### Methods of forecast verification

# Kiyotoshi Takahashi Climate Prediction Division Japan Meteorological Agency

# Outline

- 1. Purposes of verification
- 2. Verification methods
  - For deterministic forecasts
  - For probabilistic forecasts
  - Standardised Verification System for Long-Range Forecasts (SVSLRF)
- 3. Results on the TCC web page

## 1. Purposes of verification

Forecast verification is a process of assessing quality of forecasts.

#### • to monitor forecast quality

- how accurate are forecasts and are they improving?
- to guide forecasters and users
  - help forecasters understand model characteristics
  - help us provide higher value forecasts to users

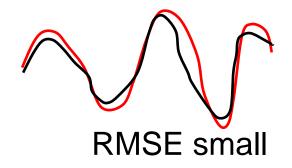
#### • to guide future developments of system

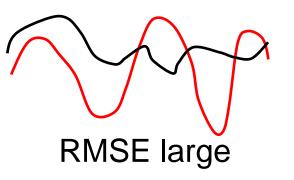
- identify model faults and improve systems
- help us compare and evaluate different forecasts (model or guidance)

## 2. Verification methods

 For deterministic forecast ACOR, RMSE, Bias (ME),MSSS (ROC)

 For probabilistic forecast ROC, Reliability diagram, BSS (Brel, Bres)


### Root Mean Square Error (RMSE)


$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2}$$

*F* :forecast *O* :observation *N* :sample size

Range: 0 to infinity, Perfect score: 0.

- RMSE measures absolute magnitude of the forecast error.
- It does not indicate the direction the error.





### Mean Error (ME)

$$ME = \frac{1}{N} \sum_{i=1}^{N} \left( F_i - O_i \right)$$

F :forecastO :observationN :sample size

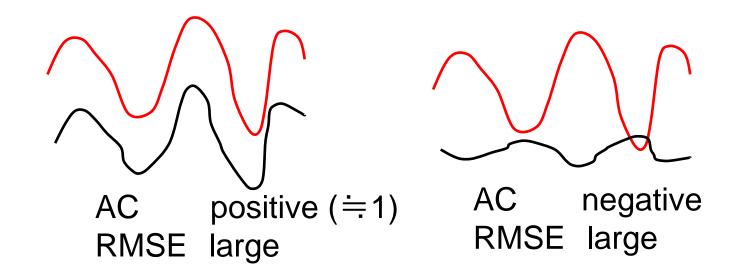
Range: variable, Perfect score: 0.

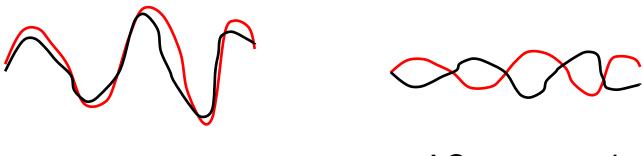
- ME measures average magnitude of the forecast error.
- It indicates the direction the error.

$$RMSE^{2} = ME^{2} + \sigma_{e}^{2} \qquad \sigma_{e}^{2} = \frac{1}{N}\sum_{i=1}^{N}(x_{i} - a_{i} - ME)^{2}$$

RMSE can be divided into ME(systematic error) and random error ( $\sigma_e$ ).

## Anomaly Correlation (AC)


$$AC = \frac{\sum_{i=1}^{N} (F_i - C_i)(O_i - C_i)}{\sqrt{\sum_{i=1}^{N} (F_i - C_i)^2} \sqrt{\sum_{i=1}^{N} (O_i - C_i)^2}}$$


*F* :forecast*O* :observation*C* :climatology

Range: -1 to 1. Perfect score: 1.

 AC measures correspondence or phase difference between forecast and observation, subtracting out the climatological mean at each point.

