Q&A

TCC Training Seminar on Seasonal Prediction Products 11-15 November 2013

- Q: I want to try to exchange predictors in single or multiple regression model. What should I do for ProducingGuidance.xls?
- A: If you exchange observation data (including the values of normal, the lower limit of around normal, and the upper limit of around normal) and/or predictors, no change is necessary for other parts of ProducingGuidance.xls. The values of other cells and the graph are updated automatically.

GR	(a 17) - (% -) +			Exercise	ForGuidanceF	orTeacherHa	きTCC xis [互	発モード] - Micros	oft Excel		- 5
9	ホーム 挿入 ページレ	(アウト 脱式	データ 校	聞 表示	アドイン	Acrobat					9 - ⁻
ľ	MS Pゴシック	- 11 · A A	= = =	»- B	折り返して全体	を表示する	標準	-		τ 🛉 📰 🖺	27 33 2
1008	10 🧃 в и ц - 🖽 -	0 · A · Z ·		(# (#)a	セルを結合して中	中央揃え -	- % ,	18 -31 条件付き 主式	テーブルとして セルの	推入削除書式 🎴	並べ替えと 検索と 署名と暗 フィルター 選択 - 長化・
クリップ	ポード ホーフォント			<u>62/2</u>		÷.	麸(直	5	スタイル	也ル	編集 プライパシ
_	A71 🔫 🍖	fx									
	A B	0	D	E	F	G	н	I	J	K	L
2	Year Target	Mean Temp F	Rank	Predictor 1	Predictor 2	Predictor 3	Forecast	Regression Error	NO(s, of n)	N(Xs, <i>d</i> n)	NO(s, σn)
3	JJA/DJF	des C		IO RAIN	THEA	MC RAIN		1	Prob. of below-normal	Prob. of around-normal	Prob. of above-normal
4	1981 DJF	5.8	28	-0.16	-0.18	0.2	9 6.78	0.966	53	N 299	18%
6	1982 DJF 1983 DJF	0.3	25	-0.41	-0.20	-1.1	2 0.74 9 7.42	0.197	23	N 289 N 319	5 178 6 468
7	1984 DJF	4.6	30	0.55	-0.14	0.2	5 6.60	3.985	63	N 259	12%
8	1985 DJF	6.1	26	-0.27	-0.32	0.0	6 6.76	0.438	55	K 289	17%
9	1986 DJF	5.4	29	0.08	-0.26	0.4	6 6.53	1.280	66	K 239	118
10	1987 DJF	7	18	-0.41	-0.21	-0.4	7 7.18	0.032	34	N 329 N 310	34N
12	1988 DJF	8	3	0.35	-0.28	-0.2	3 6.66	1.807	47	N 317 N 269	14N
13	1990 DJF	7.3	14	-0.19	-0.11	0.7	7 6.66	0.411	60	¥ 269	14%
14	1991 DJF	7.6	8	0.11	0.02	0.0	4 7.03	0.325	41	% 329	\$ 27%
15	1992 DJF	7.6	8	-0.07	-0.01	-0.3	4 7.23	0.140	31	% 329	36 N
16	1993 DJF	7.8	6	-0.33	-0.26	0.1	4 6.82	0.964	52	% 299 V 000	19%
18	1994 DJF	7.9	19	-0.08	-0.23	-0.1	2 718	0.017	99	N 297 N 329	5 17.8 6 9.4 W
19	1996 DJF	6.6	23	-0.45	-0.02	0.1	2 7.15	0.297	35	N 329	32%
20	1997 DJF	7.7	7	-0.70	-0.02	0.1	2 7.23	0.222	31	N 329	36%
21	1998 DJF	7.2	17	0.05	0.33	-0.9	4 7.84	0.415	10	K 239	67%
22	1999 DJF	7.4	12	0.52	0.19	0.2	0 7.01	0.148	42	% 329 * 079	27%
20	2000 DJF 2001 DJF	6.8	21	0.42	0.12	0.2	1 695	0.091	45	N 277 N 319	24%
25	2002 DJF	7.9	5	-0.39	0.25	0.0	4 7.47	0.189	21	K 309	48%
26	2003 DJF	6.4	24	0.19	0.36	-0.3	1 7.55	1.328	18	N 299	53%
27	2004 DJF	8	3	0.39	0.18	0.5	3 6.90	1.201	47	N 319	22%
28	2005 DJF 2006 D IE	7.4	12	-0.02	0.23	-0.0	6 7.41 7 7.01	0.000	24	N 319 N 900	45%
30	2000 DJF	8.6	1	-0.03	0.31	-0.8	7.78	0.664	11	N 322 N 249	6 64%
31	2008 DJF	6.8	21	0.17	0.08	0.2	2 7.00	0.039	42	% 329	26%
32	2009 DJF	8.1	2	0.13	0.05	0.3	7 6.92	1.403	47	N 319	i 23%
33	2010 DJF	76	10	-0.16	0.41	-0.0	7,75	0.063	12	N 259	63%
35 T	ormai he lower limit of around sormal	6.9						U.171			
36 T	he upper limit of around normal	75									
37		slope		-0.32	1.24	-0.5	4				
38 8	ingle Regression	intercept		7.06	7.06	7.0	6				
39		Correlation	-	0.12	0.31	0.3					
41		slope		-0.35	1.15	-0.4	4				
42 M	ultiple Regression	intercept	1.	7.06	1		22				
43		Correlation		0.42	5						
44											
46					-			<u> </u>	(L	<u>P</u>	
47				1	ime Series	ofpredict	or and pred	ictand			
48	N Tomperature (Pradialitat	tion Verification	(Temp) No	ification (De	ac) 91			1.043			101
איסר	remperature / metaplian	don geweinigdtion	veronijav ver	monuori den				1.000			90x 🕞 🖂
H351	2011										

