNIFICANCI REGRESSION CORRELATION OF_SINGLE COF_MULTI SVD FT WAVELET	E_TEST ANALYSIS	ר,		•				

Regression analysis (6)

Setting an explanatory variable

- You can see "Data2" open.
- "Data2" is an explanatory variable (NINO.3 SST index in this case).

Dataset JRA-55	Element Surface SLP (Sea Level Presst Vector SD Derivative: Ion Iat	Data type HIST	Area ALL Lat: -90 - 90 Lon: 0 - 360	Level Ave Ave	Time unit MONTHLY Ave Year-to-year Time filter	Showing period RANCE ▼ 1958 ▼ 2014 ▼ 6 ▼ 8 ▼	
Analysis method: RECRESSION. Data2 Dataset	ANALYSIS	Data type	Area	Level	Time unit	Lag	Significance
JRA-55	Surface SLP (Sea Level Presst SD	HIST	ALL Lat: -90 - 90 Lon: 0 - 360	Ave Ave	MONTHLY Ave Vear-to-year Time filter	0 ▼ YEAR	▼ 90%(two side) ▼

Regression analysis (7)

• Select "INDEX" in the Dataset box of Data2.

Data 1

Dataset	Element	Data type		Area		Level	Time unit			Lag	
JRA-55	Surface 🗸	HIST 💌		ALL	-	1 💌	MONTHLY -	0	-	YEAR	-
-Dataset-	SLP (Sea Level Presst 🔻		Lat:	-90 - 90	Ave 🗖		Ave Vear-to-year	r			
CMAPv15 INDEX USER_INPUT	SD		Lon	0 - 360	Ave 🗆		└ Time filter				
JAPAN JRA-55 JRA-JCDAS K1EM_20151021 K1EM_20151028 LBM MOVE-G2 OCEAN-DATA_by_MOVE-G SAT											

Regression analysis (8)

• Select "NINO.3" in the element box.

Data 1

Regression analysis (9)

 Set each of the remaining items in data2 as shown below.

Regression analysis (10)

• Click "Graphic Options" and select "CONTOUR" in the Drawing box of Graphic Option.

		Options	
Data 1			Click!
Dataset		Elem	ent
JRA-55	-	Surface	•
		SLP (Sea Lev	el Pressi 💌

Graphic Options

Detailed Options for Image 1

Set "Drawing" "CONTOUR" to shade the grids exceeding confidence level in gray.

Regression analysis (11)

 Select "Blue - Red" in the Color Table box to display negative and positive values with blue and red contours, respectively.

Analysis Datas	et		
Select parameters Grag	ohic Options		
Graphic Optic	ons		
Colorizing: COLOR Drawing: CONTOUR Image Format: png Font: default Color Table: Blue - Red Rainbow	 Show Contour Labels Show Color Bar Set Contour Parameters for data1 interval: min: max: Set Vector size: [inch] value: skip: 1 	 Polar Stereographic: North pole Logarithmic Coordinates Reverse the Axes Flip the X-axis Flip the Y-axis No Caption 	☐ No Scale Labels ☐ Draw Credit Inside ☐ Apply All Pics picture size %
Detailed (Blue - Red	"Blue – Red" >>	Blue: Lower, Red: H	ligher

Regression analysis (12)

• You can draw the following chart.

Thank you for your attention.

We hope you'll make use of iTacs to monitor and understand climate systems.

Supplemental explanation

Improvements in iTacs ver.5

- 30-year re-forecast datasets are added.
- Clearer images can be drawn.
- More efficient connections between client PCs and the web server are provided.

To learn more about iTacs

 Sample images and tutorials are available on the iTacs website. http://extreme.kishou.go.jp/tool/itacs-tcc2015/

• Online help is also available.

Analysis method

• iTacs supports various types of statistical analysis.

			Method	Outline
Analysis Dataset	Forward Dataset		DATA1_DATA2	Overlay two items on a map at the same time.
Analysis Dataset	Forecast Dataset		SUBTRACT	Map the difference between two sets of data (DATA1-DATA2).
Analysis Dataset		COMPOSITE	Create a composite map based on a set condition.	
Select parameters Graphic Options			SIGNIFICANCE_TEST	Create a composite map of "Data1."
Data1	Element Data type -element1Data_type -olata_type -detement2- Vector SD Derivative: Ion lat -Analysis method- DATA1_DATA2 SUBTRACT COMPOSITE SIGNIFICANCE_TEST REGRESSION_COEFFICIENT	REGRESSION_COEFFICIENT	Create a regression coefficient map. "Data1": dependent variable "Data2": objective (independent) variable	
-Dataset-		ata_type	CORRELATION_COEFFICIENT	Create a correlation coefficient map.
			EOF_SINGLE	Conduct EOF (empirical orthogonal function) analysis.
Analysis method Use parameter o d Analysis Dat: S Image 1			EOF_MULTI	Conduct multi-EOF analysis.
			SVD	Conduct SVD (singular value decomposition) analysis.
			FFT	Conduct FFT (fast Fourier transform) analysis.
	CORRELATION_COEFFICIENT EOF_SINGLE EOF_MULTI		WAVELET	Conduct wavelet analysis.
	SVD FFT WAVELET		ADD	Map the sum of two data sets (DATA1+DATA2).
	MULTIPLY DIVIDE		MULTIPLE	Map the product of two data sets (DATA1*DATA2).
			DIVIDE	Map the division of two data sets (DATA1/DATA2).