$$AC \doteq 1$$

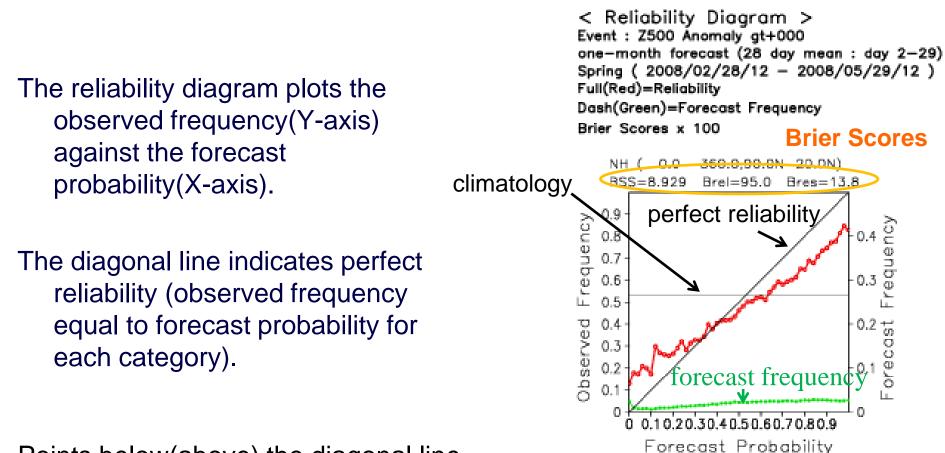




AC positive(≒1) RMSE small AC negative RMSE small

### Mean Squared Skill Score (MSSS)

$$MSSS = 1 - \frac{MSE}{MSE_c}$$


Perfect score: 1 (when MSE=0) Climatology forecast score: 0 where *MSE* is the mean squared error  $MSE = \frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2 \qquad \begin{array}{c} F: \text{forecast} \\ O: \text{observation} \end{array}$ 

and  $MSE_c$  is the MSE of climatology forecast.

$$\begin{split} \text{MSSS can be expanded (Murphy, 1988) as} \\ \hline \text{MSSS} = & \left\{ 2 \frac{s_f}{s_o} r_{fo} - \left(\frac{s_f}{s_o}\right)^2 - \left(\frac{\overline{f} - \overline{o}}{s_o}\right)^2 + \frac{2n - 1}{(n - 1)^2} \right\} / \left\{ 1 + \frac{2n - 1}{(n - 1)^2} \right\} \\ \hline \left\{ 1 + \frac{2n - 1}{(n - 1)^2} \right\} \\ \hline \text{(1 2) (3)} \\ \hline \text{The first 3 terms are related to} \\ \hline \text{(1) phase error (through the correlation)} \\ \end{split}$$

(2) amplitude errors (through the ratio of the forecast to observed variances)(3) bias error

# **Reliability** diagram



Points below(above) the diagonal line indicate overforecasting (underforecasting).

# Brier (skill) score

Brier score measures mean squared error of the probability forecasts.

$$BS = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)^2$$

 $p_i$ :forecast probability

o<sub>i</sub> : observed occurrence(0 or 1)

*N* : sample size

Range: 0 to 1. Perfect score: 0 Climatology:  $\overline{o}(1-\overline{o})$ Random:1/3

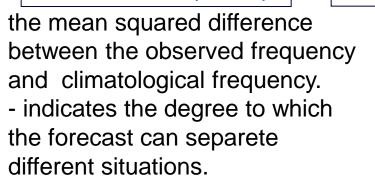
Brier skill score measures skill relative to a reference forecast (usually climatology).

$$BSS = 1 - \frac{BS}{BS_{reference}}$$

Range: minus infinity to 1. BSS=0 indicates no skill when compared to the reference forecast. Perfect score: 1.

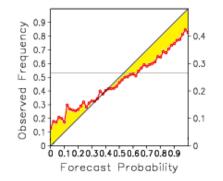
#### Decomposition of the Brier score

Murphy(1973) showed that the Brier score could be partitioned into three terms (for K probability classes and N samples). These terms are shown separately to attribute sources of error.


o:climatological occurrence

$$BS = \frac{1}{N} \sum_{k=1}^{K} n_k (p_k - \overline{o_k})^2 - \frac{1}{N} \sum_{k=1}^{K} n_k (\overline{o_k} - \overline{o})^2 + \overline{o}(1 - \overline{o})$$

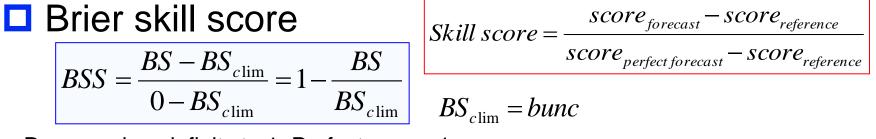
resolution (bres)


reliability (brel)

the mean squared difference between the forecast probability and the observed frequency. Perfect score: 0



measures the variability of the observations.