No change is necessary for other parts of ProducingGuidance.xls.

- Q: I want to try to exchange the probabilities of guidance in Verification.xls (BriefVerification.xls). What should I do for Verification.xls (BriefVerification.xls)?
- A: If you have exchanged both observation data (including the values of the lower limit of around normal and the upper limit of around normal) and the probabilities of guidance or only the probabilities of guidance, please copy G2:G91, and paste their values into H2:H91(functions → values). Then, the graph is updated.

3

Q: I want to try 2 predictors in multiple regression model. What should I do for ProducingGuidance.xls?

A: The procedure is as follows.

- Q: I want to try 4 or more predictors in multiple regression model. What should I do for ProducingGuidance.xls?
- A: The procedure is as follows (though I cannot recommend many predictors).

					- I	nsert l	line (Line	<mark>H).</mark>			
1	(re) +			Exercise For	Guidance For Te	acherH25TCC_	TEST2.	互換モー約ー	Microsoft Excel			- 5
1-4	挿入 ページレイ	ゆト 数式	データ 杉	測 表示	アドイン	Acrobat						Ø - T
- X	10 D-72 (4) D	11 A		1.50-1 -	100:61 7.0/4						Σ- A	** 172
	- 000199	H A A		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10180C ±14	2001.90 1##		8/4/				
- J	8 <i>I</i> <u>U</u> - <u>K</u> - <u>K</u>	<mark>≫- ∆</mark> - ∉ -			セルを結合して9	P央領之一 199	- %	8 338 美叶叶	- 書式設定 - ス	知り 10人 日本	2- 7010- H	·祝- 号化-
ガボード「ち」	7851	5		配置		74	装饰直	19	スタイル	也ル	収集	25413
A44	• (0	.fx			-	11 222 11	V			2005		1
A	8	Observation	D	E	F	G	н	I Forecast	J	K Probabilistic Forecast	Probabilistic Forecast	Probabilistic
	Year Target	Mean Temp. F	Rank	Predictor 1	Predictor 2	Predictor 3		Xa	Regression Error	N(Xs, Jrn)	NO(s, J n)	NOKs
	JJA/DJF	deg C		ELO RAIN	THEX	MC RAIN				Prob. of below-normal	Prob. of around-normal	Prob. of abo
	1981 DJF	5.8	28	-0.16	-0.18	0.29		6.78	0.966	53	6 29 r 20	34 97
	1982 DJF	7.3	25	-0.41	-0.20	-1.19		7.42	0.197	23	6 28	x
	1984 DJF	4.6	30	0.55	-0.14	0.25		6.60	3,985	63:	6 25	х
	1985 DJF	6.1	26	-0.27	-0.32	0.06		6.76	0.438	55:	6 28	x
	1986 DJF	5.4	29	0.08	-0.26	0.46		6.53	1.280	66	6 23	8
	1987 DJF	7	18	-0,41	-0.21	-0.47		7.18	0.032	34:	6 32	% *
	1988 DJF	0.9	19	0.35	-0.11	-0.21		6.66	1 907	473	0 31 6 26	x
	1990 DJF	7,3	14	-0.19	-0.11	0.03		6.66	0.411	60	6 26	8
	1991 DJF	7.6	8	0.11	0.02	0.04		7.03	0.325	41:	6 32	×
	1992 DJF	7.6	8	-0.07	-0.01	-0.34		7.23	0.140	31:	6 32	ж
	1993 DJF	7.8	6	-0.33	-0.26	0.14		6.82	0.964	521	6 29	8
	1994 DJF	5.9	19	0.27	-0.23	-0.14		5.77	0.017	54	6 29	ж м
	1995 DJF 1996 DJF	1.0	23	-0.08	-0.16	-0.62		7.18	0.014	35	6 32	n %
	1997 DJF	7.7	7	-0.70	-0.02	0.12		7.23	0.222	31:	6 32	×
	1998 DJF	7.2	17	0.05	0.33	-0.94		7.84	0.415	10:	6 23	ж
	1999 DJF	7.4	12	0.52	0.19	0.20		7.01	0.148	42:	6 32	ж
	2000 DJF	7.5	10	0.42	-0.11	0.27		6.67	0.691	59:	6 27	%
	2001 DJF	0.8	21	-0.33	0.12	0.31		5.95	0.022	45	6 31	*
	2002 D JF	64	24	0.39	0.25	-0.31		7.55	1.328	18	6 30 6 29	a a
	2004 DJF	8	3	0.39	0.18	0.53		6.90	1.201	475	6 31	ж
	2005 DJF	7.4	12	-0,14	0.23	-0.06		7.41	0.000	24	6 31	8
	2006 DJF	6.1	26	-0.03	0.24	0.77		7.01	0.820	42	6 32	8
	2007 DJF	8.6	1	-0.04	0.31	-0.80		7.78	0.664	11:	6 24	% *
	2008 DJF 2009 DJF	0.8	21	0.17	0.08	0.22		6.92	1 403	42	6 32	x
	2010 DJF	7.5	10	-0.16	0.41	-0.37		7.75	0.063	12	6 25	ж
Normal		7.1						apart .	0.777			
The lower lim	it of around normal	6.9							σn	-		
The upper lim	nt of around normal	7.5		-0.00	1.04	-0.54						
Single Reer	ession	intercept		7.06	7.06	7.06						
a starter a starter		Correlation		0.12	0.31	0.30						
			1									
	14	slope		-0.35	1.15	-0.44						
Multiple Re	cression	intercept	-	7.06								
		Correlation		0.42								
					Time Ser	ies of predict	tor and pre	dictand				
M Temp	erature Precipitati	on Verification	(Temp) Ve	rification (Pre	c) (21	10		1.4		- 111		100
10000	and a second sec	and a second sectors	arenile, de								Internet and some Chi	1710

Q4

(continued)

Input the data of the predictor you want to add.

