REPORT OF THE TENTH WMO
INTERNATIONAL COMPARISON OF DOBSON
SPECTROPHOTOMETERS

(Arosa, Switzerland, 24 July - 4 August 1995)
NOTE

The designations employed and the presentation of material in this document/publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

This report has been compiled from information furnished to the WMO Secretariat. It is not an official WMO publication and its distribution in this form does not imply endorsement by the Organization of the ideas expressed.
REPORT OF THE TENTH WMO INTERNATIONAL COMPARISON OF DOBSON SPECTROPHOTOMETERS

(Arosa, Switzerland, 24 July - 4 August 1995)
TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. PURPOSE OF THE INTERCOMPARISON 1
3. ORGANIZATION ... 1
4. OTHER ACTIVITIES ... 3
5. CONCLUSIONS .. 3
6. RECOMMENDATIONS .. 4

Annex A List of participants
Annex B Individual instrument reports
Annex C Definitions
1. **INTRODUCTION**

The WMO representative, Dr Antti Kulmala welcomed the participants and expressed the appreciation of Prof. G.O.P. Obasi, Secretary-General of WMO, for the valuable work the ozone community has done for the benefit of humankind in maintaining the high quality of Dobson observations. He also thanked the Swiss Meteorological Institute for their decisive financial and material support in organizing the Intercomparison. He commended NOAA for maintaining the reference instruments and helping WMO in operating the global ozone network. He also gave special tribute to Bruno Hoegger from SMI and Robert Evans from NOAA in the organization of the Arosa event.

2. **PURPOSE OF THE INTERCOMPARISON**

The Intercomparison was organized by the WMO Secretariat in close cooperation with and financial assistance from the Swiss Meteorological Institute (SMI). It was a regular event in a campaign to maintain the network of the Dobson ozone spectrophotometers operated in RA VI (Europe). It is the tenth comparison thus organized. The Intercomparison served as an assurance of the quality of the total ozone data sets created at the GAW ozone stations operated by WMO Member countries in Europe. This action is an application of WMO/GAW/QA requirements for monitoring of the atmospheric total ozone.

The main tasks were:

- The technical inspection and adjustment of the instruments,
- Comparison of the Dobson spectrophotometers with the World Secondary Dobson Standard Instrument (WSSI) No. 65, to determine the existing calibration level,
- Determination of new calibration constants for each Dobson spectrophotometer, as necessary,
- To provide a forum for instruction for operation of the Dobson spectrophotometers at home stations, and in sharing of knowledge concerning the management of an ozone observing programme.

3. **ORGANIZATION**

The Intercomparison was held at the Lichtklimatisches Observatorium (LKO) of the Swiss Meteorological Institute in Arosa during the period 24 July to 4 August 1995. Its programme was arranged by the Scientific Director, Robert Evans (NOAA) and by Technical Director, Bruno Hoegger (SMI) in cooperation with an Executive Team of the following specialists:

<table>
<thead>
<tr>
<th>Archie Asbridge</th>
<th>AES</th>
<th>Retired</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Scientific and technical assistance</td>
</tr>
<tr>
<td>Karel Vanicek</td>
<td>CHMI</td>
<td>Scientific and technical assistance</td>
</tr>
<tr>
<td>Lars Opedal</td>
<td>Univ. Oslo</td>
<td>Technical assistance</td>
</tr>
<tr>
<td>Martin Stanek</td>
<td>CHMI</td>
<td>Technical assistance</td>
</tr>
</tbody>
</table>

The infrastructure of the Intercomparison was supported by the following Swiss experts:

Johannes Stähelin	ETH Zurich
Pierre Viatte	SMI, Aerological Station, Payerne
Herbert Schill	SMI-LKO
Kurt Aeschbacher	SMI-LKO
Reto Wetter SMI-LKO
Franz Herzog SMI-LKO

More than 28 specialists from 18 countries (see Annex A), participated at the Intercomparison. The following national Dobson spectrophotometers were inspected and compared:

<table>
<thead>
<tr>
<th>No. of Dobson</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>D015</td>
<td>WMO/RA VI Spare instrument</td>
</tr>
<tr>
<td>D030</td>
<td>Sweden (Vindeln)</td>
</tr>
<tr>
<td>D032</td>
<td>UK</td>
</tr>
<tr>
<td>D040</td>
<td>Belgium (Uccle)</td>
</tr>
<tr>
<td>D041</td>
<td>UK</td>
</tr>
<tr>
<td>D048</td>
<td>Italy (Sestola)</td>
</tr>
<tr>
<td>D049</td>
<td>France (Bordeaux)</td>
</tr>
<tr>
<td>D050</td>
<td>Iceland (Reykjavik)</td>
</tr>
<tr>
<td>D062</td>
<td>Switzerland (LKO Arosa)</td>
</tr>
<tr>
<td>D065</td>
<td>USA (Boulder) Reference instrument (WSSI)</td>
</tr>
<tr>
<td>D084</td>
<td>Poland (Belsk)</td>
</tr>
<tr>
<td>D085</td>
<td>France (OHP)</td>
</tr>
<tr>
<td>D092</td>
<td>Denmark (Greenland)</td>
</tr>
<tr>
<td>D101</td>
<td>Switzerland (LKO)</td>
</tr>
<tr>
<td>D104</td>
<td>Germany (Hohenpeissenberg)</td>
</tr>
<tr>
<td>D107</td>
<td>Russia (CAO Moscow)</td>
</tr>
<tr>
<td>D110</td>
<td>Hungary (Budapest-Lőrinc)</td>
</tr>
<tr>
<td>D121</td>
<td>Romania (Bucharest)</td>
</tr>
</tbody>
</table>

The Intercomparison (IC) was conducted and all activity arranged in daily schedules according to the weather conditions and with respect to the technical state of the individual instruments. The technical infrastructure of SMI and special facilities from NOAA, Boulder were utilized for the IC.