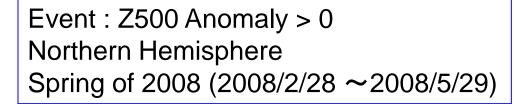

uncertainty (bunc)

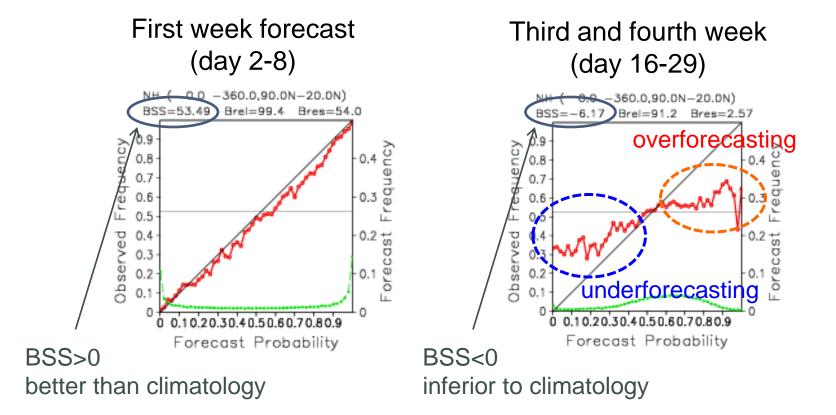


climatologial forecast score:0 Perfect score:  $\overline{o}(1-\overline{o})$ 

# Brier skill score

= the relative skill of the probabilistic forecast to the climatology

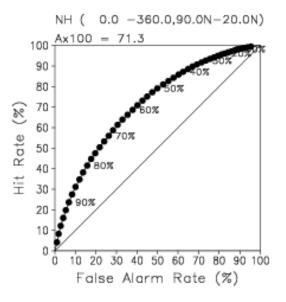




Range: minus infinity to 1. Perfect score: 1 BSS=0 indicates no skill when compared to the climatology. BSS>0 : better than clim.



The larger these skill scores are, the better.

# Interpretation of Reliability diagram and BSS



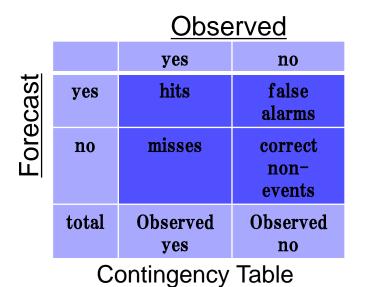



# Relative Operating Characteristic (ROC)

ROC is created by plotting the hit rate(Y-axis) against the false alarm rate(X-axis) using increasing probability thresholds to make the yes/no decision.

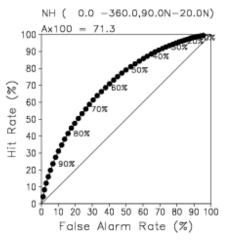
The area under the ROC curve (=ROC area) is frequently used as a score. Relative Operating Characteristics Event : Z500 Anomaly gt+000 one-month forecast (28 day mean : day 2-29) Spring ( 2008/02/28/12 - 2008/05/29/12 )



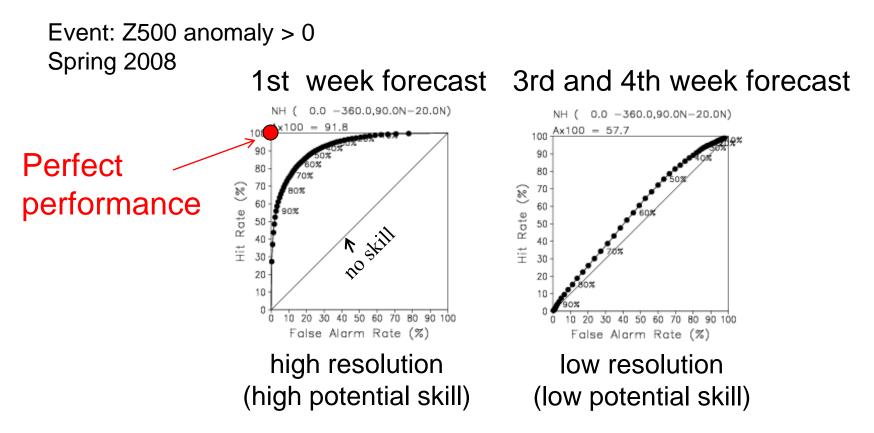

#### Steps for making ROC diagram

- 1. For each forecast probability category, count the number of hits, misses, false alarms, and correct non-events
- 2. Compute the hit rate and false alarm rate in each category k

hit rate<sub>k</sub>= hits<sub>k</sub>/ (hits<sub>k</sub>+ misses<sub>k</sub>)


false alarm rate<sub>k</sub>= false alarms<sub>k</sub>/ (false alarms<sub>k</sub>+ correct non-events<sub>k</sub>)

