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Climate and Climate System

“Weather 1s what 1s happening to the atmosphere at any given
time.

Climate in a narrow sense isthe "average weather," the
statistical description over aperiod of time.”

Climate is formed in the interactions in climate system,
consisting of atmosphere including composition and
circulation, the ocean, hydrosphere, land surface, biosphere,
snow and ice, solar and volcanic activitiesin its spatial and

temporal variability.



C I | m at e Sy S t e m http://ipcc-wgl.ucar.edu/wgl/FAQ/wgl fag-1.2.html

Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle
Changes in
Solar Inputs A~
i ~ Clouds * I
e g Atmosphere T}
P ///;"f{."'}"
. £ /
N, O, A Volcanic Activity ’/" ' 4
H,0, CO,, CH,, N,0, 0, etc. - dy Ty
Aerosols Atmosphere-Biosphere
Atmosphere- Interaction
Ice Precipitation
Interaction Evaporation
Terrestrial
Heat  Wind k! hRadmtlonAI :
Exchange Stress y :
Sea Ic IIIIII

Hydrosphere:
Ocean

il
. o

Land Surface

Ice-Ocean Coupling P& W Hydrosphere:
‘ . Rivers & Lakes

Changes in the Ocean:
Circulation, Sea Level, Biogeochemistry

Changes infon the Land Surface:
Orography, Land Use, Vegetation, Ecosystems

Schematic view of the components of the climate system, their processes and interactions.

Ice Sheet

Changes in the Cryosphere:
Snow, Frozen Ground, Sea Ice, Ice Sheets, Glaciers


http://ipcc-wg1.ucar.edu/wg1/FAQ/wg1_faq-1.2.html

Radiative Balance



Radiative Balance between Earth and Space
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Difference between

Pictures are from NASA web-sites

Equilibrium radiative temperature and Ground Surface Temperature
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Solar constant :
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Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About haf of the incoming solar
radiation is absorbed by the Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by
evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back

to Earth aswell as out to space. Source: Kiehl and Trenberth (1997).
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Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About haf of the incoming solar
radiation is absorbed by the Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by
evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back

to Earth aswell as out to space. Source: Kiehl and Trenberth (1997).
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Pictures are from NASA and JMA web-sites

Absorption of Radiation from 6000K and 255K Blackbodies
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(a) Spectral distribution of long-wave emission from
blnckbnd:cs at 6000 K and 255 K, corresponding to the mean
emitting temperatures of the Sun and Earth, respectively, and (&)
percentage of atmosphenic absorption for radiation passing from

the top of the atmosphere to the surface. Notice the compara-
tively weak absorption of the solar spectrum and the region of
weak absorption from 8 to 12 pm in the long-wave spectrum
[from MacCracken and Luther, 1985).



Radiative heating tends to create vertical instability

between heated ground and cooled atmosphere on average
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Estimate of the Earth’s annual and global mean energy balance. Over the long term, the amount of incoming solar radiation absorbed by the Earth and
atmosphere is balanced by the Earth and atmosphere releasing the same amount of outgoing longwave radiation. About haf of the incoming solar
radiation is absorbed by the Earth’s surface. This energy is transferred to the atmosphere by warming the air in contact with the surface (thermals), by
evapotranspiration and by longwave radiation that is absorbed by clouds and greenhouse gases. The atmosphere in turn radiates longwave energy back

to Earth aswell as out to space. Source: Kiehl and Trenberth (1997).
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Thermal Equilibrium of the Atmosphere with a Convective Adjustment

