

Status of the WMO **Integrated Global Observing System**

Kenneth Holmlund WMO Space Systems and Utilization Division

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

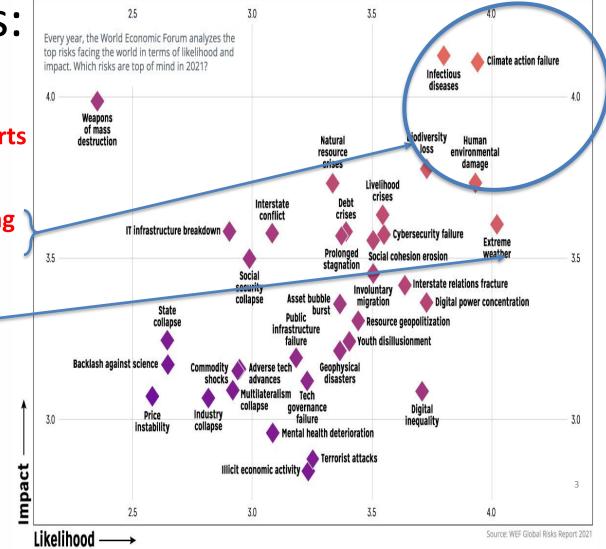
WEATHER CLIMATE WATER TEMPS CLIMAT EAU

WMO Long-term Goals


- 1.Better serve societal needs;
- 2. Enhance Earth system observations and predictions;
- 3. Advance targeted research;
- 4. Close the capacity gap;
- 5. Strategic realignment of structure and programs.

METEOROLOGICAL ORGANIZATION

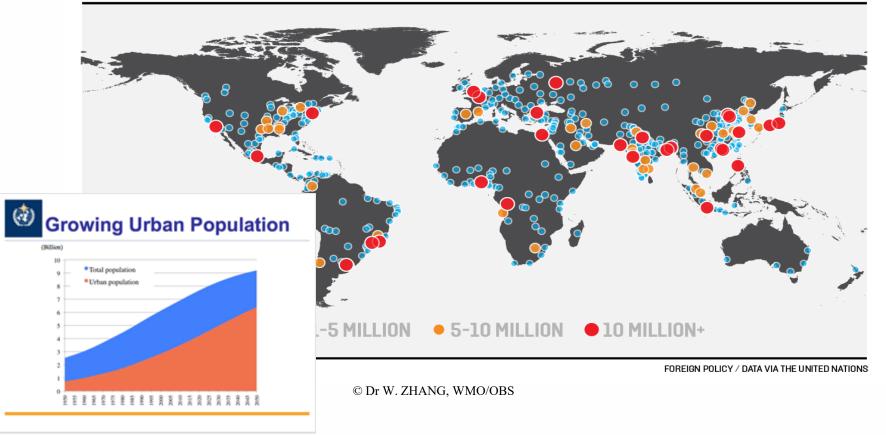
WM0-No. 1225

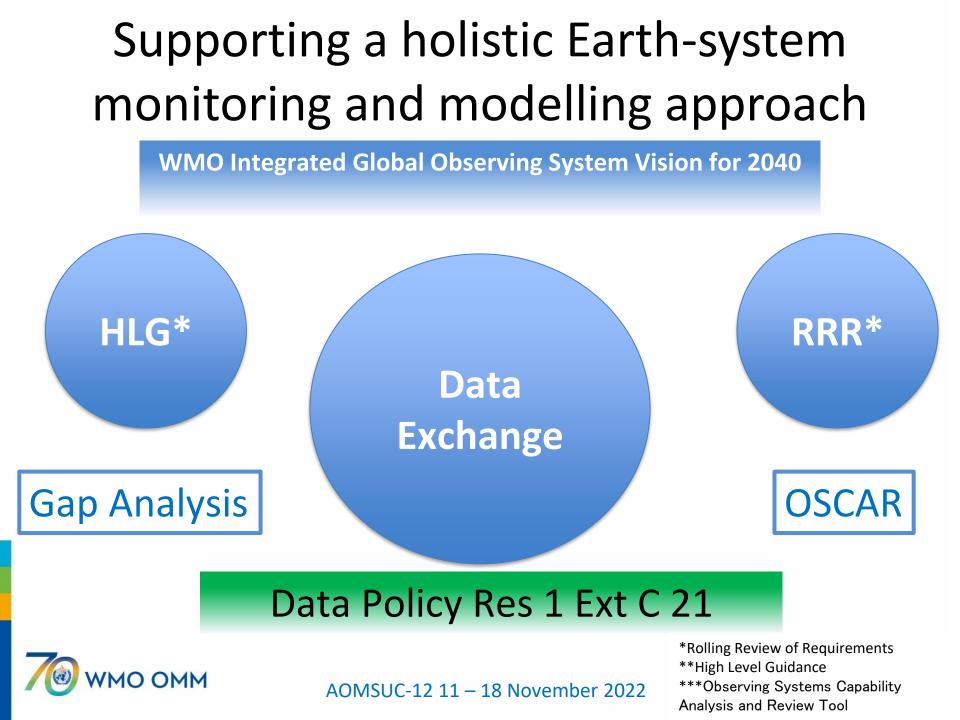


Key Challenges:

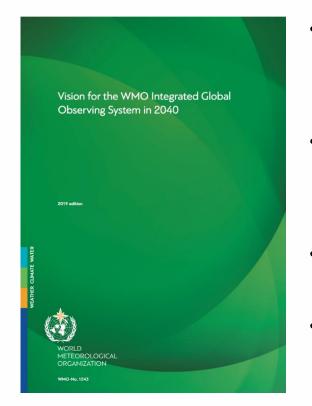
- 1. Earth System modelling and global NWP (supports most WMO application areas)
- 2. GHG/Climate Monitoring (also consider Paris Agreement)
- 3. Monitoring Extreme Weather Events
- 4. Air Quality Monitoring But there is more....

O OMM


2021 Global Risks Outlook


Global Risk Landscape 2021

Climate & climate change –extreme weather and climate events impact to costal Megacities !!!!


WMO Integrated Global Observing System (WIGOS)

All surface- and spacebased observing programs of WMO that are consolidated in a single integrated system, the WIGOS.

Vision for WIGOS

- The "Vision for WIGOS in 2040" describes high-level targets to guide the evolution of WIGOS towards a desired, future state of the space- and in-situ based observing system.
- The 2040 Vision anticipates a fully developed and implemented WIGOS framework within the general areas of weather, climate and water and related environmental services.
- Describes the space- and surface based observing networks we desire to operate by 2040.
- Adopted by Congress in 2019, replaces the "Vision for the Global Observing System in 2025", adopted by the Executive Council in 2009.
- Which key user requirements remain unfulfilled if Vision for GOS in 2025 are fully achieved?
- Which new observing technologies will become available operationally during the period 2025 to 2040?
 See https://community.wmo.int/vision2040

User Requirements – NWP

Trends: By 2040, global NWP resolution will reach 1km 10km at present), regional NWP 100m (1.5km at present), vertical resolution will be 200m (2km at present)

		At present	Future			
	MWHS	Horizontal resolution:15km, 15 channels	Horizontal resolution: 0.5km, Vertical resolution: 0.2km			
Polar satellite resolution horizontal and	MWTS	Horizontal resolution:50km, 13 channels	Horizontal resolution:0.5km Vertical resolution:0.2km			
vertical resolution	MW imager	Horizontal resolution:10km , 10channels	Horizontal resolution:0.5km			
	IR sounder	Horizontal resolution:17km, 26 channels	Horizontal resolution:0.5km Vertical resolution:0.2km			
GNSS、Lidar & Radar(Precipitation, cloud aerosol temporal resolution	Profiler	16 days revisit	Higher (weekly?)			
	Highly accurate satell	ite wind field observation				
New Observation	• •	ite atmospheric pressure observation	. ,			
	Highly accurate satell	ite hydrometeor size distribution and	l profiling			
Stability		5 yrs	15yrs			

the NWP goal of reaching a 1-km horizontal resolution with 180 levels in the mid to late 2030s

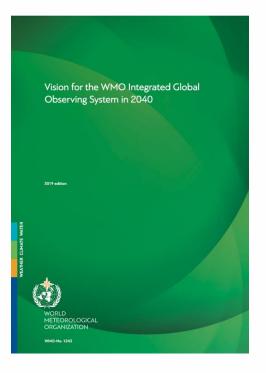
Ambitious target configuration for global

weather and climate simulations with km-scale horizontal resolution accounting for physical Earth system processes, and with today's computational throughput rate

Horizontal resolution	1 km (globally quasi- uniform)
Vertical resolution	180 levels (surface to ${\sim}100~{\rm km})$
Time resolution	0.5 min
Coupled	Land-surface/ocean/ ocean-waves/sea-ice
Atmosphere	Non-hydrostatic
Precision	Single or mixed preci- sion
Compute rate	1 SYPD (simulated years per wall-clock day)

Schulthess T C et al, 2018

Description of the space-based observing system components


as given in the WIGOS Vision 2040 (WMO-No. 1243)

The proposed space-based component consists of **four main subcomponents.**

Rather than giving strict stipulations for each subcomponent, a balance has been struck between providing enough specificity to describe a **robust and resilient system** and accommodating potential **new capabilities** arising from unanticipated opportunities.