						1									
· · · · · · · · ·		E	ExerciseForGu	uidance For Teac	herH25TOG_T	EST2. Is [互換モード)・	Microsoft Excel			. a x				
	アウト 数式	データ 校開	表示	アドイン Ad	robat					ø	- = x				
MS P3992	11 - A A	===	»- =	的退して全体を表	示する 標準				2 🎭 🌫 📆	5 · AT A					
BOOTO B Z U - 50 -	3 - A - Z -			フルを結合して中央	- 御子 -	2/4	a .a .	11日 テーブルとして セン	いの挿入削除書式	正べ替えと 複素と	還名と暗				
リックボード ち フォント		1	07/20 ×		5	茶秋(古		式 - 書式設定 - スタ 2なイル	(//	(2* 74ルタ* 増択*) 原手	号化 + フライバシ				
A71 • (*	fx		The second se					212.220	1	1 10.0	*				
A B	0	D	E	F.	G	н	I	J	K.	L.	M				
1 2 Vear Target	Observation Mean Temp	Rank Pr	redictor 1 P	Predictor 2 Pr	edictor 3		Forecast	Remession	Probabilistic Forecast Pro	babilistic Forecast Proba	bilistic I				
3 JJA/DJF	deg C	EI	ORAIN T	THEX M	CRAIN .	10 351				1*¢⊏∕,¢⊏0			ФЦФЛ4*	<u>епи ес</u> е	40" of I
1 1981 DJF	5.8	28	-0.16	-0.18	0.29	-0.07	6.40		iput =φ⊏φ∠	FI ⊅⊑4+⊅F3	р4 Г ФГ4+ФС	941 904 1	-φΠφ4 Ι	0 Π4+0⊏0	142 al I
5 1962 UJF	5.3	25	-0.41	-0.20	-1.19	-0.04	5.49								
7 1984 DJF	4.6	30	0.55	-0.14	0.25	-0.36	6.77		opy 14 and	paste it into	o 15·133				
8 1985 DJF	6.1	26	-0.27	-0.32	0.06	-0.36	6.94								
9 1986 DJF	5.4	29	0.08	-0.26	0.46	-0.33	6.55	1.313	66%	24%					
0 1987 DJF	7	18	-0,41	-0.21	-0.47	0.09	7.06	0.004	39%	33%					
1 1988 DJF	6.9	19	0.35	-0.11	-0.21	0.21	6.53	0.134	66%	24%					
2 1989 0.04	8	3	0.30	-0.28	-0.03	-0.35	6.81	1.421	52%	30%					
4 1990 DJF	7.6	8	0.11	0.02	0.04	0.18	6.92	0.042	47%	248					
5 1992 DJF	7.6	8	-0.07	-0.01	-0.34	-0.07	7.43	0.029	22%	31%					
6 1993 DJF	7.8	6	-0.33	-0.26	0.14	-0.19	6.81	0.975	52%	30%	-				
7 1994 DJF	6.9	19	0.27	-0.23	-0.14	-0.12	6.70	6.038	58%	28%					
8 1995 DJF	7.3	14	-0.08	-0.16	-0.62	-0.05	7.30	0.000	28%	33%					
9 1996 DJF	5.5	23	-0.45	-0.02	0.12	-0.02	7.18	0.050	33%	33%					
1997 DJF	72	17	-0.70	-0.02	-0.94	01.0-	7.97	0.002	18%	20%					