SyurTRo ManaBE anD RoBeErr V. STRICELER

Femeral Circulafion Rescarch Laboralery, 1. S, Weather Bureanw, Waslhinglorn, D). C.
(Manuscript received 19 December 1963, in revised form 13 April 1964}
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23 |
—(40)
2.3IIITLLIlll!i111||l||1||f
—(40)
10— —(30)
— 10—
0 — —(30)
£ F :
— — £ b
g 2 " E
&
i —(20) o 3 (2015
L 100— PURE RADIATIVE EQUIL. = & 1% ho Aﬁ 3
o 2 3 H,0+C03 : =
o DRY ADIABATIC ADJ. = Ho0+C0 405 6y
6.5°C/ km ADJ. [—(10)
1000 LI U 0 DO Y ORI (o)
1 140 180 220 280 300
TEMPERATURE (K}
000 =17 T T T 11 1 (O I . .
180 220 260 300 340 Fi16. 6c. Thermal equilibrium of various atmospheres which
) have a critical lapse rate of 6.5 deg km™. Vertical distributions of
TEMPERATURE (°K) gaseous ahsorbers at 35N, April, were used. S;=2 ly min™l,

cost=0.5, r=0.5, ,
Fic. 4. The dashed, dotted, and solid lines show the thermal £ ' no clouds

equilibrium with a critical lapse rate of 6.5 deg km™, a dry-
adiabatic critical lapse rate (10 deg km™), and pure radiative
equilibrium.



Thermal Equilibrium of the Atmosphere with a Convective Adjustment

SvurTtRe ManmapeE anD RopEstr Y. STRICKLER

Gemeral Cironlaiion Reseagrch Laboralory, 7. 5. Weatker Burcaw, Wasldngton, . O
(Manuscript received 19 December 1963, in revised form 13 April 1964}

Observed Tempera[ure 1-D model Simulations for each latitudes
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Horizontal Radiative Imbalance
and Circulations



Pictureisfrom IPCC 1995

Imbalanced horizontal distribution of radiative heating

(1) Latitudinal Imbalance between Pole and Tropics Timescale=1year

Driving Forces of Climate : : L.
Relaxation time to radiative

equilibrium temperature
(radiative equilibrium
timescale) is estimated as
about 30 days.

Radiative imbalance between
Pole and Tropics drives
global circulations.

Radiative imbalance between
day and night has small
iInfluence on global
circulations directly.

Net Radiation

(2) Longitudinal Imbalance between Day and Night Timescale=1day




Diurnal Cycle of Precipitation from TRMM

From Takayabu, Y.N., 2002: GEOPHYSICAL

RESEARCH LETTERS, VOL. 29, NO. 12, 1584,

10.1029/2001GL014113.
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From Arakawa, O. and A. Kitoh at MRI/JMA

ANN: Max. localtime of mean rainfall diurnal variation (Tmax1)
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Diurnal Precipitation Regimes in the Global Tropics®
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FiG. 9. Evolution of precipitation represented by the combination of EEOF, and EEOF, for the following
regions: (a) South Asia, (b) Central America and northwest part of America, (c) West Africa, (d) Indonesia
Maritime Continent, (e) South America, and (f) Madagascar. See the text for the complete description of the
procedure. The corresponding modified LSTs are shown at the right corner of panels in (a) and (d). The horizontal

Diurnal Precipitation near Coastal Area
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F16. 10. Schematic diagram showing the global tropical diurnal precipitation regimes. Three regimes,
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Irradiance (W m—2)

Meridional distribution of Annual mean radiation balance

Solar radiation
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Low latitude : over 300 Wm~2
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Observed annual mean SST, surface wind, precipitation
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Saturated Vapor Pressure

%]

Penetration Height

From Webster, P. J., 1994: The role of hydrological processes in ocean-atmosphere interactions, Review of Geophysics, 32,427-476.

Sea surface temperature (SST) and Cumulus
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From Wallace, J.M. and P. V. Hobbs, 2006: Atmospheric Science. Academic Press, 483pp.

Energy Transport by Atmospheric Circulation
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10.3  Schematic of air parcels circulating in the atmos-
phere. The Colored shading represents potential temperature

H of air parcels is conserved even
_ _ , through adiabatic process and/or
blue lower values. Air parcels acquire latent and sensible heat condensation process

during the time that they reside within the boundary layer, rais- but. not conserved through the
processes of radiation, heat and
moisture supply from ground

radiative transfer as they descend much more slowly in clear air. surface

or moist static energy, with pink indicating higher values and

ing their moist static energy. They conserve moist static energy
as they ascend rapidly in updrafts in clouds, and they cool by



Heat transport by the atmosphere and ocean
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Fig. 7.21 Schematic depiction of the general circulation as
it develops from a state of rest in a climate model for equinox
condicons in the absence of land-sea contrasts. See text for
further explanation,



Ose,T., 1989: Hadley circulations and penetrative cumulus convection. J.Meteor.Soc.Japan, 67, 605-619.