The division of the observing capabilities into four subcomponents does not imply sequential priorities, that is, it is not expected that all Subcomponent 1 systems will necessarily be realized before elements of other subcomponents are addressed.

The main distinction between the various subcomponents is the current level of consensus about the optimal measurement approach, especially the demonstrated maturity of that approach: there is stronger consensus for the capabilities included in Subcomponent 1 compared to those in Subcomponent 2, and so forth. It is likely that the boundaries between the groups will shift over time, for instance, some capabilities currently listed in Subcomponent 2 could transfer to Subcomponent 1.

WIGOS 2040 Space Component Example microwave observations (1/2)

Subcomponent 1: Backbone system with specified orbital configuration and measurement approaches:

- This subcomponent shall provide the basis for Members' commitments and should respond to their vital data needs,
- It shall build on the current CGMS baseline (CGMS Baseline Sustained contributions to the Global Observing System)
- Sun-synchronous core constellation satellites in three orbital planes (morning, afternoon, early morning)
 - MW sounding + Imagery:
- Sun-synchronous satellites at three additional equatorial crossing times for improved robustness and improved time sampling, particularly for monitoring precipitation
 - MW imagery for SST+MSU/SSU
 - MW sounding and imagery in inclined orbits

Subcomponent 2: Backbone system with open orbit configuration and flexibility to optimize implementation:

- This subcomponent shall be the basis for the open contributions of WMO Members and shall respond to target data goals
- Backbone system with open orbit configuration and flexibility to optimize the implementation
 - Constellation of high-temporal frequency MW sounding

WIGOS 2040 Space Component Example microwave observations (2/2)

Subcomponent 3: Operational pathfinders and technology and science demonstrators:

- This subcomponent shall respond to research and development needs
- Hyperspectral MW

Subcomponent 4: Additional capabilities:

- This subcomponent shall include additional contributions by WMO Members, as well as from the academic and private sectors.
- Emerging!

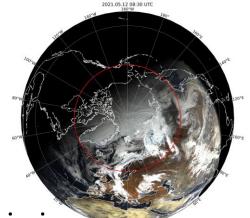
GEO Microwave:

- Note: Today there is no GEO MW instruments flying but it is being pursued by CMA
 - Open issues are wrt to optimization of integration time, resolution, NeDT
 - Benefit trade-off wrt to constellations

Future Challenges Advancing the WIGOS 2040 Vision Cannot do everything – Need to define priorities

- Current capabilities +
 - Aeolus (wind profiling) FO (possibly with swath e.g. push broom)
 - MW sounder, MW imager, HSIR LEO, Scat constellations (towards hourly data?)
 - GEO HSIR complete ring
 - HEO HSIR + imager
 - Increase to 20,000 RO per day constellations (of COSMIC-2 quality)
 - Radar constellation (rain and cloud, with wide swath)
 - Limb sounding (IR + MW, CAIRT/PREMIER type concept), including high freq RO concept (ATOMMS like)
 - High spatial resolution L-band (CIMR will only deliver low resolution L-band of limited value to hydrology)
 - Carbon mission

MO OMM


- GEO + 10 LEO and at least one active instrument
- Snow and ice active imaging (Cryosat, RA, CRISTAL, SAR, ISAR, CoreH2O-like)
- GEO+HEO microwave?
- Demo missions for new technologies e.g. photonic filtering

AOMSUC-12 11 – 18 November 2022

Future Challenges Advancing the WIGOS 2040 Vision Cannot do everything – Need to define priorities

Current Capabilities +

- Wind Lidar (Aeolus) FO
- MW sounding and imaging (hourly data?)
- GEO HSIR complete ring
- Advancing the HEO component

- Roscosmos and Roshydromet launch first mission MSU-GS/A 12 May 2021 08:30 – 13:30 UTC
- Increase number of daily radio-occultation measurements
- Carbon monitoring

OMM

- Three GEO + 10 LEO and at least one active instrument
- Additional requirements
 - limb sounding, precipitation radars, snow and ice

Future Challenges Advancing the WIGOS 2040 Vision Can we be more efficient

Optimizing the Space-based Architecture:

- E.g. More studies like Meier et al, 2021: Architecting the Future of Weather Satellites
- Is the concept of long-term big satellite programmes with rigid satellite and instrument complement outdated?
- Do we need more agile constellations?
- Concept of "calibration/reference" satellites/platforms supporting a fragmented observing system and short lifetime instruments
- The role of commercial satellite data providers in delivering the WIGOS2040 Vision

