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* Introduction to statistical downscaling
* Introduction to machine learning
* Construction of a new statistical downscaling method

* Summary



Prediction skills of precipitation of BCC CSM1.1
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Prediction skills of H500 of BCC CSM1.1
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Downscaling technique

Coarse resolution

Climate Change Short-term prediction




Key points of statistical downscaling: predictor

* The statistical relationship between the predictor and
predictand does not change over time.

* The predictor carries the climate signal.

* There is a strong relationship between the predictor and
predictand.

 GCMs accurately simulate the predictor.

From < areview of downscaling methods for climate change
projections> (USAID report )



Key points of statistical downscaling: modelling method

Linear methods Nonlinear methods

* Analog Method
* Self-organizing map (SOM)
* Artificial Neural Network (ANN)

 Multiple linear regression

e Canonic correlation analysis(BP-CCA)
 Singular value decomposition (SVD)
e Optimal subset regression(OSR)

* CPPM



Statistical downscaling method at APCC (Kang et al 2007)

step 1: to search coupled pattern betweers»
historical observation and hindcast =

30

step 2: to estimate regression coefficient

for downscaling
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step 3: to predict seasonal climate in each predictor

step 4: to select the best predictor based on cross-validation

pressure

predictor
selection




Multi—Model Downscaling Ensemble Prediction
System (MODES) at BCC
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Key problems in statistical downscaling

Small examples

Precipitation time series:
* Non-stationary
* Non-normal distributed
e QOutlies

Factors:
°* many
* of multicollinearity



Machine learning(ML)

Artificial Intelligence

Machine Learning

Deep Learning




Continuous Discrete

Supervised Learning

classification or
categorization

regression

Unsupervised Learning

clustering

dimensionality
reduction




scikit-learn
algorithm cheat-sheet

classification

regression

woMING

dimensionality
reduction




Regression methods in ML
Jlw, T) = wo + w1Ty + ... + WyTy

Ordinary Least Squares min || Xw — y||2*
Ridge regression
min || Xw — y||2* + a||uu||22

LASSO regression
Elastic Net min

w 2

|| Xw — yl[3 + af [w|];
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Least Angle regression
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Robustness regression

Support vector machines
Polynomial regression

decision trees and ensemble (random forest, Gradient Boosting Regression, xgboost)
Neural network models (Multi-layer Perceptron)



Outliers in monthly precipitation
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Outliers in monthly precipitation

Spatial distribution
Numbers varying with month

numbers of outliers of observational monthly precipitation
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ML methods dealing with outliers

* RANSAC regression: RANdom SAmple Consensus
* Theil-Sen regression: generalized-median-based estimator

* Huber regression: it does not ignore the effect of the outliers but
gives a lesser weight to them.

Comparison of HuberRegressor vs Ridge
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Multicollinearity of Factors

ENSO : Nino4, Nino3, Nino3.4, NinoZ, NinoA
Subtropical High: h1000, h500

ML methods:
PCA: dimension reduction
LASSO, Ridge regression



Number of factors and model’s generalization

 Components of generalization error

* Bias: how much the average model over all training sets differ from the
true model?

* Error due to inaccurate assumptions/simplifications made by the
model

e Variance: how much models estimated from different training sets
differ from each other

* Underfitting: model is too “simple” to represent all the relevant
class characteristics

* High bias and low variance
* High training error and high test error

* Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data
* Low bias and high variance
* Low training error and high test error



Bias-Variance Trade-off

Y.

Sample 2

* Models with too few
parameters are inaccurate
because of a large bias (not
enough flexibility).

* Models with too many
parameters are inaccurate
because of a large variance
(too much sensitivity to the
sample).



ML methods dealing with many factors
Jlw, ) = wp + wiz + ... + Wy,

Ordinary Least Squares min || Xw — yll2”

Ridge regression min || Xw — y||2® + a||w||2”

LASSO regression min oo———|1Xw — yll} + allwll;

Elastic Net o

| Xw — |3 + ap||w]|]1 +

. 1—p) 2
min — ||| |3

"t samples

Least Angle regression
Robustness regression

Support vector machines
Polynomial regression

decision trees and ensemble (random forest, Gradient Boosting Regression, xgboost)
Neural network models (Multi-layer Perceptron)



Huber regression with penalized loss function

Jyw,r) = wo + wyzy + ... + Wy,

The loss function that HuberRegressor minimizes is given by

n
. Xiw —y; 2
min (o (272 o) +ol
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where
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al if (2| < e,
Hm(:)={ d

2¢|z| — €%, otherwise

It is advised to set the parameter epsilon to 1.35 to achieve 95% statistical efficiency.



Chart of the new downscaling method
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Data

* Observation:
Chinese 160 stations monthly rainfall data
1981-2016

* Model Output:

Seasonal prediction data of ECMWF System4 (monthly )
1981-2016



Two cases

Case 1:
choose the best factor of all
univariate linear regression

Case 2:
eight factors,
Huber regression



Reforecast skills

ACC (160 stations)

NCC-Guidance product

NCC-Formal product

Case 1: univariate regression

Case2: Huber regression
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ACC (160 stations)

Reforecast skills

ACC skill of monthly precipitation reforecasting during 2013-16
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Summary

* Machine learning technique could be used to modified and improve
statistical downscaling methods.

* As a new statistical downscaling method, Huber regression does well
in predicting monthly precipitation over China.



Thanks
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