The main steps specified below were generally applicable to each Dobson spectrophotometer:

- unpacking of the instrument, its check after the transport and installation on the roof of LKO;
- inspection of the technical condition of the spectrophotometer and its monitoring by means of the daily SL and HG tests;
- initial comparison against the WSSI to determine the existing calibration level;
- definition of the technical adjustments and special tests required (wedge calibrations, discharge lamp tests, cleaning and adjustment of the optics, refurbishing of the electronics etc.);
- final comparison against the WSSI;
- assessment of the results, determination of the new calibration constants (Reference R-N tables, Q-table and Reference Standard Lamp Readings);
- interview by the scientific director with the operator in charge concerning the results of his instrument intercomparison and other calibrations (meta data). At this point, copies of documentation related to the spectrophotometer calibration were given to the operator;
- packing of the instrument and other technical apparatus for transport to home station.

All work done and the results obtained for each individual instrument are described in Annex B, and briefly indicated in Table 1. This information is retained in detail in the files kept by operators and by the scientific director of the IC.

The success of the IC was accomplished mainly through the instructions provided by the scientific and technical directors at the regular daily meetings of all participants. These instructions were determined at the daily meetings of the scientific and executive group.

With regard to the goal of sharing knowledge of the operation of the instruments and the management of an observing programme, the individual participants were required to perform necessary calibration procedures under the supervision of the scientific staff. For example, all wedge calibrations were performed by each instrument’s own operator.

During the IC, two young scientists (Lars Opdal and Martin Stanek) received, under the supervision of Mr. A. Asbridge, senior scientist, special training in the service and repair on the Dobson spectrophotometers. The theory behind the operation and measurement of the Dobson spectrophotometer was discussed in detail with them. These two young scientists performed well beyond expectations and the call of duty. The experience they gained will serve well the future of RA VI Dobson ozone spectrophotometer operations.

4. OTHER ACTIVITIES

After the daily joint meetings, several participants presented, in seminar form, scientific papers concerning their organization’s total ozone and UVB observation programme.

The updated version of the generalized software for processing of Dobson total ozone observations, DOBSON 2.2, created by the CHMI-SOO at Hradec Kralove was also presented and the participants, on request, were provided with an entire software package on floppy discs.

Dr John Miller and Dr Antti Kulmala, representatives of the WMO Secretariat, Geneva and Prof. Volker Mohnen, Director of the WMO GAW Quality Assurance Science Activity Centre, visited the Intercomparison. Prof. Mohnen discussed important issues related to the application of GAW total ozone monitoring programme objectives and QC/QA activities with individual participants.

Based on these discussions and taking into account the urgent needs of QC/QA, the participants recommended implementation of a system of regular intercomparisons of the Brewer spectrophotometers from the network under the supervision of WMO. Mr. Karel Vanicek was directed to request his Permanent Representative with WMO, the Director of the Czech Hydrometeorological Institute, to submit to the Executive Council of WMO of a proposal to this effect.

Morning observations on the zenith sky were made, both to evaluate the reduction of the measurements to ozone values, and to evaluate Umkehr measurement reliability. These measurements were conducted under poor observing conditions. (Reduced data will be available later).

Measurements with a SAOZ instrument (diode array spectrometer) were made parallel to the Dobson measurements (data will be available later).

5. CONCLUSIONS

All instruments that were compared left the intercomparison in proper calibration. Two spectrophotometers, D104 and D121, were recommended to be further checked for their optical alignment (See Annex B, Individual Instrument Results.)
The results of the IC confirmed improvement in technical stability of the calibration level of the Dobson spectrophotometers operated in the RA-VI Region (Europe) as a result of previous regular intercomparisons organized by WMO. Nevertheless, systematic attention must be paid to the maintenance of the instruments at the stations in the future.

6. RECOMMENDATIONS

Long-term maintenance of the World Primary Standard Dobson Spectrophotometer (WPSS) D083 and the Secondary Standard D065 by NOAA, Boulder has established well defined calibration background for the Dobson spectrophotometers worldwide. To transfer the calibration scale in a more efficient way into the network and to assist the stations with operational problems, the Scientific Committee recommends the establishment of a Centre for the Region where a regional standard instrument, well qualified specialists and laboratory facilities would be available to assist national stations. Taking into account long-term experience in Dobson ozone spectrophotometer issues, the qualifications of the staffs and the existing infrastructures, either the Solar and Ozone Observatory, Hradec Kralove, Czech Republic or the Meteorological Observatory, Hohenpeissenberg, Germany should be designated the RA-VI (Europe) Dobson Ozone Centre. The terms of reference of this centre should be defined by an ad hoc scientific committee from RA VI.

The Dobson spectrophotometer D015 should be identified as a RA VI spare instrument which would be located at place to be specified later.

The instruments compared displayed a remarkable variety of electronic circuitry. Most of the circuits are composed of obsolete components. Many are needlessly complicated, and are missing spare parts and documentation. Some of the instruments on arrival at the IC site, were not operational, and great effort was required to repair those instruments. Some of the instruments were wired incorrectly, with respect to the main AC power, thus were not safe to operate before repair. Considering this, a recommendation is made for WMO to standardize the electronic circuits with a simple, effective design using readily available components. To ensure the use of this design, WMO should provide the means of converting the various instruments to this standard.