- 3. Plot hit rate vs false alarm rate
- 4. ROC area is the integrated area under the ROC curve




| Fore cast<br>probability | Hit rate | False<br>alarm rate |
|--------------------------|----------|---------------------|
| ≥ 0.0                    |          |                     |
| ≥ 0.02                   |          |                     |
| ≥ 0.04                   |          |                     |
| •                        |          |                     |
| •                        |          |                     |
| •                        |          |                     |
| •                        |          |                     |
| •                        |          |                     |
| •                        |          |                     |
| •                        |          |                     |
| ≥ 1.0                    |          |                     |

Relative Operating Characteristics Event : Z500 Anomaly gt+000 one-month forecast (28 day mean : day 2-29) Spring ( 2008/02/28/12 - 2008/05/29/12 )



#### Interpretation of ROC curves



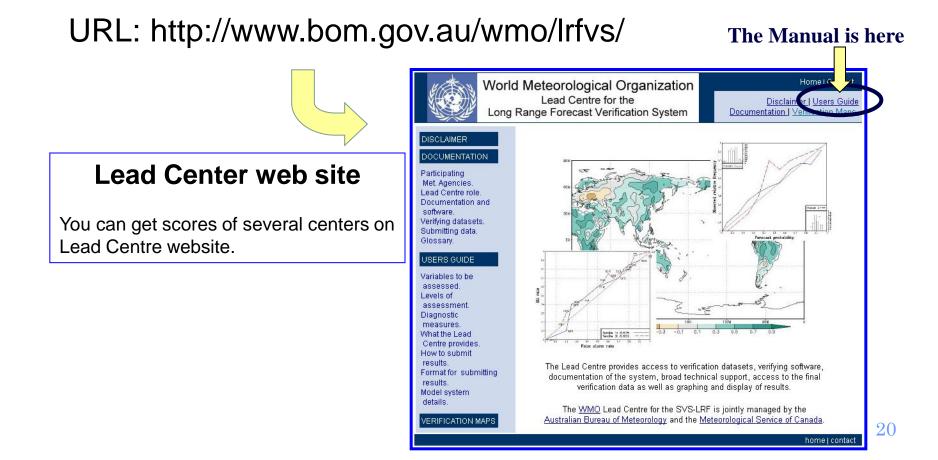
- ROC is not sensitive to bias in forecasts. Forecasts with bias may have a good ROC curve if resolution is still good. In this sense, the ROC can be considered as a measure of potential usefulness.
- On the other hand, reliability diagram is sensitive to the bias. It is needed to see both the ROC and the reliability diagram.



(Standard Verification System for Long-Range Forecast)

- WMO standard tool to verify skill in seasonal models
- It was introduced by the Commission for Basic Systems (CBS) of the World Meteorological Organization (WMO) in December, 2002.
- Users can appropriately evaluate forecast skill with common measures.

# Outline of SVSLRF


#### Mandatory part

|         | Parameters                                                 | Verification regions                                                                                | Deterministic<br>forecasts                                            | Probabilistic<br>forecasts                                                    |
|---------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Level 1 | T2m anomaly<br>Precipitation<br>anomaly<br>(Nino3.4 Index) | Tropics(20S-20N)<br>Northern<br>extratropics(20N-90N)<br>Southern<br>extratropics(20S-90S)<br>(N/A) | MSSS                                                                  | ROC curves<br>ROC areas<br>Reliability<br>diagrams<br>Frequency<br>histograms |
| Level 2 | T2m anomaly<br>Precipitation<br>anomaly<br>(SST anomaly)   | Grid-point verification on a 2.5° by 2.5° grid                                                      | MSSS and its<br>three-term<br>decomposition<br>at each grid-<br>point | ROC areas at<br>each grid-point                                               |
| Level 3 | T2m anomaly<br>Precipitation<br>anomaly<br>(SST anomaly)   | Grid-point verification on a 2.5° by 2.5° grid                                                      | 3 by 3<br>contingency<br>tables at each<br>grid-point                 | ROC reliability<br>tables at each<br>grid-point                               |