Future Challenges Advancing the WIGOS 2040 Vision Sustainability and Capacity Development

Ensuring continued access to spectrum:

- Protecting the 'fingerprints of nature' and working towards sustainable co-habitation
- Protecting downlink frequencies
- Protecting the space environment:
- Limiting debris and space junk
 Capacity Development:
- Building capability to use data and products
- Ensuring data accessibility and discoverability

The WMO Unified Data Policy Resolution (Res. 1) Ext Congress October 2021

Resolution 1; 2021

- 1. Covers <u>all WMO Earth system data</u>: weather, climate, hydrology, ...
- 2. Two main categories of data:
- <u>Core (shall be exchanged);</u>
- <u>Recommended</u>; (should be exchanged);
- 3. Specifics on *core* and *recommended* data referred to Technical Regulations, primarily Manuals on WIGOS, GDPFS;
- 4. *"Free and unrestricted"* exchange (term defined directly in the Resolution, literal interpretation);
- 5. Addressed to Members, but covers exchange of data between all partners, inclucing private sector, academia, etc.

Defining Core and Recommended satellite data for international data Exchange as per the new WMO Unified Data Policy

- WMO has nominated a Data Policy Coordinator (Sue Barrell)
- Analysis of what data is needed by the users has been consolidated with WMO Expert Teams
- Analysis to be presented to and consolidated with Space Agencies
 - Letters to Space Agencies (and/or Members) in May 2022
 - It may not be in the mandate for all Agencies to commit to everything (in the table)
 - They may need to consult stakeholders (which may take time)
 - Status presented to CGMS Plenary 15 17 June 2022
- Definition of core data does not imply commitments on:
 - Technical implementation
 - Protocols
 - Quality
- Information document to INFCOM 2, October 2022

To support the discussions, we have prepared the document in Annex. The that data from all the measurements identified in the tables will be freely users and for NWP/Nowcasting disseminated within near real time. The ta the relevant column the contributions expected from your Agency.

Please contact until the end of May 2022 WMO Director of Infrastructure (area@wmo.in t) and Director of WIGOS Lars Peter Rishojgaard (Iriishojg Head of Space Systems and Utilization Division Kenneth Holmlund (kholm cc, for establishing the way forward for the upcoming bilateral discussion:

- Consolidated commitments to be tabled in WMO regulatory material and reflected elsewhere as suitable (e.g. OSCAR)
- Decision is with WMO Members

WINO OMM Will be reviewed and updated regularly (in consultation with the Space Agencies)

Analysis of Geostatio	nary Core D	Data 2022									
Longitude	0E	41E	76E	82E	105E	123E	128E	141E	137W	100W	75W
			Roshydromet	IMD			KMA				
Agency	EUMETSAT	EUMETSAT	Roscosmos	ISRO	CMA	CMA	KIOST	JMA	NOAA	NASA	NOAA
VIS/IR Imagery channels	12	12	10	6	15	15	16	16	16	Ν	16
Rapid scan (<5 mins)	12	N	Ν	6	15	15	16	16	16	Ν	16
Sounder channels	Ν	N	Ν	19	1680	1680	Ν	Ν	Ν	Ν	Ν
Lightning detection	Ν	N	Ν	Ν	Y	Y	Ν	Ν	Y	Ν	Y
Radiation Budget	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	Ν
Ocean Colour*	Ν	N	Ν	Ν	Ν	Ν	Y	Ν	N	Ν	Ν
UV/VIS Sounder	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Analysis of Geostatio	nary Core D	Data 2025									
Longitude	0E	41E	76E	82E	105E	123E	128E	141E	137W	100W	75W
			Roshydromet	IMD			KMA				
Agency	EUMETSAT	EUMETSAT	Roscosmos	ISRO	CMA	CMA	KIOST	JMA	NOAA	NASA	NOAA
VIS/IR Imagery channels	16	12	20	6	15	15	16	16	16	Ν	16
Rapid scan (<5 mins)	16	Ν	20	6	7	7	16	16	16	Ν	16
Sounder channels	1700	Ν	2528	19	1680	1680	Ν	Ν	N	Ν	Ν
Lightning detection	Y	Ν	Y	Ν	Y	Y	Ν	Ν	Y	Ν	Y
Radiation Budget	Ν	Ν	Y	Ν	Ν	Ν	N	Ν	N	Ν	Ν
Ocean Colour*	Ν	Ν	Ν	Ν	Ν	Ν	Y	Ν	N	Ν	Ν
UV/VIS Sounder	Y	Ν	N	Ν	Ν	Ν	N	Ν	N	Y	N
*Dedicated instruments for ocear	n colour monitoring	g									