The Scientific Steering Committee of the Tenth WMO International Comparison of Dobson Spectrophotometers, Arosa, Switzerland, 24 July - 4 August urges that the four to five year schedule of comparison of RA VI Dobson Ozone Spectrophotometers be continued because of the obvious benefits they provide.

ANNEX A
List of Participants

Archie Asbridge
9 Lehar Crescent
North York, Ontario
Canada, M2H 1J4
Tel: 1-416-494-2622
Fax: 1-416-496-9190

Prof. Alain Barbe
Université de Reims
GSMA/OHP Dobson #85,
BP 347
51062 Reims Cédex
France
Tel: 33 26 05 32 58
Fax: 33 26 05 31 47
Email: a.barbe@univ-reims.fr

Robert Evans
Cooperative Institute for Research in the
Environmental Sciences
University of Colorado
C/O NOAA/ERL/CMDL - R/E/CG -1
325 Broadway
Boulder, Colorado 80303
USA
Tel: 1-303 497 6679
Fax: 1-303 497 6290
Email: bevans@cmdl.noaa.gov

Mircea Cristian Frimescu
Institute of Meteorology and Hydrology
Bucharest, Sector 1
Sos.Bucuresti-Ploiești 97
Romania
Tel: 40-1 312 98 42
Fax: 40-1 312 98 43

Hans Claude
Deutscher Wetterdienst
Meteorologisches Observatorium
Albin Schwaiger Weg 1082383 Hohenpeissenberg
Germany
Tel: +49 8805 920027
Fax: +49 8805 920046
Email: claude@mohp.dwd.d400.de

Bruno Hoegger
Lichtklimatisches Observatorium
Ozone Station of Swiss Meteorological Institute
CH-7050 Arosa
Switzerland
Tel: 41 81 31 26 16
Fax: 41 81 31 19 01

Tiziano Colombo
Italian Meteorological Service
CAMM M.Cimone,
41029-Sestolone (MO)
Via delle Ville 100
Italy
Tel: +39-536-62446
Fax: +39-536-62446 after 16.30

Weine Josefsson
Swedish Meteorological and Hydrological Institute
S-601 76 Norrköping
Sweden
Tel: +46 11 158 183
Fax: +46 11 17 02 07
Email: wJosefsson@smhi.se

Hugo De Backer
Royal Meteorological Institute of Belgium
Ringlaan 3
B-1180 Brussels
Belgium
Tel: +32 2 373 05 54
Fax: +32 2 375 12 59
Email: hugo@oma.be

Ulf Köhler
Deutscher Wetterdienst
Meteorologisches Observatorium
Albin Schwaiger Weg 1082383 Hohenpeissenberg
Germany
Tel: +49 8805 920027
Fax: +49 8805 920046
Email: claude@mohp.dwd.d400.de

Małgorzata Degorska
Institute of Geophysics,
Polish Academy of Sciences,
ul. Ks. Janusza 64,
01-452 Warsaw
Poland
Tel: 48 22 379820
Fax: 48 22 370522
Email: januszj@seismol.igf.edu.pl

Valery Dorokhov
Central Aerological Observatory
Pervomajskaya Str.3
Dolgoprudny, Moscow region
141700 Russia
Tel: 7 (095) 408 77 61
Fax: 7 (095) 576 33 27

Dr. Jérome de La Noe
Observatoire de Bordeaux, BP 89
33270 Floirac
France
Tel: 33 56 86 43 30
Fax: 33 56 40 89 56
Email: delaneoe@observ.u-bordeaux.fr
Mikaell Ottosson Löfvenius
Swedish University of Agricultural Sciences
Vindeln Experimental Forests
Svartberget Field Station
S-922 91 VINDELN
Sweden
Tel: +46 933 115 40
+46 90 16 63 78
Fax: +46 933-10326
+46 90 16 77 50
Email: mikaell.ottosson.lofvenius@sek.slu.se

Marie-France Merienne
Université de Reims
GSMA/OHP Dobson #85
BP 347
51062 Reims Cédex
France
Tel: 33 26 05 32 58
Fax: 33 26 05 31 47
Email: a.barbe@univ-reims.fr

Koji Miyakawa
Aerological Observatory JMA
1-2 Nagamine Tsukuba,
Ibaragi-ken
Japan
Tel: +81-298-4127
Fax: +81-298-5765
Email: kmiyagaw@mri-jma.go.jp

D. Moore
Rm 149, Met O (OP)2b
Meteorological Office, London Rd
Bracknell,
Berk's, RG12 2SZ
United Kingdom
Tel: 44 1344 85 6413
Fax: 44 1344 85 6412
Email: dmoore@email.meto.gov.uk

Zoltan Nagy
Hungarian Meteorological Service
Division for Upper-Air Observations
P.O.Box 39
1675 Budapest
Hungary
Tel: +36 1 290 0163
Fax: +36 1 290 4174

Jens Sohn
Geofysisk Observatorium, SRI International
Postboks 108
3910 Kangerlussuaq
Greenland
Denmark
Tel: + 299 11260
Fax: + 299 11120
Email: Sohn@uinimmak.srpo.gl

Martin Stanek
Solar and Ozone Observatory
Czech Hydrometeorological Institute
Hvezdarna 456
500 08 Hradec Královo 8
Czech Republic
Tel: +42-49-24906
Fax: +42-49-25458
Email: not available yet