# LC-SVSLRF

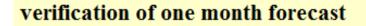
Lead Centre for the Long-Range Forecast Verification System

- Australian Bureau of Meteorology (BOM)
- Meteorological Service of Canada (MSC)



#### 3. Verification results on TCC web page

| ③ 気象庁     Welcome to Tokyo Climate Center     Welcome to |               |                           |                    |                      |                |                  |                   |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|--------------------|----------------------|----------------|------------------|-------------------|------------|
| Japan Meteorolog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | jical Agency  |                           |                    |                      |                | 🖸 TCC home 🖸 Ab  | out TCC 💿 Site Ma | p 🖸 Contac |
| Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | World Climate | Climate System Monitoring | El Niño Monitoring | NWP Model Prediction | Global Warming | Climate in Japan | Training Module   | News Arc   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                           |                    |                      |                |                  |                   |            |


HOME > Ensemble Model Prediction

#### JMA's Ensemble Prediction System (Products of GPC Tokyo)

JMA operates a numerical prediction system composed of a global atmospheric circulation model and a land process model for one-month, three-month and summer/winter season forecasts. An ensemble prediction technique (which calculates atmospheric evolution from many initial conditions around the most likely one) is employed to increase accuracy, and applied to probabilistic forecasts. Ensemble prediction maps and verification charts of one-month, three-month and summer/winter seasons prediction are available on this page. Experimental products of three-month probability forecasts are also available.

| Notice                                                                                                                                                  | Main Products                                                                                                                                                                                                                          |                                                                                      |                                                                                                   | Links                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <ul> <li>GPV products for seasonal<br/>forecasts have been<br/>upgraded since 17<br/>Februrary 2010. Please<br/>refer to the top page of the</li> </ul> | Latest Products<br>One-month Prediction<br>> One-month Prediction (07 Jan 2011)<br>> 2500, T850 & Psea (Northern Hemisphere) ((                                                                                                        | 77. bo 2011)                                                                         |                                                                                                   | <ul> <li>WMO DDB<br/>(Various Clima<br/>related Produc<br/>and Data)</li> <li>Monthly Clima</li> </ul> |
| "TCC News No. 19" for<br>details.                                                                                                                       | <ul> <li>Stream function, Velocity potential &amp; Surfac</li> <li>Verifications (@ Jan 2011)</li> <li>One month probabilistic forecasts at station</li> </ul>                                                                         | ce air temperature (60N-60S) (m c                                                    | 1-month forecas                                                                                   | e Imag                                                                                                 |
|                                                                                                                                                         | Three-month Prediction         Three-month Prediction (15 Dec 2010)         Z500, T850 & Psea (Northern Hemisphere) (1)                                                                                                                | 5 Dec 2010)                                                                          |                                                                                                   | <ul> <li>Tropical Cyclo<br/>Advisory : Toł<br/>Typhoon Cent</li> </ul>                                 |
|                                                                                                                                                         | <ul> <li>Stream function, Velocity potential &amp; Surfact</li> <li>Verification of recent predictions (07 May 2010)</li> <li>Verification of hindcasts</li> <li>Probabilistic Forecasts and Verifications (15 predictions)</li> </ul> |                                                                                      | 3-month forecas                                                                                   | > Japanese 25-y<br>(sis Pro<br>5)<br>Atlas y                                                           |
|                                                                                                                                                         | Warm/Cold Season Prediction<br>> Warm/Cold Season Prediction (18 Oct 2010)<br>> Z500, T850 & Psea (Northern Hemisphere) (1                                                                                                             |                                                                                      |                                                                                                   | <ul> <li>World Data Ce</li> <li>for Greenhous</li> <li>Gases (WDCG)</li> <li>tyo -</li> </ul>          |
|                                                                                                                                                         | <ul> <li>Stream function, Velocity potential &amp; Surfaction</li> <li>Verification of hindcasts</li> </ul>                                                                                                                            | Wai                                                                                  | m/Cold season fore                                                                                | Cast Cent<br>gica                                                                                      |
|                                                                                                                                                         | Model Descriptions <ul> <li>Model Outlines</li> <li>Operations for Extended-range Forecast<br/>Model</li> <li>Operations for Long-range Forecast Model</li> </ul>                                                                      | Download GPC Long-range F  Download Grid Point Value (G Only registered NMHSs can ad | PV) File                                                                                          | Institute, JMA<br>> Meteorologica<br>Satellite Centi<br>JMA                                            |
| L                                                                                                                                                       | · operations for Long-range Porecast Model                                                                                                                                                                                             | days" from JDDS_admin (JDDS_a<br>requested to change your pass                       | led "[JDDS] Your Password will expire in a few<br>dmin@data.jma.go.jp), you are kindly<br>vord at | 》World<br>Meteorologiga<br>Organization<br>(WMO)                                                       |