2 1999 DJF	7.4	12	0.52	0.19	0.20	-0.09	7.19	0.045	33%	33%					
3 2000 DJF	7.5	10	0.42	-0.11	0.27	~0.19	6.66	0.712	60%	27%					
4 2001 DJF	6.8	21	0.33	0.12	0.31	0.01	6.91	0.011	47%	31%					
5 2002 DJF	7.9	5	-0.39	0.25	0.04	0.11	7.61	0.086	16%	28%					
2003 DJF	6.4	24	0.19	0.36	-0.31	0.23	7.69	1.652	14%	27%					
2004 DJF	24	10	-0.14	0.18	-0.06	0.00	2.20	0.010	492	315					
2005 D.F	61	26	-0.03	0.23	0.00	0.25	6.80	0.010	53%	29%					
0 2007 DJF	8.6	1	-0.04	0.31	-0.80	0.30	7.96	0.409	7%	20%					
1 2008 DJF	6.8	21	0.17	0.08	0.22	-0.06	7.07	0.070	39%	33%					
2 2009 DJF	8.1	2	0.13	0.05	0.37	-0.23	7.14	0.920	35%	33%					
3 2010 DJF	7.5	10	-0.16	0.41	-0.37	0.49	7.67	0.029	148	27%					
 Normal The lower limit of pround served 	6.1							0.760							
The upper limit of around normal	7.5						-								
7	slope		-0.32	1.24	-0.54	0.92		Conv	227.020 -	nd nacto t	hom into U?	7·H30			
8 Single Regression	intercept	7.5	7.06	7.06	7.06	7.06		Copy (008.0080	nu pasie i		<u>. 109.</u>			
10	Correlation		0.12	0.31	0.30	0.26									
1	alana	1	-0.40	215	-0.76	-1.00	-								
2 Multiple Regression	stope		7.06	2.15	-0.76	~1.33	I←	Long to the fit							
a and the neurossion	Correlation		0.46				-	input =	INDEX(LIP	1621(3034	:\$0\$33,\$E\$4	E\$H\$33,I	RUE,FA	ALSE,4)	at E41
4								1							
5								input "=	INDEX(LIN	IESI (\$C\$4	:\$C\$33,\$E\$4	F\$H\$33, I	KUE, FA	ALSE(3)	at F41
6															
0				Time Serie:	sofpredict	or and pre	edictand	input "=	INDEX(LIN	IESI (\$C\$4	:\$C\$33,\$E\$4	F\$H\$33, I	KUE, FA	ALSE,2)	at G41
Temperature / Precipitat	ion . Verification	(Temp) Verifi	ication (Prec	19 (100								
אַראַר	and the second second	and a set of						Input "=	INDEX(LIN	1EST (\$C\$4	:\$C\$33,\$E\$4	F\$H\$33.1	RUE, F/	$ALSE(1,1)^{\prime\prime}$	at H41
7/53(00.411							_								
								Input "-	-INID = X(IIN		SC S33 SES2		RUFF	$\Delta SEV 5$	at -42

