BTデータ

1. ファイル名

西暦年の下 2 桁+ 測点番号 (英文字 2 文字+数字 3 桁)+ ".BT"(例: 10TF012.BT等) 英文字 2 文字:表層水温観測コード(表 1)

- 2. レコード定義
 - (a) ヘッダー部
 - 第1レコード: 船名、航海次数(年通算) 書式番号

	10	20		30	40	50	
Ship,	R/V Ryofu	Maru,	Cruise	number,	10-01,	Format,	V3.1
1-21	船名		Ship,⊔R/	′V⊔Ryofu∟	Maru,	A	4,A15,
22-43	航海次数	女	⊔Cruise∟	lnumber,⊔1	10-01,	A	14,A6,
44-56	書式番号	=	⊔Format	,⊔V3.1		A	7,A5

● 第2レコード: 測点番号

Station, TF-001

1-15 測点番号 Station,□TF-001 A7,A7

- 第 3 レコード: データレコード数 各層観測報告 (XCTD データ) と同じ。
- 第4レコード: 観測開始(着水)時の年月日、時刻 各層観測報告(XCTD データ)と同じ。
- 第 5 レコード: 観測開始 (着水) 時の位置 各層観測報告 (XCTD データ) と同じ。
- 第 6 レコード: 観測開始 (着水) 時の水深及び測深フラグ (表 2) (着底は Depth Flg. で示す)

各層観測報告(XCTD データ)と同じ。

- 第7レコード: 最寄りの海潮流測点番号、補助測点番号 各層観測報告(XCTD データ)と同じ。
- 第8レコード: 海面水温/塩分 各層観測報告(XCTD データ)と同じ。
- 第 9 レコード: BT のタイプ (X-BT/D-BT)

	10		
Type	, X-BT		
1-8	BT のタイプ	$Type \sqcup \sqcup \sqcup$,	A7,
9-13	BT のタイプ	$\sqcup V PT$	A5
9-13	ロエのライフ	$\sqcup \Lambda^- D I$	$A_{\mathfrak{I}}$

• X-BT の場合のみ

- 第10レコード:プローブの型式、シリアル番号、記録器の型式

10	20	30	40	50
Probe ,		S/N, 251		Code: 212).
11000 /	1010 1 0 7	D/11/ 231	1027 (11110	COUC DIDIT

Recorder , TSK MK-130 Comp., (WMO Code: 46)

1-24	プローブ型式	$Probe \sqcup \sqcup, \sqcup TSK \sqcup T-6,$	A7,A15,
25-39	シリアル番号	$\sqcup S/N, \sqcup \sqcup \sqcup 251402,$	A4,A9,
		(**********	

40-56 WMO
$$\sqcup$$
Code: $I_XI_XI_X \sqcup$ (WMO \sqcup Code: \sqcup 212), A16,

国際気象通報式共通符 号表 C-3 による (表3)

57-84 記録器 Recorder
$$\cup$$
, \cup TSK \cup MK-130 \cup Comp., A9,A17,

85-99 WMO
$$\sqcup$$
Code: X_RX_R \sqcup (WMO \sqcup Code: \sqcup 46) A15 国際気象通報式共通符

号表 C-4 による(表 4)

— 第 11 レコード: 深度 z(m) をプローブ投入時からの経過時間 t(s) で求める際 に用いた深度式 $(z=at+bt^2)$ の係数 (表 3)

Coef. , a=6.691, b=-0.00225

1-8 深度式の係数	$Coef. \sqcup \sqcup,$	A7,
9-17	$\Box a = 6.691,$	A3 F5.3,
18-28	$\sqcup b = -0.00225$	A3 F8.5

● 第 10~11(X-BT の場合 12~13) レコード: データの項目略号及び単位略号

DEPTH, TEMP,F

METERS, DEG-C,

当該測点において観測したデータの項目略号を記載する。ただし、当該データのフラグは項目略号の次に" F "として記載する。

1-9 深度 □□□DEPTH, A8, 10-18 水温・フラグ □□□TEMP,F A7,A1

当該測点において観測したデータの単位略号ついてのみ記載する。

1-9 深度 □□METERS, A8, 10-18 水温・フラグ □□DEG-C,□ A7,A1

(b) データ部

1m 毎にデータを1レコードに記述する。各データの水温フラグは表5による。

0, 20.66,2

表 1: 観測船コード

観測船名	各層観測	表層水温観測	海潮流観測		表面観測
			自記流速計	表層海流計	
Ryofu Maru	RF	TF	CF	AF	FF
Keifu Maru	KS	TS	CS	AS	FS

表 2: 測深フラグ一覧

フラッグ番号	定義
1	音響測深機による測深 (補正無し)
2	音響測深機による測深 (補正あり)†
5	CTD とアルチメーターによる水深
6	X-BT 又は X-CTD 着底による水深
9	測定無し

†補正方法は-.SUM ファイルに記述する。 該当するものが複数ある場合は、数字の大きなものとする。

表 3: プローブコードと深度-時間換算式の係数

深度-時間換算式を下に示す。

$$z_m = a_m * t + b_m * t^2$$

ここで、 z_m は深度、t はプローブが海面に到達してからの経過秒。 a_m と b_m は、ともに定数である。

			係数	
コード	製造会社	プローブタイプ	a_m	b_m
212	Tsurumi Seiki Co.	T-6	6.691	-0.00225
222	Tsurumi Seiki Co.	T-7	6.691	-0.00225
231	Tsurumi Seiki Co.	T-5	6.828	-0.00182
252	Tsurumi Seiki Co.	Deep Blue	6.691	-0.00225

表 4: BT-XBT プローブの測器コード

コード	測器名
32	Murayama Denki Z-60-16-III
33	Murayama Denki Z-60-16-II
45	Tsurumi Seiki Co. MK-100
46	Tsurumi Seiki Co. MK-130 Compatible recorder

表 5: CTD/XCT/BT/ACM データ品質フラグ一覧

フラグ番号	定義
1	未較正
2	測定値に問題なし
3	測定値に疑問あり
4	測定不良
5	報告なし
6	2decibar 以上離れた層のデータによる内挿値
7	スパイク除去 (CTD のみ)
9	データ無し

該当するものが複数ある場合は、数字の大きなものとする。