	ta 2022											
Local Overpass Time	05:30	06:00	06:00	07:00	09:30	10:30	12:00	13:30	13:30	13:30	13:30	15:00
		NOAA		CNES	EUMETSAT		IMD	NOAA				Roshydromet
Agency	CMA	DOD	ESA	CNSA	ESA	CNES	ISRO	NASA	CMA	ESA	JAXA	Roscosmos
VIS/IR Imagery channels	6+D/N	N	N	N	6	N	15	21+D/N	25	N	N	6
IR Sounder channels	1370	N	N	N	8461	N	N	2211/2378	1370	N	N	2670
MW Sounder channels	32	N	N	N	20	N	N	22	28	N	N	N
MW Imagers	N	24	N	N	N	N	N	N	10	N	16	29
Radar backscatter	Y	Ν	N	Y	Y	N	Y	N	Ν	N	N	N
GNSS Bending Angle	Y	N	N	N	Y	N	Y	N	Y	N	N	N
UV/VIS Sounder	N	Ν	N	N	Y	N	N	Y	Ν	Y	N	N
Radiation Budget	Solar Irrad	N	N	N	N	N	N	ERB	Ν	N	N	SW only
Doppler Winds	N	Ν	Y	N	N	N	N	N	Ν	N	N	N
Cloud Radar	N	Ν	N	N	N	N	N	N	Ν	N	N	N
Rain Radar	N	N	N	N	N	N	N	N	Ν	N	N	N
Ocean Colour	N	N	N	N	Y	N	N	Y	Ν	N	N	N
SST (Dual View)	N	Ν	Ν	N	Y	N	N	N	Ν	N	N	N
Radar Altimeter	N	N	N	N	Y	N	N	N	Ν	N	N	N
GHG monitoring	N	N	N	N	N	N	N	Y	Y	N	Y	N
Analysis of LEO Core da	a 2025											
Local Overpass Time	05:30	06:00	06:00	07:00	09:30	10:30	12:00	13:30	13:30	13:30	13:30	15:00
		06:00	06:00	07:00	09:30	10:30	12:00	13:30	13:30	13:30	13:30	15:00
		06:00 NOAA	06:00	07:00 CNES	09:30	10:30	12:00	13:30 NOAA	13:30	13:30	13:30	15:00 Roshydromet
			06:00 ESA			10:30 CNES			13:30	13:30 ESA	13:30 JAXA	
Local Overpass Time	05:30	NOAA		CNES	EUMETSAT		IMD	NOAA				Roshydromet
Local Overpass Time	05:30 CMA	NOAA DOD	ESA	CNES CNSA	EUMETSAT ESA	CNES	IMD ISRO	NOAA NASA	СМА	ESA	JAXA	Roshydromet Roscosmos
Local Overpass Time Agency VIS/IR Imagery channels	05:30 CMA 6+D/N	NOAA DOD N	ESA	CNES CNSA N	EUMETSAT ESA 20	CNES N	IMD ISRO 15	NOAA NASA 21+D/N	CMA 25	ESA N	JAXA N	Roshydromet Roscosmos 6
Agency VIS/IR Imagery channels IR Sounder channels	05:30 CMA 6+D/N 1370	NOAA DOD N	ESA N	CNES CNSA N	EUMETSAT ESA 20 16921	CNES N	IMD ISRO 15 N	NOAA NASA 21+D/N 2211/2378	CMA 25 1370	ESA N N	JAXA N N	Roshydromet Roscosmos 6 2670
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels	05:30 CMA 6+D/N 1370 32	NOAA DOD N N N	ESA N N	CNES CNSA N N	EUMETSAT ESA 20 16921 20	CNES N N N	IMD ISRO 15 N N	NOAA NASA 21+D/N 2211/2378 22	CMA 25 1370 28	ESA N N	JAXA N N	Roshydromet Roscosmos 6 2670 N
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels MW Imagers	05:30 CMA 6+D/N 1370 32 N	NOAA DOD N N N N	ESA N N N	CNES CNSA N N N	EUMETSAT ESA 20 16921 20 Y	CNES N N N N	IMD ISRO 15 N N N	NOAA NASA 21+D/N 2211/2378 22 N	CMA 25 1370 28 10	ESA N N N	JAXA N N N 16	Roshydromet Roscosmos 6 2670 N 29
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter	05:30 CMA 6+D/N 1370 32 N Y	NOAA DOD N N N N N	ESA N N N N	CNES CNSA N N N Y	EUMETSAT ESA 20 16921 20 Y Y	CNES N N N N N	IMD ISRO 15 N N N Y	NOAA NASA 21+D/N 2211/2378 22 N N	CMA 25 1370 28 10 N	ESA N N N N	JAXA N N 16 N	Roshydromet Roscosmos 6 2670 N 29 N
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle UV/VIS Sounder	05:30 CMA 6+D/N 1370 32 N Y Y	NOAA DOD N N N N N N N	ESA N N N N N	CNES CNSA N N N Y N	EUMETSAT ESA 20 16921 20 Y Y Y	CNES N N N N N N	IMD ISRO 15 N N N Y Y	NOAA NASA 21+D/N 2211/2378 22 N N N N	CMA 25 1370 28 10 N Y	ESA N N N N N N	JAXA N N 16 N N	Roshydromet Roscosmos 6 2670 N 29 N N N
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle	05:30 CMA 6+D/N 1370 32 N Y Y N	NOAA DOD N N N N N N N N N N	ESA N N N N N N N	CNES CNSA N N N Y N N	EUMETSAT ESA 20 16921 20 Y Y Y Y Y	CNES N N N N N N N	IMD ISRO 15 N N N Y Y N	NOAA NASA 21+D/N 2211/2378 22 N N N N Y	CMA 25 1370 28 10 N Y N	ESA N N N N N N Y	JAXA N N N 16 N N N	Roshydromet Roscosmos 6 2670 N 29 N 29 N N N N
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle UV/VIS Sounder Radiation Budget	05:30 CMA 6+D/N 1370 32 N Y Y Y N Solar Irrad	NOAA DOD N N N N N N N N N N N N	ESA N N N N N N N N	CNES CNSA N N N Y N N N N	EUMETSAT ESA 20 16921 20 Y Y Y Y Y Y N	CNES N N N N N N N N	IMD ISRO 15 N N N Y Y N N N	NOAA NASA 21+D/N 2211/2378 22 N N N N Y ERB	CMA 25 1370 28 10 N Y N N	ESA N N N N N N Y N	JAXA N N N 16 N N N N	Roshydromet Roscosmos 6 2670 N 29 N 29 N N N SW only
Agency VIS/IR Imagery channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle UV/VIS Sounder Radiation Budget Doppler Winds	05:30 CMA 6+D/N 1370 32 N Y Y Y Solar Irrad N	NOAA DOD N N N N N N N N N N N N N	ESA N N N N N N N N N	CNES CNSA N N N Y N N N N N	EUMETSAT ESA 20 16921 20 Y Y Y Y Y N N N	CNES N N N N N N N N N N	IMD ISRO 15 N N N Y Y N N N N	NOAA NASA 21+D/N 2211/2378 22 N N N N Y ERB N	CMA 25 1370 28 10 N Y N N N N	ESA N N N N N N Y N N	JAXA N N N 16 N N N N N	Roshydromet Roscosmos 6 2670 N 29 N 29 N N SW only N
Agency VIS/IR Imagery channels IR Sounder channels IW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle UV/VIS Sounder Radiation Budget Doppler Winds Cloud Radar	05:30 CMA 6+D/N 1370 32 N Y Y Y Solar Irrad N N	NOAA DOD N N N N N N N N N N N N N N N N	ESA N N N N N N N N N N	CNES CNSA N N N Y N N N N N N N	EUMETSAT ESA 20 16921 20 Y Y Y Y Y N N N N N	CNES N N N N N N N N N N N N	IMD ISRO 15 N N N Y Y Y N N N N	NOAA NASA 21+D/N 2211/2378 22 N N N N Y ERB N N N N	CMA 25 1370 28 10 N Y N N N N N N	ESA N N N N N N Y N N N N	JAXA N N N 16 N N N N N N	Roshydromet Roscosmos 6 2670 N 29 N 29 N N SW only N SW only N N N
Agency VIS/IR Imagery channels IR Sounder channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle UV/VIS Sounder Radiation Budget Doppler Winds Cloud Radar Rain Radar	05:30 CMA 6+D/N 1370 32 N Y Y Y N Solar Irrad N Solar Irrad N N N	NOAA DOD N N N N N N N N N N N N N N N N	ESA N N N N N N N N N N N N	CNES CNSA N N N N N N N N N N N N	EUMETSAT ESA 20 16921 20 Y Y Y Y Y N N N N N N	CNES N N N N N N N N N N N N N	IMD ISRO 15 N N N Y Y Y N N N N N	NOAA NASA 21+D/N 2211/2378 22 N N N N ERB N N N N N N N	CMA 25 1370 28 10 N Y N N N N N N N	ESA N N N N N N N N N N N	JAXA N N N 16 N N N N N N N	Roshydromet Roscosmos 6 2670 N 29 N 29 N N SW only N SW only N N N N N N
Agency VIS/IR Imagery channels IR Sounder channels IR Sounder channels MW Sounder channels MW Imagers Radar backscatter GNSS Bending Angle UV/VIS Sounder Radiation Budget Doppler Winds Cloud Radar Rain Radar Ocean Colour	05:30 CMA 6+D/N 1370 32 N 2 Y Y Y N Solar Irrad N Solar Irrad N N N N	NOAA DOD N N N N N N N N N N N N N N N N	ESA N N N N N N N N N N N N N	CNES CNSA N N N Y N N N N N N N N N	EUMETSAT ESA 20 16921 20 Y Y Y Y Y N N N N N N N N N Y	CNES N N N N N N N N N N N N N N	IMD ISRO 15 N N N Y Y N N N N N N N	NOAA NASA 21+D/N 2211/2378 22 N N N Y ERB N N N N N N N Y	CMA 25 1370 28 10 N Y N N N N N N N N N	ESA N N N N N N N N N N N N	JAXA N N N 16 N N N N N N N N N N	Roshydromet Roscosmos 6 2670 N 29 N 29 N SW only N SW only N N N N N N N N N