• F

Q4

Q: The observation period of Station XXX is less than 30 years. What should I do for ProducingGuidance.xls?

A: The procedure is as follows (though I cannot recommend short-term data).

Delete the lines for the years with no data.

(continued)

Input the observation data of Station XXX. Calculate the lower and upper limits of around normal (see the next slide). Then, input these values into the corresponding cells.

		Х		r
		\checkmark		
Original line number	Year	Mean Temp	Rank	\downarrow
22	2007	8.6		1
24	2009	8.1	2	2
19	2004	8.0	3	3
17	2002	7.9	4	4
8	1993	7.8	5	5
12	1997	7.7	6	6
6	1991	7.6	7	7
7	1992	7.6	7	8
15	2000	7.5	9	9
25	2010	7.5	9	10
14	1999	7.4	11	11
20	2005	7.4	11	12
10	1995	7.3	13	13
13	1998	7.2	14	14
4	1987	7.0	15	15
5	1988	6.9	16	16
9	1994	6.9	16	17
16	2001	6.8	18 -	18
23	2008	6.8	18	19
11	1996	6.6	20	20
18	2003	6.4	21	21
2	1985	6.1	22	22
21	2006	6.1	22	23
3	1986	5.4	24	24
1	1984	4.6	V 25	25

× /

Upper limit of around normal: $X(r)=X(r_{integer})^*(1-r_{decimal})+X(r_{integer}+1)^*r_{decimal}$ $r=\{10^*N/30+(10+1)^*N/30\}/2$ N: Data Number, $r=r_{integer}+r_{decimal}$ In this example, N=25. So, $r=\{10^*25/30+(10+1)^*25/30\}/2=8.75$ $X(8.75)=X(8)^*(1-0.75)+X(9)^*0.75=7.6^*0.25+7.5^*0.75 \approx 7.53$

Lower limit of around normal:

X(r)=X(rinteger)*(1-rdecimal)+X(rinteger+1)*rdecimal

r={(10+10)*N/30+(10+10+1)*N/30}/2

N: Data Number, r=rinteger+rdecimal

In this example, N=25. So,

 $r = {(10+10)^{25/30}+(10+10+1)^{25/30}/2=17.083...}$

 $X(17.08) = X(17)^{*}(1-0.08) + X(18)^{*}0.08 = 6.9^{*}0.92 + 6.8^{*}0.08 \approx 6.89$

Q5

(Corrected in 2013/12/11)

Q: The observation period of Station XXX is less than 30 years. What should I do for Verification.xls (BriefVerification.xls)?

A: The procedure is as follows (though I cannot recommend short-term data).

The order of the steps is important!