Bardi Thorkelsson
Icelandic Meteorological Office
Department of Geophysics
Bustadavegur 9
150 Reykjavik
Iceland
Tel: +354 560 0600
Fax: +354 552 8121
Email: bardi@vedur.is

Zoltan Toth
Hungarian Meteorological Service
Division for Upper-Air Observations
P.O.Box 39
1675 Budapest
Hungary
Tel: +36 1 290 0163
Fax: +36 1 290 4174
Email: ztoth@hollo.met.hun

Karel Vanicek
Solar and Ozone Observatory
Czech Hydrometeorological Institute
Hvezdarna 456
500 08 Hradec Královo 8
Czech Republic
Tel: +42-49-24906
Fax: +42-49-25458

Bonawentura Rajewszka-Wiech
Institute of Geophysics
Polish Academy of Sciences
ul. Ks. Janusza 64, 01-452 Warsaw
Poland
Tel: 48 22 379820
Fax: 48 22 370522
ANNEX B

INDIVIDUAL INSTRUMENT REPORTS

Instrument D015 - WMO Spare Dobson

Original calibration data:
No existing calibration, as the instrument was rebuilt in 1993 and 1994 by SMI.

Initial calibration results:
Not applicable.

Work performed:
Instrument was in full working order.

Final intercomparison:
30 July 1995.
New N-tables and Reference Standard Lamp values defined.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.7% in total ozone.

No recommendations.

Instrument D030 - Vindeln, Sweden

Original calibration data:
N-tables from 10 May 1990, Boulder Colorado intercomparison.
Reference Standard Lamp Values for lamps 30Q1, 30Q2, 30Q4, and 30Q5.
Lamp tests results used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)
25 July 1995

d_Na: -0.14 d_Nc: +0.66 d_Nd: +0.35 d_Nad: -0.5

The d_Nad value implies an average +0.7% error in calculated ozone value, Mu = 1 to 3,
Total Ozone = 300 Dobson Units.

Work performed:
- Interior Cleaned, and gaskets replaced.
- Optics cleaned of dust.
- New temperature coefficient determined from mercury tests at LKO, and inspection of
 the mercury test record at the station.
- A discharge lamp test series was performed, and a new Q-setting table determined
- Optical Symmetry checked and found to be in limits.
Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for instrument lamps plus UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.3% in total ozone.

No recommendations.

Instrument D032 - United Kingdom

Original calibration data:

N-tables from May 1995, defined from lamps, after Ealing Electro-Optics rebuild.
Reference Standard Lamp Values for lamps 32Q3.
No data record exists for this instrument after the rebuild.

Initial calibration results:

20 July 1995

\[d_{Na} = +0.94 \quad d_{Nc} = -0.20 \quad d_{Nd} = +0.90 \quad d_{Nad} = +0.04 \]

The results were variable, Mu range to Mu range, so these numbers are not representative of the true performance.

Work performed:

- Optical Symmetry checked and found to be in limits.
- Cleaning as needed.
- Electrical repair and inspection performed.

Final intercomparison:

New N-tables and Reference Standard Lamp values defined for 32Q3, 32Q5, 32Q6, 32Q8, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.2% in total ozone.

No recommendations.

Instrument D040 - Uccle, Belgium

Original calibration data:

N-tables from 01 August 1990, LKO Arosa intercomparison.
Lamp tests results used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

25 July 1995

\[d_{Na} = -2.22 \quad d_{Nc} = -1.59 \quad d_{Nd} = -0.82 \quad d_{Nad} = -1.4 \]
The d_Nad value implies an average +2.0% error in calculated ozone value, \(\mu = 1 \) to 3, Total Ozone = 300 Dobson Units.

Work performed:

- New Q-setting table created from discharge lamp test series dated 26 July 1995.
- Wiring repair and inspection performed.
- Optical cleaning, and small adjustment of mirror M1 performed.
- Optical Symmetry was checked and found to be in limits.

Final intercomparison:

New N-tables and Reference Standard Lamp values defined for G9, G7, UQ2 and UQ8. Highest Difference against the standard for ADDSGQP observations in \(\mu \) range 1.15 to 3.2 was 0.4% in total ozone.

No recommendations.

Instrument D041 - United Kingdom, Standard

Original calibration data:

N-tables from 02 August 1990, LKO Arosa intercomparison, but with the Nc-table adjusted after the intercomparison by +0.4 N-unit.
Reference Standard Lamp Values for lamps 41Q3, 41Q4 and 41Q5.
Lamp tests results used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

19 July 1995

\[d_{Na} = -0.82 \quad d_{Nc} = -0.41 \quad d_{Nd} = +0.02 \quad d_{Nad} = -0.8 \]

The d_Nad value implies an average +1.2% error in calculated ozone value, \(\mu = 1 \) to 3, Total Ozone = 300 Dobson Units.

Work performed:

- Wedge drive mechanism repaired.
- Optics cleaned, and gaskets replaced.
- Wiring and electronics repair and inspection performed.
- Optical Symmetry was checked and found to be in limits.

Final intercomparison:

30 July 1995.

New N-tables and Reference Standard Lamp values defined for 41Q5, 41Q4, 41Q5, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in \(\mu \) range 1.15 to 3.2 was 0.3% in total ozone.