Example of time setting

Setting for a consecutive period in 2D map

Example of time setting

Setting for a specific period of each year in 2D map

Available datasets and elements 1/3

Atomospheric analysis datasets

Dataset	element1	element2	Remarks
	Descente	χ (Velocity Potential) [10^6m^2/s]	
JRA-55	Pressure Levels	Div (Relative Divergence) [1/s]	
		θe (Equivalent Potential Temperature) [K]	
		ω (Pressure Vertical Velocity) [Pa/S]	
		ψ (Stream Function) [10 [,] 6m [,] 2/s]	
		θ (Potential Temperature) [K]	
		q (Specific Humidity) [Kg/Kg]	
		T (Temperature) [C. Deg]	
		T-Td (Dew point depression) [K]	
		U (Zonal Wind) [m/s]	
		V (Meridional Wind) [m/s]	
		Udiv (Zonal Divergence Wind) [m/s]	37 Levels
		Vdiv (Meridional Divergence Wind) [m/s]	(1000 - 1 hPa)
		ζ (Relative Vorticity) [1/s]	
		γ (Geopotential Height) [gpm]	
		KE (Kinetic energy of high-frequency variation) [m^2/s^2]	
		EGR (Maximum growth rate in the Eady problem) [1/day]	
	Flux	Waf-xc (Calc Zonal Wave Activity Flux) [m^2/s^2]	
		Waf-yc (Calc Meridional Wave Activity Flux) [m^2/s^2]	
		Waf-zc (Calc Vertical Wave Activity Flux) [Pa*m/s^2]	
		Wvf-x (Zonal Water Vapor Flux) [Kg/Kg*m/s]	
		Wvf-y (Meridional Water Vapor Flux) [Kg/Kg*m/s]	
		U'V' (Momentum Flux by eddies) [m^2/s^2]	
		V'T' (Heat Flux by eddies) [K*m/s]	
	Surface	SLP (Sea Level Pressure) [hPa]	
	Cundoo	Ps (Surface Pressure) [hPa]	
		qs (Surface Specific Humidity) [Kg/Kg]	
		Ts (Surface Temperature) [C.Deg]	
		T-Td (Surface 2m dew point depression) [K]	
		Us (Surface Zonal Wind) [m/s]]
		Vs (Surface Meridional Wind) [m/s]	
		Tprat (surface Total precipitation) [mm/day]	1

Available datasets and elements 2/3

Oceanic analysis datasets

Dataset	element1	element2	Remarks	
MOVE-G2	d20-OHC	20 degC depth [m]		
		OHC (vertical ave temp over top 300m)		
	Thermohaline-3D	Potential Temperature [degC]	52 Levels	
		Salinity [psu]	(1.0 - 5925.0m)	
	Thermohaline-2D	Potential Temperature [degC]		
		Salinity at BBL [psu]		
		Sea Surface Height [cm]]	
		Short Wave Radiation [W/m2]		
		Long Wave Radiation [W/m2]		
		Latent Heat Flux [W/m2]		
		Sensible Heat Flux [W/m2]		
		Heat Flux w/o Short Wave Radiation [W/m2]		
		Freshwater Flux [cm/s]		
		Salt Flux for Restoring [psu cm/s]		
		Sea Ice Thickness [m]		
		Snow Depth [m]		
		Ice Concentration		
		surface Temperature [degC]		
	Current-3D	Eastward Velocity [cm/s]	52 Levels	
		Northward Velocity [cm/s]	(1.0 - 5925.0m)	
	Current-2D	Eastward Velocity at BBL [cm/s]		
		Northward Velocity at BBL [cm/s]		
		Eastward Component of Surface Wind Stress [N/m2]		
		Northward Component of Surface Wind Stress [N/m2]		
		Eastward Component of Surface Stress [N/m2]		
		Northward Component of Surface Stress [N/m2]		
		Eastward Velocity of Ice [m/s]		
		Northward Velocity of Ice [m/s]		
		Ice Concentration in UV-box]	
SST	Sea Surface Data	Temperature (SST) [C.deg]		
		Ice Concentration (ice=1 no ice=0) [fraction]]	

Available datasets and elements 3/3

CLIMAT, ENSO monitoring INDEX, Satellite datasets

Dataset	element1	element2	Remarks
CLIMAT		T (Temperature) [C. Deg]	
		Tx (Maximum Temperature) [C. Deg]	
		Tm (Minimum Temperature) [C. Deg]	
		Rain (Precipitation) [mm]	
INDEX		Nino.1+2	10S-Eq, 90W-80W
		Nino.3	150W-90W, 5S-5N
		Nino.3.4	170W-120W, 5S-5N
		Nino.4	5S-5N, 160E-150W
		Nino WEST	130E-150E, EQ-20N
SAT		OLR [W/m2]	

Forecast datasets

Dataset	element1	element2	Remarks	
1MONTH_ENS_MEAN	Pressure Levels	γ (Geopotential Height) [gpm]		
1MONTH_HIND		U (Zonal Wind) [m/s]		
K1EM_yyyymmdd *		V (Meridional Wind) [m/s]	10 Levels	
*Available when the		T (Temperature) [C. Deg]		
"Analysis Dataset" is selected		T-Td (Dew point depression) [K]	(1000 - 10 hPa)	
		χ (Velocity Potential) [10 ⁶ m ² /s]		
		ψ (Stream Function) [10^6m^2/s]		
	Surface	SLP (Sea Level Pressure) [hPa]		
		Ts (Surface Temperature) [C. Deg]		
		Rain (Daily Precipitation) [mm/day]]		