Q: I want to obtain hindcast GPV data other than those in GPV.xls. What should I do? A: Please use ITACS. The procedure is as follows.

Left-click

(continued)

()7

Left-click

Please select this part, copy it (right-click), and paste it into your file.

Q7

Q: I want to obtain hindcast index data other than those in Indices.xls. What should I do?

Left-click

(continued)

N8

Please select this part, copy it (right-click), and paste it into your file. 13

Q8

(continued)

Left-click

Thickness variables can be calculated by using the following equation:

TH= $(\gamma_1 - \gamma_2)^* 9.8/287/\ln(p_2/p_1)$

 γ_1 , γ_2 : Geopotential height anomalies averaged over the corresponding area p_1 , p_2 : Pressure surfaces

For example,

THMD	Thickness Middle	(0–360, 30N–50N, 300hPa–850hPa)
THEX	Thickness extratropic	(0-360, 30N-90N, 300hPa-850hPa)
THTR	Thickness tropic	(0–360, 25S–25N, 100hPa–850hPa)

THMD={(Z300 anomaly)-(Z850 anomaly)} *9.8/287/ln(850/300) THEX ={(Z300 anomaly)-(Z850 anomaly)} *9.8/287/ln(850/300) THTR ={(Z100 anomaly)-(Z850 anomaly)} *9.8/287/ln(850/100)

Q: I want to obtain monthly (not seasonal) hindcast data. What should I do? A: Please use ITACS. The procedure is as follows.

🖉 ITACS v4.0 – Windows Interne	t Explorer					- FI
🕢 🗢 💿 http://extreme.kishou	go.jp /tool/anatools/analyze4.0-pub/index1.php	o?dataset=TOC-TS&elemer	t=sst&element_edit=&dtype=ANOM&area=09	K2C360%2C- 🔽 🗟 🤧 🗙	Google	P
ファイル(圧) 編集(圧) 表示(型) お気に	እり(<u>A)</u> ୬−ル① ヘルプ(Đ)					
🚖 お気に入り 🛛 🚖 🛃 季節予報総合/	ページ 🔁 おすすめサイト 🕶 🖉 HotMail の無料	サービス 🔊 Get more A	ld-ons •			
DTACS v4.0				💁 • 📾 - 🖻	1 👼 • ページ(P) • セー	-7Fr(S)• ツール(Q)• 💽•
[
datal						
dataset	element	data type	area	level	average period	show period
TCC-TS	SST (Sea Surface Temperature)	ANOM V Lat	Tropics ✓ -5 -5 Ave ✓ -210 - 270 Ave ✓	1000hPa 💙 1000hPa 💙	Year average 💌 Ave 🗆 time filter 🗌	1980 - 2009 - 12 - 12 - 12 -
	SD Derivative: longitude latitude					
analysis method : -Analysis_r	nethod-					
Graphic Option ♥ St Colorizing : COLOR ♥ St Drawing : SHADE ♥ inte	now Contour Labels now Color Bar et Contour Parameters for data1 rval : min :	max :	Color Table : Rainbow Polar Stereographic : No Cogarithmic Coordinates	□ No Scale orth pole ♥ □ Draw Cr □ Apply Al	e Labels edit Inside Il Pics	1980 - 2009 12 - 12 or
Image Format : ping Font : default Submit Clear SliceTool	et Vector size : [inch] valu Help] Sample Logout]	e : skip : 1	☐ Flip the X-axis ☐ Flip th ☐ No Caption	e Y-axis picture size	9/6	01 - 01 or 1981 - 2010

The other procedures are the same as those for seasonal hindcast data (see the slides 10-11 and the slides 12-14).

15

A: Hindcast data for all the 3-month forecasts are available. Please use ITACS. For example, the procedure for the June-July-August forecast (initial date: 1st May) is as follows.