No recommendations.
Instrument D048 - Sestola, Italy

Original calibration data:

N-tables from 12 November 1980.
Lamp tests results used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

19 July 1995

d_Na: 1.1 d_Nc: +0.61 d_Nd: +2.27 d_Nad: -1.7

The d_Nad value implies an average +2.4% error in calculated ozone value, \(\mu = 1 \) to 3, Total Ozone = 300 Dobson Units.

Work performed:

- Optics cleaned, and gaskets replaced.
- Wiring and electronics repair and inspection performed.
- New instrument temperature coefficient defined from Mercury tests during several days.
- Discharge lamp test series performed, and a new Q-setting table created, dated 23 July 1995.

Final intercomparison:

New N-tables and Reference Standard Lamp values defined for 48/1, 48/3, 48/5, 48/6, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in \(\mu \) range 1.15 to 3.2 was 0.6% in total ozone.

No recommendations.

Instrument D049 - Bordeaux, France

Original calibration data:

N-tables from 10 July 1995, intercomparison at l’Observatoire de Haute Provence.
Reference Standard Lamp Values for lamps 49/2H1, 49/3H1, and 49/4H1.
Lamp tests results not used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

25 July 1995

d_Na: -1.39 d_Nc: -1.04 d_Nd: -1.15 d_Nad: -0.2

The d_Nad value implies an average +0.3% error in calculated ozone value, \(\mu = 1 \) to 3, Total Ozone = 300 Dobson Units.
Work performed:

- Some optics cleaned (see recommendations), and gaskets replaced.
- Wiring and electronics repair and inspection performed.
- Discharge lamp test series performed, and a new Q-setting table created, dated 29 July 1995.
- Symmetry test performed and found to be in limits.

Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for 49/2H1, 49/3H1, 49/4H1, UQ2 and UQ8.

Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.2% in total ozone.

Recommendations:

This instrument is equipped with an absolute encoder for recording the R-dial position. The electronics for this device are completely out of date. The encoder mount keeps the wedge bridge from being removed. The optics, including the optical wedge in this instrument need though cleaning, as the interior is coated with a thin film. The recommendation is that the instrument be electronically modernized, and the optics cleaned. At this point, a wedge calibration should be performed and the instrument compared again to a standard.

Instrument D050 - Reykjavik, Iceland

Original calibration data:

N-tables from 02 August 1990, LKO Arosa Intercomparison.
Reference Standard Lamp Values for lamp 50Q1.
Lamp tests results not used in data processing at home station.

Initial calibration results:

25 July 1995

\[d_{Na} = -1.1 \quad d_{Nc} = 0.30 \quad d_{Nd} = 0.28 \quad d_{Nad} = -0.8\]

The \(d_{Nad}\) value implies an average +1.1% error in calculated ozone value, \(Mu = 1\) to \(3\), Total Ozone = 300 Dobson Units.

Work performed:

- Optics cleaned, and gaskets replaced.
- Wiring and electronics repair and inspection performed.
- Discharge lamp test series performed, and a new Q-setting table created, dated 28 July 1995.

Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for 50Q1, UQ2 and UQ8. Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.3% in total ozone.

No recommendations.
Instrument D062 - LKO Arosa, Switzerland

Original calibration data:

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

27 July 1995

d_Na: -1.14 \ d_Nc: +0.08 \ d_Nd: +0.06 \ d_Nad: -1.2

The d_Nad value implies an average +1.7% error in calculated ozone value, Mu = 1 to 3, Total Ozone = 300 Dobson Units.

Work performed:

- Discharge lamp test series performed, and a new Q-setting table created, dated 26 July 1995.

Final intercomparison:

New N-tables and Reference Standard Lamp values defined for 62V, 62W, 62X, 62Y, 62Z UQ2 and UQ8. Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.2% in total ozone.

No recommendations.

Instrument D084 - Belsk, Poland

Original calibration data:

N-tables from 02 August 1990, LKO Arosa intercomparison. Reference Standard Lamp Values for lamps 84Q1 and 84Q2. Lamp tests results used in data processing at home station. Note: Photomultiplier tube replaced before shipping to LKO Arosa. Some mechanical damage had occurred to the S4 shutter. Instrument arrived without an operating amplifier.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

27 July 1995

d_Na: +0.64 \ d_Nc: -0.19 \ d_Nd: +0.86 \ d_Nad: -0.2

The d_Nad value implies an average +0.2% error in calculated ozone value, Mu = 1 to 3, Total Ozone = 300 Dobson Units.

Work performed:

- Optics cleaned, and gaskets replaced. Mirror M2 adjusted.
- Wiring and electronics repair and inspection performed. Amplifier was rebuilt.
- Discharge lamp test series performed, and a new Q-setting table created, dated 28 July 1995.
Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for 84Q1, 85Q2, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.6% in total ozone.

Recommendation:

There was a change in the CDDSGQP calibration. The data from this instrument on that observation should be examined in the time periods before and after this intercomparison for a shift.

Instrument D085 - l’Observatoire de Haute Provence, France

Original calibration data:

N-tables from 10 July 1995, intercomparison at l’Observatoire de Haute Provence.
Reference Standard Lamp Values for lamps 85Q1 and Q.
Lamp tests results used in data processing at home station.
Instrument is used in an automated Umkehr observing programme.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

27 July 1995

d_Na:-0.77 d_Nc:-0.23 d_Nd:-0.27 d_Nad:-0.5

The d_Nad value implies an average +0.7% error in calculated ozone value, Mu = 1 to 3,
Total Ozone = 300 Dobson Units.

Work performed:

- Optics cleaned, and gaskets replaced.
- Wedge Calibration performed, for historical record.
- Wiring and electronics repair and inspection performed.
- Discharge lamp test series performed, which verified existing Q-setting table.