Hadley (direct) circulation

These are model results.

(1) There are two direct and one indirect circulations.
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From James, |. N., 1995: Introduction to Circulating Atmospheres. Cambridge University Press, 422pp.

Ferrel (In-direct) circulation.

Three mechanisms to drive meridional mass circulations

Heating contrast Heat Transport by Waves Vertical contrast of Momentum Transport by
Waves and/or Friction

‘ o o . b Momentum Momentum
: \ TS | : Transport by Transport by

Heating Cooling| !

Heat
- . B | Transport
- ; by Waves

j ‘ N ' ‘/

Primary mechanism Primary mechanism
for for

Hadley Circulation Ferrel Circulation




PRESSURE (mb)

PRESSURE (mb)

Mean meridional Circulations depend on vertical coordinates.
Iwasaki, T., 1989: A diagnostic formulation for wave—mean flow interactions and Lagrangian-mean circulation with a hybrid
vertical coordinate of pressure and isentropes. J. Meteor. Soc. Japan, 67, 293-312.
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Fig. 1. Mass streamfunctions of the perpetual Jan simulation by

the National Center for Atmospherie Research Community Climate
Model version 1. diagnosed with the conventional Eulerian mean. the
TEM, and the p, analyses. Contour values are shown with units of
X 100 kg s—! (after 189),



Seasonal Change



arth

B -
Viewed in the present, the tilted Earth revolves around the Sun on an elliptical path. The orientation

of the axis remains fixed in space, producing changes in the distribution of solar radiation over the
course of the year. These changes in the pattern of radiation reaching Earth's surface cause the succession
of the seasons. The Earth's orbital geometry, however, is not fixed over time. Indeed, long-term variations
in the Earth's orbit help explain the waxing and waning of global climate in the last several million years.



month-latitude diagram of TOA solar insolation

Shimamura and Yamauchi (1991)

Earth’sorbit isnot circular, and currently Earth is 30N
somewhat closer to the sun during SH summer than
during NH summer. Asa result, the maximum
Insolation in the SH isabout 6.9% higher than that
in the NH. Note that at the summer solstice the

insolation in high latitudesis actually greater than =
that near the equator. Thisresultsfrom thevery
long days during summer and in spite of the
relatively large solar zenith angles at high latitudes.
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SST and Precipitation in each season
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Seasonal Change of Temperature and Zonal Wind

ar Insolation
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200 hPa and 850 hPa winds in JJA and DJF

(a) 200hPa zonal wind DJF (a) 850hPa winds DJF
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Jan-Jul contrast of surface temperature/precipitation

January Surface Air Temperature NCEP(1949-2000)

—-60 —-80 -40 -30 -20 -1B —-10 -6

0

e

Precipitation CMAP(1979-2001

Ty




Northern Summer Monsoon
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Q. J. R. Meteorol. SOC. (1996), 122, pp. 1385-1404 Monsoons and the
dynamics of deserts. By MARK J. RODWELL’ and BRIAN I. HOSKINS
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Figure 8. Day 11 of a series of integrations without orography. (a), (c), (¢), () and (i) pressure and horizontal

winds on the 325 K isentropic surface, with contour interval 40 hPa; (b), (d), (f), (h} and (j) vertical velocity at

477 hPa, with contour interval 0.25 hPa hr™!; (@) and (b) integration linearized about a resting basic-state and

forced with heating at 90°E, 25°N; (c) and (d) integration linearized about a resting basic-state and forced with

heating at 25°N superimposed on the June to August zonal-mean flow; () and (f) integration linearized about the

zonal-mean basic-state and forced with heating at 25°N; (g) and (h) non-linear integration forced with heating at
25°N: (i) and (j) nonlinear integration forced with heating at 90°E, 10°N.
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Fic. 1. Jun-Auvg climatologies of surface precipitation (mm month ™'} based on (a) CMAP, (b) TRMM PR, and (c) SSM/T-gauge
merged products. (d) Land orography (km) and QuikSCAT surface wind velocity (m s 1).