Analysis of Drifter Core data	2022									
Agency	CMA	NSOAS	ISRO	NOAA	ESA	CNES	EUMETSAT	NASA	JAXA	Satellites
MW Imagers	Ν	N	Y	N	N	N	N	Y	N	MeghaTropiques, TROPICS, GMI
Radar backscatter	Ν	Y	Ν	N	N	N	N	Y	Ν	COWVR, CYGNSS, HY-2
GNSS Bending Angle	Ν	N	N	Y	Y	N	N	Y	N	COSMIC-2, Sentinel-6, GRACE
UV/VIS Sounder	Ν	N	Ν	N	N	N	N	N	Ν	
Doppler Winds	Ν	N	Ν	N	Y	N	N	N	Ν	Aeolus
Cloud Radar	Ν	N	N	N	N	N	N	N	N	
Rain Radar	Ν	N	Ν	N	N	N	N	Y	Ν	GPM-Core
Radar Altimeter	Ν	Y	Ν	Y	Y	Y	Y	Y	Ν	JASON-3, Sentinel-6A, HY-2
GHG monitoring	N	N	N	N	N	N	N	Y	N	0CO-3
Analysis of Drifter Core data	2025									
Agency	СМА	NSOAS	ISRO	NOAA	ESA	CNES	EUMETSAT	NASA	JAXA	
MW Imagers	Y	N	N	N	Y	N	Y	Y	Ν	AWS, TROPICS, FY-3G, GMI
Radar backscatter	Ν	Y	Ν	N	N	N	N	N	N	HY-2
GNSS Bending Angle	Ν	N	Ν	Y	Y	Ν	N	N	Ν	COSMIC-2, Sentinel-6
UV/VIS Sounder	Ν	N	Ν	N	N	N	N	N	Ν	
Doppler Winds	Ν	N	N	N	N	N	N	N	N	
Cloud Radar	N	N	Ν	N	N	N	N	N	Ν	
Rain Radar	Y	N	Ν	N	N	N	N	Y	Ν	FY-3G, GPM-Core
Radar Altimeter	Ν	Y	Ν	N	Y	Y	N	Y	Y	COMPIRA, Sentinel-6, HY-2, SWOT
GHG monitoring	N	N	N	N	N	N	N	N	N	