Final intercomparison:

31 July 1995.
Existing calibration scale maintained.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 1.0% in total ozone.

No recommendations.

Instrument D092 - Denmark

Original calibration data:

N-tables from 02 August 1990, LKO Arosa Intercomparison.
Reference Standard Lamp Values for lamps Q, Q, Q, Q and Q.
Lamp tests results used in data processing at home station.
Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

25 July 1995

$d_{Na}: -0.65 \quad d_{Nc}: +0.21 \quad d_{Nd}: +0.07 \quad d_{Nad}: -0.7$

The d_{Nad} value implies an average $+1.0\%$ error in calculated ozone value, $Mu = 1$ to 3,
Total Ozone $= 300$ Dobson Units.

Work performed:

- Optics checked, and gaskets replaced.
- Wiring and electronics repair and inspection performed.
- Discharge lamp test series performed, which verified existing Q-setting table.
- Symmetry test was performed, with the results out of limits. This not evident in the
intercomparison results.

Final intercomparison:

30 July 1995.
Existing calibration maintained. The d_{Nad} value was -0.4 unit.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to
3.2 was 0.6% in total ozone.

No recommendations.

Instrument D101 - LKO Arosa Switzerland

Original calibration data:

N-tables from 02 August 1990, LKO Arosa Intercomparison.
Reference Standard Lamp Values for lamps A and B.
Lamp tests results used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

20 July 1995

$d_{Na}: -0.01 \quad d_{Nc}: +0.96 \quad d_{Nd}: +1.23 \quad d_{Nad}: -1.5$

The d_{Nad} value implies an average $+2.1\%$ error in calculated ozone value, $Mu = 1$ to 3,
Total Ozone $= 300$ Dobson Units.

Work performed:

- Wedge Calibration performed, for historical record.

Final intercomparison:

New N-tables and Reference Standard Lamp values defined for 101A, 101B, 101C, UQ2
and UQ8.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to
3.2 was 0.6% in total ozone.

No recommendations.
Instrument D104 - Hohenpeissenberg, Germany

Original calibration data:

- Reference Standard Lamp Values for lamps A and B.
- Lamp tests results used in data processing at home station.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

19 July 1995

d_Na: -0.45 \quad d_Nc: +0.04 \quad d_Nd: +0.75 \quad d_Nad: -1.2

The d_Nad value implies an average +1.6% error in calculated ozone value, \(\mu = 1 \) to 3,
Total Ozone = 300 Dobson Units.

Work performed:

- Optics cleaned, and gaskets replaced. Discovered that top cover is warped. If the
 securing nuts are not tightened completely, there are light leaks.
- Wiring and electronics repair and inspection performed.
- Discharge lamp test series performed, which verify existing table.
- Symmetry test performed, the results are out of limits. This is not evident in the
 intercomparison results.

Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for 101A, 101B, 101C, UQ2
and UQ8.
Highest Difference against the standard for ADDSGQP observations in \(\mu \) range 1.15 to
3.2 was 0.7% in total ozone.

Recommendations:

The warped cover should repaired if possible. At that point, the optical alignment should
be fully verified, and comparison made to a standard.

Instrument D107 - Moscow, Russia

Original calibration data:

- N-tables from 05 August 1990, LKO Arosa intercomparison.
- Reference Standard Lamp Values for lamps Q, Q and Q.
- Lamp tests results not used in data processing at home station.

Initial calibration results:

27 July 1995

\[d_{Na} = -0.86 \quad d_{Nc} = +0.32 \quad d_{Nd} = +0.18 \quad d_{Nad} = -1.0 \]

The \(d_{Nad} \) value implies an average +1.4% error in calculated ozone value, \(\mu = 1 \) to 3,
Total Ozone = 300 Dobson Units.
Work performed:

- Optics cleaned, and gaskets replaced.
- Wiring repair and inspection performed.
- Discharge lamp test series performed, which verified the existing Q-setting table.
- Symmetry test performed, the results are out of limits. This is not evident in the intercomparison results.

Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for 107Q1, 107Q2, 107Q4, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in μ range 1.15 to 3.2 was 0.2% in total ozone.

No recommendations.

Instrument D110 - Budapest, Hungary

Original calibration data:

N-tables from 02 August 1990, LKO Arosa intercomparison.
Reference Standard Lamp Values for lamps.
Lamp tests results not used in data processing at home station.

Initial calibration results:

25 July 1995

d_Na: -1.45 \hspace{1cm} d_Nc: -0.62 \hspace{1cm} d_Nd: -1.16 \hspace{1cm} d_Nad: -0.3

The d_Nad value implies an average +0.5% error in calculated ozone value, Mu = 1 to 3,
Total Ozone = 300 Dobson Units.

Work performed:

- Optics cleaned, and gaskets replaced.
- Wiring repair and inspection performed.
- Discharge lamp test series performed, which verified the existing Q-setting table.

Final intercomparison:

30 July 1995.
New N-tables and Reference Standard Lamp values defined for 110/G18, 110/G20, 110/G25, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in μ range 1.15 to 3.2 was 0.3% in total ozone.

No recommendations.

Instrument D116 - Tsukuba, Japan, Standard

Original calibration data:

N-tables from 29 June 1992
Reference Standard Lamp Values.
Lamp tests results used in data processing at home station.
Note: Instrument is fully automated.