🖉 ITACS v4.0 - Windows Inte	rnet Explorer						
🚱 🗢 💿 http://extreme.kis	shou.go.jp/tool/anatools/analyze4.0-pub/index1.ph	p?dataset=_CGCM-HC05&ele	ment=sst&element_edit=&d	type=ANOM&area=0	19/20366 🔽 🗟 寿 🗙	Google	Q
7ァイル(E) 編集(E) 表示(V) お	気に入り(金) ツール(① ヘルブ(出)						
🚖 お気に入り 🍰 🦻 季節予報編	総合ページ 🔁 おすすめサイト 🕶 虧 HotMail の無料	けービス 🙋 Get more Add-	ons 🕶				
TACS v4.0					👌 • 🗟 - 🗆	🛚 🖶 • ページ(P) • セ	-771(S) • ツール(Q) • 🕢 •
6 <u></u>	•If you selec	CGCM-H03/04	1/06/07 and sele	ct seasona	mean,		
datal	Wrong grapi Please be ca	i and wrong text areful in the choi	data will be dis	spiayed.			
dataset	element	data type	area		level	average period	show period
_CGCM-HC05	SST (Sea Surface Temperature)	ANOM V	Tropics	✓ Ave ✓	1000hPa 👻 1000hPa 👻	Year average 👻	1981 - 2010
_CGCM-HC05	Vector SD Derivative: longitude latitude	Lon:	210 - 270	Ave 🗹		time filter 🗌	06 - 08 -
analysis method : -Analys	is_method-				Se	asonal —>	<u> 1981-2010</u>
Graphic Option Colorizing : COLOR	Show Contour Labels Show Color Bar Set Contour Parameters for data1 interval: min:	max :	Color Table : Polar Stered Cogarithmic	Rainbow v ographic : North Coordinates Axes	Dole V Draw Cro Apply All	Labels edit Inside 1 Pics	06 - 08 or 1981- 2010 06 - 06
Image Format : png V Font : default V	Set Vector size : [inch] valu	e : skip : 1	☐ Flip the X-a ☐ No Caption	xis □F <mark>lip t</mark> he Y	-axis picture size [M	onthly	or 1981 - 2010 07 – 07
Submit Clear SliceTool	Help Sample Logout	e same as	s those fo	or hindo	ast data	Ĺ	or 1981 – 2010 08 - 08
for winter (s	see the slides 10-	11 and the	e slides 12	2-14).		(continue	16 ()

You can download the corresponding operational forecast data from "NWP Model Prediction" page at TCC website. The method of downloading GPV data is as follows.

 $\Omega10$

You can download the corresponding operational forecast data from "NWP Model Prediction" page at TCC website. The method of downloading index data is as follows.

 $\Omega10$

(continued)