### Verification of operational 1-month forecasts



#### Maps

- Error maps for every forecast (updated every week)-
  - Z500, T850 and PSEA

Reliability diagrams for each season

ROC curves for each season

\* Systemtic error is removed. (Bias based on hindcas Climatological normals were calculated with NCEP/N

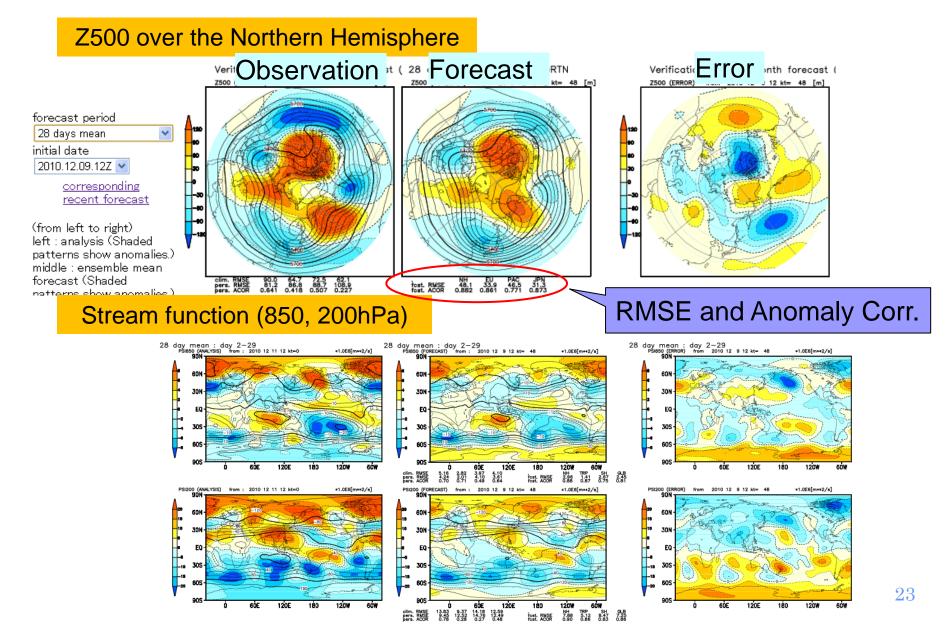
\* Model normals based on hindcast from 1982 to 200

o Stream Function and Velocity Potential

#### **Deterministic forecast**

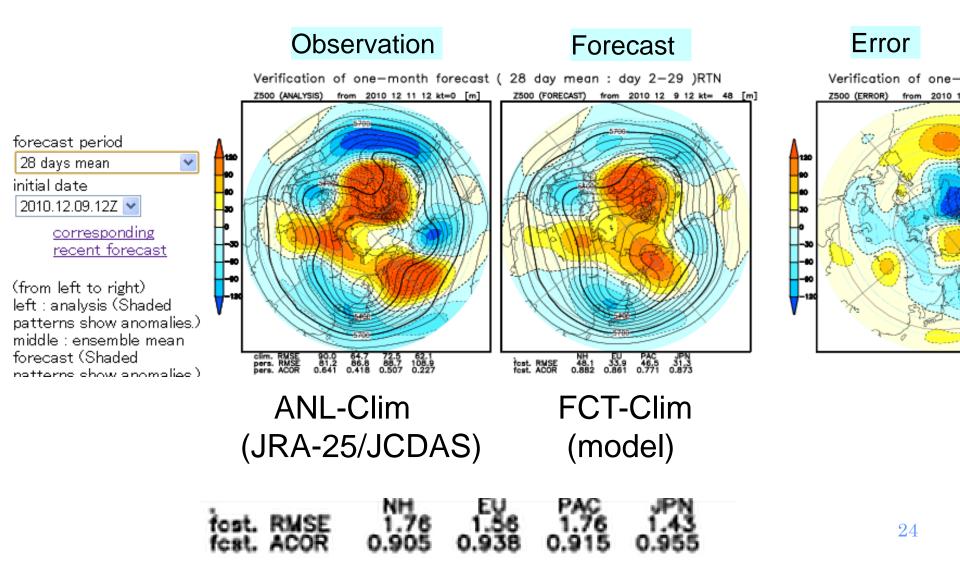
Ensemble mean forecast error maps, **RMSE and Anomaly Correlation** Observed climatology were calculated with ERA-15(19/9-1993).