Southern Summer Monsoon
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Annual temperature range

Annual Range of Monthly Temperature CRU(1801-1998)
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Month of maximum monthly mean temperature

Month of Maximum T2m NCEP(1949-2000) fonth of Maximum Downward Solar Radiation Flux at top
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ans

(Right) Downward solar radiation at the top of the atmosphereis maximum in June
(December) poleward of about 15° latitudein the NH (SH). In the tropics, it is January,
February, March, April and May at 10° S,4° S,2° N, 8 Nand 14° N, respectively.

(L eft) Actual month of maximum monthly mean temperatureisquite different dueto
inertia of atmosphere, land and ocean. It isJuly over the continents and August over the
oceansin the NH, but itsdistribution isnot simple.



Month of maximum monthly mean temperature

Month of Maximum Temperature CRU(1901-1998)
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Koppen climate classification
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Climate Modeling
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MRI Coupled Atmosphere-Ocean General Circulation
Maodel (MRI-CGCM?2)

*AGCM
-MRI1/JMA98
—-T42 (2.8x2.8), L30 (top at 0.4 hPa)
—Longwave radiation - Shibata and Aoki (1989)
—Shortwave radiation - Shibata and Uchiyama (1992)
—Cumulus - Prognostic Arakawa-Schubert type
—PBL - Mellor and Yamada level 2 (1974)
—Land Surface - L3SiB or MRI/JMA_SIB

*OGCM
—Resolution : 2.5x(0.5-2.0), 23layers
—Eddy mixing : Isopycnal mixing, GM
—Seaice : Mellor and Kantha (1989)
*Coupling
—Time interval : 24hours
—Flux adjustment: used “with” or “without”
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Climate Model Evaluation: Global Energy Balance

Reflected Solar Incoming Outgoing
\ Radiation Solar Longwave
\ 107 Wm™ Radiation Radiation
/7 69 342 W m™ 235 W m™
\ Reflected by Clouds,
: Aerosol and ’
Atmosphere.. Emitted by / Atmospheric
' 75 Atmosphere 165 Window
Absorbed by Gr%egggsu.sgr
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Observation

Koppen climate
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unset rentad: the jullan pentad In which the relative
climatological pentad mean rainfall rate exceeds 4 mm/day.

Indian region
 Northeastward progression
over AS and the
northwestward progression
over the Bay of Bengal are
well reproduced.

East Asia

e The model simulates earlier
monsoon onset over
southeast Asia.

e Onset over Indochina in
early May, the mid-May onset
over the SCS & later
northward progression due
to Meiyu/Baiu rainband are
all simulated, although the
precise timings differ
slightly.

* In northern China, onset is
earlier and precipitation is
heavier.

1979-2001 Relative CPM Rain
I i . I

Monsoon Onset Date
Xie-Arkin Observation
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Mean Evolution of Monsoon: Withdrawal

Withdrawal Pentad: the
transitional pentad in
which  rainfall  drops
below 4 mm/day.
Observation shows:
»southward retreat of
monsoon over India,
southeast Asia and

Western north Pacific

>»northward retreat over
East Asia.

Simulation close to
observation.

Withdrawal Date of Rainy Season

Xie-Arkin Observation
1979-2001 Relative CPM Rain
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Role of orography on climate



Plate Reconstruction
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http://www.ig.utexas.edu/research/projects/

N 30 Myr ago

T0°M

Northern area

Latitude

3000
S 2000
Southernarea | BE= -
-1D=s : J I | :
40°E B0°E 80°E 100°E e
Longitude

1rinkage during the Miocene (Fig. 1a, b). Although not visible on
ur figures, the orography has been tentatively restored worldwide
1 order to take into account the orogenic phases affecting the
ontents of North and South America (Rocky Mountains and
olorado plateau uplift’, and Andean uplift'®). We assume that
frican, Australian and Antarctic topographies nearly reached their
resent-day altitudes at the end of the Oligocene; the topography of
le Himalayas and the Tibetan plateau have been reconstructed
‘parately. The main assumptions made are described in Fig. 1
gend.