Initial calibration results: (Adjustments based on the results of Standard Lamp tests included)

25 July 1995

d_Na:-1.39 d_Nc:-1.3 d_Nd:-1.0 d_Nad:-0.4

The d_Nad value implies an average +0.6% error in calculated ozone value, Mu = 1 to 3,
Total Ozone = 300 Dobson Units.

Work performed:

- Gaskets replaced.
- Discharge lamp test series performed, which verified the existing Q-setting table.
- Symmetry test performed, the results are out of limits. This is not evident in the intercomparison results.

Final intercomparison:

30 July 1995.
Existing calibration level maintained.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 0.9% in total ozone.

No recommendations.

Instrument D121 - Bucharest, Romania

Original calibration data:

N-tables from 05 August 1990, LKO Arosa intercomparison.
Reference Standard Lamp Values for lamps 121Q1, 121Q2 and 121Q3.
Lamp tests results not used in data processing at home station.
Notes: Instrument was dropped in 1992, and the optics were out of alignment.

Initial calibration results:

19 July 1995
The instrument alignment was so far out that conventional intercomparison results are not useable. The data taken since the damage should be considered approximately:
1.5% too low in mu range 1.15 to 1.5
correct in mu range 1.5 to 2.0
3.75% too high for mu greater than 2.0.

Work performed:

- Optics cleaned, and gaskets replaced.
- Realignment of Mirrors and Prisms.
- Complete optical inspection for damage.
- New instrument temperature coefficient defined from Mercury tests during several days.
- Discharge lamp test series performed, and a Q-setting table was created on 29 July 1995.
- Slit alignment, separation, and parallelism checked, and found to be out of specification. See recommendation.

Final intercomparison:

31 July 1995.
New N-tables and Reference Standard Lamp values defined for 121Q1, 121Q2, 121Q3, UQ2 and UQ8.
Highest Difference against the standard for ADDSGQP observations in mu range 1.15 to 3.2 was 1.2% in total ozone.

Recommendation:

The instrument is to be operated for AD type observations only, in the Mu Range 2.5 and lower.

The measurements in this range, with these wavelengths, was shown to be within 1% of the Standard at a measured ozone value of 300 Dobson units. Measured values of substantially ozone larger than this should be made at lower mu values.

The measurement of the instruments slits showed that the slits are NOT parallel, and are wider than specified for the Dobson instrument. This means that at mu values larger than 2.5, the instrument is effectively operating on incorrect wavelengths. Large Stratospheric ozone amount will amplify this problem at large mu.

A further recommendation that the instrument have the slits reset to the correct values, in an optical laboratory, by experts familiar with the technique. At this point, the wedge calibration would have to be verified, and the calibration level defined by comparison with a Standard Dobson Instrument.

The instrument can not be used for Umkehr observations before re-adjustment of the slits and entire optical alignment and final comparison with a Standard instrument.

ANNEX C
DEFINITIONS

A, C and D Wavelength Pairs: The Dobson instrument measures the difference between the intensity of selected wavelengths in the range of 3000 to 3400 Ångstroms. Certain pairs were chosen to measure ozone. These are called the A, C and D pairs. There was a B, but it is rarely used due to interference by other atmospheric absorbers.

Intercomparison: Series of simultaneous measurements made by several Dobson instruments, one of which is a standard. Usually, the time period is chosen so the measurements are made over a wide range of Mu.

Standard Lamp Test: A measurement of the N-value of a specific Quartz-Halogen (normally) bulb for the standard wavelength pairs. These bulbs are usually specific to an instrument. The result is used as a measure of the drift of the instrument’s specific ETC.

Q-setting Table: The table used to set the instrument’s wavelength controls to a wavelength pair. The setting is dependent on instrument temperature. The controls are rotatable quartz plates, hence the name Q-setting.

Discharge lamp test series: A series of measurements on various spectral lines from discharge lamps to calibrate the instrument’s wavelength controls.

Mercury Test: A test to determine the correctness of the Q-setting table with respect to a single spectral line of mercury. Normally performed routinely to verify the optical alignment of the primary (right hand side) optics to the slit S2.

Symmetry Test: A series of tests on two spectral lines of mercury to verify the spectral dispersion, and the right to left side alignment of the optics.

Wedge Calibration: The procedure used to determine the density of the optical wedge used in the instrument.

Mu(µ): Normalized optical path length through the atmosphere of radiation at the wavelengths used by the Dobson instrument. Calculated from the solar zenith angle, Mu ranges from 1.0 (sun overhead) to greater than 12.0 (sun on the horizon).

G-table: Table relating the position of the optical wedge, defined by degrees of arc on the R-dial, to relative attenuation. G-tables are defined for each A, C, and D wavelength pair by the Wedge Calibration.

N-table: A G-table converted by the addition of the instrument’s extra-terrestrial constant (ETC) to all the entries. The ETC can be determined by lamps with a known N-value, direct intercomparison with a standard Dobson instrument, or by a Langley plot method.