WMO Regional Satellite Data Groups play a key role in establishing the regional needs!

WMO gratefully acknowledges the support by the CGMS Members to regional activities:

- RA I (Africa) Dissemination Expert Group (RAIDEG)
- RA II (Asia): WIGOS Project Coordination Group
- RA III/IV (Americas): Coordination Group
- RA V (SW Pacific): Task Team on Satellite Utilization (T-SU)

Continued support from the Space Agencies is no ded

Vlab acti RA II - RA V Coordination Meeting

 Increase monitor

Objectives:

REGION IV

NORTH AMERICA

CENTRAL AMERICA

- User-provider dialogue
- Expressing user requirements

REGION VI

EUROPE

REGIO

REGION V SOUTH-WEST

- Coordinating data distribution
- Identifying training needs
- Implementing WIGOS/WIS

See <u>https://community.wmo.int/activity-areas/wmo-space-programme-wsp/wmo-regional-coordination-groups-satellite-data-requirements</u>

OSCAR/Space

Observing Systems Capability Analysis and Review Tool

- OSCAR Space Captures
 - Over 800 satellites
 - Around 1000 instruments: 650 for Earth Observation and 350 for Space Weather.
- Supported by CGMS Members and hence also by a significant sector of CEOS with the agencies outside CGMS