Seasonal I

a		1 2) - (21 -	÷					INDE>	(_201305.c	sv [読み取))専用] - M	icrosoft E>	cel							- 🕫 X
	9 7	いん 挿入	ページ	レイアウト	数式 デ	ータ 校開	表示		2 Acrol	bat										🙆 – 🛎 🗙
	標準ペパ	ージ 改ページ ージ 改ページ アウト ブレビュー ブックの	【二】 ユーザー』 のビュー 表示	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	 □ ル ラ ○ 枠線 □ メッセー: あ 	▽ 数 ▽ 見 ジバー (示/非表示	5代バー .出し	9 2 <i>x</i> -4 100		した 単に合わせて 大縮小	手しいウイン 新しいウイン を開く	ドウ 整列	ウインドウ格固定・	 □ 分割 □ 表示 10 10	しない 二 示 ウインド	】並べて比較 【同時にスク !ウィンドウの ウ	1ール (立置を元に戻	そす (作詞	観状態のウイ 保存の切り	レドウの 増え、 マクロ
1		A1 • (fx INDEX																		*
	A A INDEX	B NINO3SST	C NINOWES	D TIOBWISST	E WIOSST E	F IO SST IO	G BWRAIN V	H /IORAINE	I IORAIN S	J AMOIRAI W	K NP RAIN SE	L AsiaRA M	M C RAIN DI	N L RAIN Z5	0 002030 Zt	P 5003040 Z	Q 5004050 Z	R 5005060	S	
	DEGRE	E K.	<u>к</u> 1 023	2 0	K. 0.06	-0.03	-n na	-0.00	-0.04	nn (day 1 0.22	n (day 1	0.48	nm (day 1 0.32	015	3.00	302	514	60	1 0.19	K 0.21
>	June July August	-0.5 -0.2 -0.2	0.22 0.19 3 0.21 3 0.26	9 -0.06 1 -0.01 5 0.06	0.02 0.05 0.11	-0.06 -0.04 0.01	-0.19 -0.05 -0.03	-0.16 -0.07 -0.04	0.04 0.2 -0.15 -0.17	0.22 0.55 -0.05 0.16	0.20 0.73 -0.06 0.17	0.40 1.19 -0.06 0.31	-0.15 0.67 0.43	-0.06 0.37 0.15	4.88 2.59 1.78	4.11 5.14 2.5	4.42 5.36 5.63	7.3 5.7 5.0	3 0.11 7 0.2 4 0.23	0.14 0.26 (0.24
د د 1)					Tedlere.					4									
						COT		Variables			(150		EC-EN	eas N						
Mor	thly				NINOV	VINOU 331 351					(130	F-150F	5 EQ-15	₩ 5ND		÷.				
	uny				IOBW:	SST		SST			(40E	-100E	205-20	ND		2				
					WIO S	ST		SST			(40E	-70F_C	-20N)	1.1		3				
					EIO SS	ST.		SST			(70E	-100E	0-20N)							
					IOBW	RAIN		RAIN			(40E	-100E,	205-20	N)		Ĵ				
					WIO R.	AIN		RAIN			(40E	(40E-70E, 0-20N)								
					EIO RA	NIA		RAIN			(70E	-100E,	0-20N)	6		ŝ				
					SAMO	I RAIN		RAIN			(80E	-140E,	5N-251	Ψ.						
					WNP F	NIA		RAIN			(110	E-160E	, 10N-2	20N)		Ĩ				
					SEAsia	RAIN		RAIN			(115	E-140E	; 10N-2	20N)		1				
					MC RA	AN		RAIN			(110	E-135E	<u>, 58–51</u>	<u>v</u>		2				
					DL RA	IN		RAIN			(170	E-170V	V, 5S−5I	N)						
					Z2030	3 		500hP	a Heigh	t	(0-3	60, 20N	1-30N)						Sorry	
					23040	<u> </u>		500hP	<u>a Heigh</u>	<u>t</u>	0-3	<u>60, 30N</u>	1-40ND			2			Sorry,	
					24050			500hP	a Heigh	t	10-3	00, 40N				3	/		notava	
					2000U			Thial	a Heigh and Miri	t Idle	(0-3	00, 00h 60, 30h		2006D	-95060	2				
					THEY	Ş	_	Thickn	ess Mild	ratropic	(0-3	60,30N	1-90N	300hPa-	-850hP	a/	-K			
				- 1	THTR			Thickn	ess tru	nic	(0-3	60, 255	-25N. 1	100hPa-	-850hP	a)				

(continued)

List of 3-month forecasts of JMA

Target Period	Initial Date (Hindcast)	Dataset of Hindcast (in ITACS)	Directory Names of Operational Forecast	Initial Date (Operational Forecast)
Jan-Feb-Mar	2nd Dec	_CGCM-HC12	YYYY12/	12th Dec
Feb-Mar-Apr	1 st Jan	_CGCM-HC01	YYYY01/	11 th Jan
Mar Apr May	01 st Jan	_CGCM 11002	1000/02/	10th Feb
Apr-May-Jun	2nd Mar	_CGCM-HC03	YYYY03/	7th Mar
May-Jun-Jul	1st Apr	_CGCM-HC04	YYYY04/	11th Apr
Jun-Jul-Aug	1 st May	_CGCM-HC05 (TCC-TS2)	111105/	11th May
Jul-Aug-Sep	31 st May	_CGCM-HC06	111106/	10th Jun
Aug-Sep-Oct	30th Jun	_CGCM-HC07	YYYY07/	10th Jul
Sep-Oct-Nov	30th Jul	CGCM-HC08	111108/	9th Aug
Oct-Nov-Dec	29th Aug	_CGCM-HC09	111109/	8th Sep
Nov-Dec-Jan	28th Sep	_CGCM-HC10	YYYY10/	13th Oct
Dec-Jan-Feb	28th Oct	CGCM-HC11	YYYY11/	12th Nov

* YYYY: Year