ENVIROMENTAL POLLUTION MONITORING AND RESEARCH PROGRAMME REPORT SERIES

7. Fourth Analysis on Reference Precipitation Samples by the Participating World Meteorological Organization Laboratories by Robert L. Lampe and John C. Puzak, December 1981*

8. Review of the Chemical Composition of Precipitation as Measured by the WMO BAPMoN by Prof. Dr. Hans-Walter Georgii, February 1982

11. Summary Report on the Status of the WMO Background Air Pollution Monitoring Network as at May 1982

12. Report on the Mount Kenya Baseline Station Feasibility Study edited by Dr. Russell C. Schnell

14. Effects of Sulphur Compounds and Other Pollutants on Visibility by Dr. R.F. Pueschel, April 1983

15. Provisional Daily Atmospheric Carbon Dioxide Concentrations as Measured at BAPMoN Sites for the Year 1981, May 1983

17. General Consideration and Examples of Data Evaluation and Quality Assurance Procedures Applicable to BAPMoN Precipitation Chemistry Observations by Dr. Charles Hakkarinen, July 1983
19. Forecasting of Air Pollution with Emphasis on Research in the USSR by M.E. Berlyand, August 1983
20. Extended Abstracts of Papers to be Presented at the WMO Technical Conference on Observation and Measurement of Atmospheric Contaminants (TECOMAC), Vienna, 17-21 October 1983
23. Provisional Daily Atmospheric Carbon Dioxide Concentrations as Measured at BAPMoN Sites for the Year 1982. November 1984
26. Sulphur and Nitrogen in Precipitation: An Attempt to Use BAPMoN and Other Data to Show Regional and Global Distribution by Dr. C.C. Wallén. April 1986
29. Recommendations on Sunphotometer Measurements in BAPMoN Based on the Experience of a Dust Transport Study in Africa by Dr. Guillaume A. d’Almeida. September 1985
35. Provisional Daily Atmospheric CO₂ Concentrations as Measured at BAPMoN Sites for the Year 1983. December 1985
43. Recent progress in sunphotometry (determination of the aerosol optical depth). November 1986
46. Provisional Daily Atmospheric Carbon Dioxide Concentrations as Measured at BAPMoN Sites for the Year 1984. December 1986
50. Provisional Daily Atmospheric Carbon Dioxide Concentrations as Measured at BAPMoN Sites for the Year 1985. December 1987
53. WMO Meeting of Experts on Strategy for the Monitoring of Suspended Particulate Matter in BAPMoN - Reports and papers presented at the meeting, Xiamen, China, 13-17 October 1986. October 1988
55. Summary Report on the Status of the WMO Background Air Pollution Monitoring Network as at 31 December 1987

58. Provisional Daily Atmospheric Carbon Dioxide Concentrations as measured at BAPMoN sites for the years 1986 and 1987

62. Provisional Daily Atmospheric Carbon Dioxide Concentrations as measured at BAPMoN sites for the year 1988

64. Report of the consultation to consider desirable locations and observational practices for BAPMoN stations of global importance, Bermuda Research Station, 27-30 November 1989

68. Global Atmospheric Background Monitoring for Selected Environmental Parameters. BAPMoN Data For 1989, Volume I: Atmospheric Aerosol Optical Depth

69. Provisional Daily Atmospheric Carbon Dioxide Concentrations as measured at Global Atmosphere Watch (GAW)-BAPMoN sites for the year 1989

72. Integrated Background Monitoring of Environmental Pollution in Mid-Latitude Eurasia by Yu.A. Izrael and F.Ya. Rovinsky, USSR

73. Report of the Experts Meeting on Global Aerosol Data System (GADS), Hampton, Virginia, 11-12 September 1990
75. Provisional Daily Atmospheric Carbon Dioxide Concentrations as measured at Global Atmosphere Watch (GAW)-BAPMoN sites for the year 1990
76. The International Global Aerosol Programme (IGAP) Plan: Overview
77. Report of the WMO Meeting of Experts on Carbon Dioxide Concentration and Isotopic Measurement Techniques, Lake Arrowhead, California, 14-19 October 1990
78. Global Atmospheric Background Monitoring for Selected Environmental Parameters BAPMoN Data for 1990, Volume I: Atmospheric Aerosol Optical Depth
83. Report on the Global Precipitation Chemistry Programme of BAPMoN
84. Provisional Daily Atmospheric Carbon Dioxide Concentrations as measured at GAW-BAPMoN sites for the year 1991
85. Chemical Analysis of Precipitation for GAW: Laboratory Analytical Methods and Sample Collection Standards by Dr. Jaroslav Santoch
89. 4th International Conference on CO₂ (Carqueiranne, France, 13-17 September 1993)
91. Extended Abstracts of Papers Presented at the WMO Region VI Conference on the Measurement and Modelling of Atmospheric Composition Changes Including Pollution Transport, Sofia, 4-8 October 1993
94. Report on the Measurements of Atmospheric Turbidity in BAPMoN

96. Global Atmospheric Background Monitoring for Selected Environmental Parameters WMO GAW Data for 1993, Volume I: Atmospheric Aerosol Optical Depth

97. Quality Assurance Project Plan (QAP)P) for Continuous Ground Based Ozone Measurements

99. Status of the WMO Global Atmosphere Watch Programme as at 31 December 1993

101. Report of the WMO Workshop on the Measurement of Atmospheric Optical Depth and Turbidity, Silver Spring, USA, 6-10 December 1993, (edited by Bruce Hicks)

103. Report of the Meeting of Experts on the WMO World Data Centres, Toronto, Canada, 17-18 February 1995, (prepared by Edward Hare)

104. Report of the Fourth WMO Meeting of Experts on the Quality Assurance/Science Activity Centres (QA/SACs) of the Global Atmosphere Watch, jointly held with the First Meeting of the Coordinating Committees of IGAC-GLONET and IGAC-ACE, Garmisch-Partenkirchen, Germany, 13-17 March 1995

105. Report of the Fourth Session of the EC Panel of Experts/CAS Working Group on Environmental Pollution and Atmospheric Chemistry (Garmisch, Germany, 6-11 March 1995)