Probabilistic forecast


#### Scores

- Score in each season
- Score in each year

Summary of verification in 2001 Summary of verification in 2002 Summary of verification in 2003 Summary of verification in 2004 Summary of verification in 2005 Summary of verification in 2006 Summary of verification in 2007 Time sequence of RMSE and AC


94-2000).

#### Verification of 1-month Ensemble mean forecast maps (Deterministic)



#### Verification of 1-month Ensemble mean forecast maps (Deterministic)

Z500 over the Northern Hemisphere



# Verification of operational 1-month forecasts

#### verification of one month forecast

#### Maps

- · Error maps for every forecast (updated every week)
  - o Z500, T850 and PSEA

\* Systemtic error is removed.(Bias based on hindcast from 1982 to 2001.) Climatological normals were calculated with NCEP/NCAR reanalysis-1(1971-1978),ERA-15(1979-1993) and GANAL(1994-2000).

<u>Stream Function and Velocity Potential</u>

\* Model normals based on hindcast fr Observed climatology were calculated

#### Probabilistic forecast

- <u>Reliability diagrams for each season</u>
- <u>ROC curves for each season</u>

#### Scores

•Reliability diagrams and Brier skill scores

ROC curves and area for each season

- Score in each season
- Score in each year

Summary of verification in 2001 Summary of verification in 2002 Summary of verification in 2003 Summary of verification in 2004 Summary of verification in 2005 Summary of verification in 2006 Summary of verification in 2007



HOME > Ensemble Model Prediction

#### JMA's Ensemble Prediction System

JMA operates a numerical prediction system composed of a global atmospheric circulation model and a land process model for one-month, three-month and summer/winter season forecasts. An ensemble pr calculates atmospheric evolution from many initial conditions around the most likely one) is employed to increase accuracy, and is applied to probabilistic forecasts. Ensemble prediction maps and verification month and summer/winter seasons prediction are available on this page. Experimental products of three-month probability forecasts are also available.

| Notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Main Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <ul> <li>JMA's one-month prediction<br/>model was upgraded on 21<br/>March 2008. Available products<br/>remain the same. Verification<br/>maps of one-month probabilistic<br/>forecasts at station points have<br/>been updated accordingly.</li> <li>JMA's extended ensemble<br/>prediction systems (EPS) was<br/>updated on 9 March 2007.<br/>Please refer to the "TCC News<br/>No.7" for details.</li> <li>JMA's extended ensemble<br/>prediction systems (EPS) (for<br/>three-month and warm/cold<br/>season predictions) was updated<br/>on 12 September 2007. Please<br/>refer to the "TCC News No.9"<br/>for details.</li> </ul> | Latest Products         One-month Prediction         > One-month Prediction (05 Sep 2008)         > Z500, T850 & Psea (Northern Hemisphere) (05 Sep         > Stream function, Velocity potential & Surface air         > Verifications (07 Sep 2008)         > One month probabilistic forecasts at station point         Three-month Prediction         > Three-month Prediction (01 Sep 2008)         > Z500, T850 & Psea (Northern Hemisphere) (01 Sep         > Stream function, Velocity potential & Surface air         > Verification of recent predictions (05 Sep 2008)         > Verification of hindcasts         > Probabilistic Forecasts and Verifications (19 Aug         Warm/Cold Season Prediction         > Warm/Cold Season Prediction (20 Apr 2008)         > Z500, T850 & Psea (Northern Hemisphere) (20         > Stream function, Velocity potential & Surface         > Warm/Cold Season Prediction (20 Apr 2008)         > Z500, T850 & Psea (Northern Hemisphere) (20         > Stream function, Velocity potential & Surface         > Verification of hindcasts | r temperature (60N-60S) (05 Sep 2008)<br>hts (experimental) (06 Jun 2008) NEW<br>ep 2008)  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Model Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Download GPV (Grid Point Value)                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Model Outlines</li> <li>Operations for Extended-range Forecast Model</li> <li>Operations for Long-range Forecast Model</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Download GPV file</li> <li>Only registered NMHSs can access this page.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |

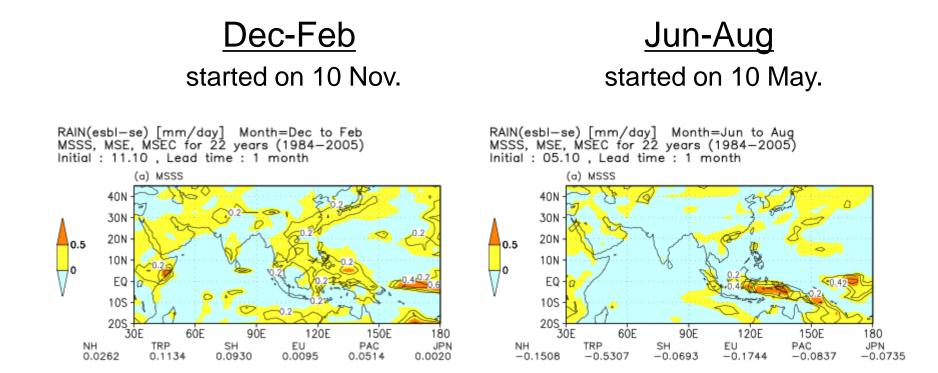
Hindcast verification methods based on Standardised Verification System for Long-Range Forecasts (SVSLRF)

#### Verification of deterministic forecasts

- Mean Square Skill Score <u>RAIN | T2m | PSEA | Z500 | T850</u> <u>Dependence of MSSS on Initial date</u>
- 3 by 3 contingency tables (in Japan) (Category : Below Normal, Near Normal, Above Normal) <u>RAIN | T2m | PSEA | Z500 | T850</u>

#### Verification of Probabilistic forecasts

- Reliability diagrams (Aggregated verification) (Anomaly > 0, Below Normal, Near Normal, Ab <u>RAIN | T2m | PSEA | Z500 | T850</u>
- Relative Operating Characteristics
  - ROC curves, ROC areas (Aggregated verification (Anomaly > 0, Below Normal, Near Normal, Above Normal) <u>RAIN | T2m | PSEA | Z500 | T850</u> <u>Dependence of ROC areas on Initial date</u>
  - ROC areas (Grid point verification) (Anomaly > 0, Below Normal, Near Normal, Above Normal) <u>RAIN | T2m | PSEA | Z500 | T850</u>


<u>Verification of deterministic forecasts</u>
Mean Square Skill Score (MSSS)
Contingency tables

Verification of probabilistic forecasts

- Reliability diagrams
- ROC curves and ROC areas

#### Verification data

#### Examples of MSSS for precipitation



Positive MSSS indicates that the forecast is better than climatological forecast.

#### Summary

#### Deterministic

| Index | Random | Climatology | Perfect |
|-------|--------|-------------|---------|
| RMSE  | >0     | •••         | 0       |
| ME    | •••    | • • •       | 0       |
| AC    | -1     | • • •       | +1      |
| MSSS  | • • •  | 0           | +1      |
| MSE   | >0     | > 0         | 0       |

#### Probabilistic

| Index               | Random | Climatology                          | Perfect                     |
|---------------------|--------|--------------------------------------|-----------------------------|
| Reliability diagram |        |                                      | Fit to<br>the diagonal line |
| BS                  | 1/3    | bunc= $\overline{o}(1-\overline{o})$ | 0                           |
| BSS(x100)           | 100>   | 0                                    | +100                        |
| Brel(x100)          | 100>   | 100 >                                | +100                        |
| Bres(x100)          | 100>   | 0                                    | +100                        |
| Roc area(x100)      | 100>   | 50                                   | +100                        |

#### References

Murphy, A.H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595-600.

Murphy, A.H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 16, 2417-2424.

http://www.bom.gov.au/wmo/lrfvs/index.html http://www.ecmwf.int/newsevents/meetings/workshops/2007/jwgv/index.html