

The Sixth Session of the East Asia Winter Climate Outlook Forum (EASCOF-6)

Statistical downscaling and Machine Learning in predicting monthly precipitation over China

Dr. Liu Changzheng National Climate Center/CMA November 7, 2018

Outline

- Introduction to statistical downscaling
- Introduction to machine learning
- Construction of a new statistical downscaling method
- Summary

Prediction skills of precipitation of BCC CSM1.1

Prediction skills of H500 of BCC CSM1.1

rainfall : <low frequency > + <high-frequency>

Downscaling technique

Key points of statistical downscaling: predictor

- The statistical relationship between the predictor and predictand does not change over time.
- The predictor carries the climate signal.
- There is a strong relationship between the predictor and predictand.
- GCMs accurately simulate the predictor.

From < a review of downscaling methods for climate change projections> (USAID report)

Key points of statistical downscaling: modelling method

Linear methods

- Multiple linear regression
- Canonic correlation analysis(BP-CCA)
- Singular value decomposition (SVD)
- Optimal subset regression(OSR)
- CPPM
- ...

Nonlinear methods

- Analog Method
- Self-organizing map (SOM)
- Artificial Neural Network (ANN)
- •

Statistical downscaling method at APCC (Kang et al 2007)

step 4: to select the best predictor based on cross-validation

Multi-Model Downscaling Ensemble Prediction System (MODES) at BCC

Key problems in statistical downscaling

Small examples

Precipitation time series:

- Non-stationary
- Non-normal distributed
- Outlies

Factors:

- many
- of multicollinearity

Regression methods in ML

$$\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

- Ordinary Least Squares
- Ridge regression
- LASSO regression
- Elastic Net
- Least Angle regression
- Robustness regression
- Support vector machines
- Polynomial regression
- decision trees and ensemble (random forest, Gradient Boosting Regression, xgboost)
- Neural network models (Multi-layer Perceptron)

$$\min_{w} ||Xw - y||_2^2$$

$$\begin{split} \min_{w} ||Xw - y||_{2}^{2} + \alpha ||w||_{2}^{2} \\ \min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha ||w||_{1} \\ \min_{w} \frac{1}{2n_{samples}} ||Xw - y||_{2}^{2} + \alpha \rho ||w||_{1} + \frac{\alpha(1 - \rho)}{2} ||w||_{2}^{2} \end{split}$$

Outliers in monthly precipitation

Outliers in monthly precipitation

Spatial distribution

Numbers varying with month

注:1981-2016,160站

ML methods dealing with outliers

- RANSAC regression: RANdom SAmple Consensus
- Theil-Sen regression: generalized-median-based estimator
- Huber regression: it does not ignore the effect of the outliers but gives a lesser weight to them.

Multicollinearity of Factors

ENSO : Nino4, Nino3, Nino3.4, NinoZ, NinoA Subtropical High: h1000, h500

ML methods:

PCA: dimension reduction

LASSO, Ridge regression

Number of factors and model's generalization

- Components of generalization error
 - **Bias:** how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

ML methods dealing with many factors $\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$

- Ordinary Least Squares
- $\min_{w}||Xw-y||_2{}^2$
- Ridge regression ٠
- LASSO regression
- Elastic Net ٠
- Least Angle regression
- Robustness regression
- Support vector machines
- Polynomial regression
- decision trees and ensemble (random forest, Gradient Boosting Regression, xgboost)
- Neural network models (Multi-layer Perceptron)

- $min ||Xw y||_{2}^{2} + \alpha ||w||_{2}^{2}$
 - $\min_{w} \frac{1}{2n_{samples}} ||Xw y||_{2}^{2} + \alpha ||w||_{1}$ $\min_{w} \frac{1}{2n_{\text{sumpley}}} ||Xw - y||_{2}^{2} + \alpha \rho ||w||_{1} + \frac{\alpha(1 - \rho)}{2} ||w||_{2}^{2}$

Huber regression with penalized loss function

$$\hat{y}(w,x) = w_0 + w_1 x_1 + \dots + w_p x_p$$

The loss function that HuberRegressor minimizes is given by

$$\min_{w,\sigma} \sum_{i=1}^{n} \left(\sigma + H_m \left(\frac{X_i w - y_i}{\sigma} \right) \sigma \right) + \alpha ||w||_2^2$$

where

$$H_m(z) = \begin{cases} z^2, & \text{if } |z| < \epsilon, \\ 2\epsilon |z| - \epsilon^2, & \text{otherwise} \end{cases}$$

It is advised to set the parameter epsilon to 1.35 to achieve 95% statistical efficiency.

Chart of the new downscaling method

Data

• Observation:

Chinese 160 stations monthly rainfall data 1981-2016

• Model Output:

Seasonal prediction data of ECMWF System4 (monthly) 1981-2016

Two cases

Case 1: choose the best factor of all univariate linear regression

Case 2: eight factors, Huber regression

Reforecast skills

	ACC (160 stations)
NCC-Guidance product	0.07
NCC-Formal product	0.11
Case 1: univariate regression	0.05
Case2: Huber regression	0.08

(2013.1-16.12, Chinese 160 stations, monthly precipitation

Reforecast skills

2013. 1-16. 12, Chinese 160 stations, monthly precipitation

Summary

- Machine learning technique could be used to modified and improve statistical downscaling methods.
- As a new statistical downscaling method, Huber regression does well in predicting monthly precipitation over China.

Thanks

Huber回归方法技巧评估

(2013.1-16.12我国160站月降水后报)

效果: *空间分布预测技巧显著提高* 预测技巧的下限有所提高