OSCAR Comme System Cepability Analysis and Review Toul
represented a space-based Cupubilities Autorebased Cupubilities Analysis (Cubic Search.) (Cubi
based Capabilities (OSCAR/Space)
Lists details d'automatist attributes présentation autoire présentation de la construit de
00504465pere 2024-16-12 Satellite status updates
I started with OSCAR/Space ? Service started and the next set of the next set of the next set of the set of the set of the next set set of the next set of the next set set o
menu. Launch Operator Satellite Psyload to menu
oppendix top mean, you can valed the full tables of vatellities, instruments, programmes etc. These tables can then be 2021 1 filtered according to your criteria
n, you can use the hyperfinits to navigate between your items of indexest. The quick search and top menu 2021 2021
rom as pages. of feedback pleases use the <u>holdest form</u> . 28 Feb 🕥 <u>Audical DCSA MSU-CSA GOAK-EXKER GOAK</u> . 2021 HI BUALSE GOAK-EYNER
bion is currently pending aspect review. 06 Dec UN 05-14 PMS-2 2000
02 Dec Elimit 🔶 2 Elicentite HBI

See <u>https://www.wmo-sat.info/oscar/spacecapabilities</u>

EC-75: Development of a WMO-coordinated Global Greenhouse Gas Monitoring Infrastructure

Many of the required elements do exist or are being developed

Several countries and international organizations investing in carbon monitoring capabilities:

- Surface-based observations
- Space-based observations
- Modeling
- Data assimilation

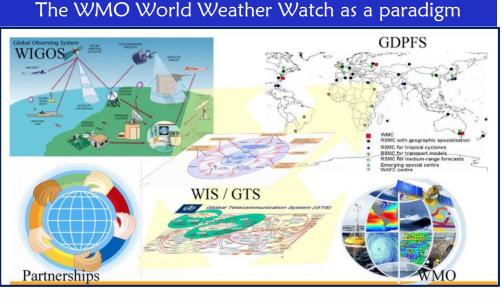
Missing element:

 Integrated, internationally coordinated global approach allowing these capabilities to complement and leverage each other for optimal overall impact!

Building on the existing such as the Global Atmospheric Watch (GAW) and the Integrated Global Greenhouse Gas Information System (IG3IS). (Res 4, EC -75, June 2022)

Toward a coordinated Global Greenhouse Gas (GHG) Monitoring Infrastructure

Greenhouse gas monitoring provides critical input to scientific research and support for the implementation of the Paris agreement; however, GHG monitoring currently relies primarily on individual research activities and research funding,


- Important natural sources and sinks terms for GHG still not sufficiently well understood;
- Multiple coordination mechanisms for GHG monitoring exist, but are typically discipline-specific or regional in scope;
- No integration of space-based and surface-based observations; no universal access to observational data;

Conjecture: GHG monitoring would benefit from coordinated, global, operational approach similar to the one taken for weather prediction and climate monitoring

Required infrastructure:

- Integrated carbon observing system (surface- and space-based);
- Earth System modeling with data assimilation tracking CO₂, CH₄ and N₂O;
- Timely international exchange of all observations and relevant model data;
- Framework for intercomparison of output, possibly also for collaboration on algorithms, model components;

Coupling with ocean and/or land biosphere models;

Such an approach would help

- Leverage all existing GHG monitoring capabilities for common goals
- Maximize return on investments
- Avoid fragmentation of effort, both scientifically and politically
- Lead to a consolidated design

Could facilitate access to funding for the required observing systems in developing countries

WMO International Greenhouse Gas Monitoring Symposium 30 January-1 February 2023

The Symposium is targeted primarily at entities involved in greenhouse gas observations, modeling, data assimilation and related research in all domains of the Earth System. It is open to other interested parties as well.

Engagement from an Earth-system Monitoring approach, ie integrations with oceans, land, permafrost, cryosphere, biosphere is key

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

How to engage with WMO

WMO Commissions Expert Teams e.g.

- Expert Team on Space Systems and Utilization (ET-SSU)
- Joint Expert Team On Earth Observing Systems Design And Evolution (JET-EOSDE)
- Expert Team on Radio Frequency Coordination (ET-RFC)
- Expert Team on Space Weather (ET-SWx)
- Joint Expert Team on **Operational Weather Radar**

WMO Regional Association Expert Teams

WMO Secondments

WMO Junior Professional Officers

Talk to you local Weather Service!

WEATHER CLIMATE WATER TEMPS CLIMAT EAU

Thank you! Merci!

WMO OMM

World Meteorological Organization Organisation météorologique mondiale