The Antarctic ice sheets began to form during the Early Oligocene
. response to the circumpolar oceanic current® and reached their
‘esent development during the Middle Miocene®*. However, we
:cided not to change the extension of these ice sheets in our model

order to characterize better the climate changes associated with
mtinental drift. Greenland glaciation, 3 Myr ago, has been taken
to account in the present-day simulation (Exp-1). This ice sheet
1s been thus removed for the 10- and 30-Myr simulations and

b
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Ramstein et al. (1997) Nature



Effect of mountains on climate

EFFECTS OF MOUNTAINS / PLATEAUS

A_) TEMPERATURE
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Figure 1. Effects of mountains/plateaus on climate: ta].:i:ernpr:mturc, (b) upslopc/doi«rnslope winds and rainfall KUthaCh et a' .
patterns, (¢) summer heating and monsoon circulation, and {d) winter spin dynamics in mld latitude westerlies, and
low-level blocklng See text for explanation. : : (1993) \]GeOI Ogy




Effect of mountain: Koppen climate

MRI-CGCM2.2 control
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Paleo climate



http://ipcc-wgl.ucar.edu/wgl/FAQ/wgl fag-6.1.html

There are three fundamental ways the Earth’s

Orbital param eters radiation balance can change, thereby causing a

climate change:

(1) changing the incoming solar radiation (e.g.,
by changes in the Earth’s orbit or in the Sun
itself),

(2) changing the fraction of solar radiation that is
reflected (this fraction is called the albedo —
it can be changed, for example, by changes
in cloud cover, small particles called
aerosolsor land cover), and

(3) altering the longwave energy radiated back to
space (e.g., by changes in greenhouse gas
concentrations).

(4) loca climate also depends on how heat is
distributed by winds and ocean currents.

Schematic of the Earth’s orbital changes (Milankovitch cycles) that drive the ice age cycles. ‘T’ denotes
changes in the tilt (or obliquity) of the Earth’s axis, ‘E’ denotes changes in the eccentricity of the orbit (due to
variations in the minor axis of the ellipse), and ‘P’ denotes precession, that is, changes in the direction of the
axistilt at agiven point of the orbit. Source: Rahmstorf and Schellnhuber (2006).


http://ipcc-wg1.ucar.edu/wg1/FAQ/wg1_faq-6.1.html
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800 | | ! ! ' | ‘ ' Eccentricity hasa
& 5000 dominant period of
s 0.04 100,000 years
S 0.03
2
2 002
0.01
0 | 1 | 1 ] 1 | |
800 -700 -600 -500 -400 -300 -200 -100 O
Thousands of years since 1950
1 ! J IR, : P & Theobliquity and the
0.04 - a SorosranRe Precession ————  Obliquity | precession have dominant
= | periodicity of 40,000
e > Yyearsand 20,000 years,
B & respectively
% ]
2 O
-0.02
-0.04

-150 -1256 -100 -75 -B0  -25 0 25 50
Thousands of years since 1350

Hartmann (1994)



Insolation anomalies from 150,000 years ago until 20,000 years in the future

Northern-< R .nls._ice

i3 o

| nsolation variations at
NH summer sostice show
amplitudes aslarge as 60
W m-2 near the pole.

LATITUDE

L arge positive anomalies
at 125,000 ya and 10,000
ya correspond fairly well
with thetimes of the last
two interglacial periods.
olstice ~Thelast glacial maximum
about 20,000 ya was
preceded by arelative
minimum in NH
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Dome Concordia (Antarctica): 740,000 years of climate change
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Mid-Holocene: 6ka

Tassili n’Ajjer, Algeria
- Sahara was greener




Last Glacial Maximum: 21ka
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PMIP data: global lake status
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Jul-Aug-Sep Precipitation difference (6ka—0Oka) with 4 CGCMs
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Zhao et al. 2004



