The 12th Asia-Oceania Meteorological Satellite Users' Conference

Pre-operational Validation of AHI on Himawari-9, in navigation and calibration

Sumita Mayu,

Eiki Misaki, Kodera Kazuki, Oike Syunya, Okuyama Arata, Tokairin Genki Meteorological Satellite Center Japan Meteorological Agency (JMA)

2014 Himawari-8

2016 Himawari-9

Meteorological Satellite Center (MSC) of JMA

Contents

- Mission Overview
- AHI Specifications
- Himawari-9/AHI Data Quality Validation
 - Image Navigation and Registration (INR)
 - Radiometric Calibration (VNIR and IR)
 - Destriping(B03)
- Summary

Mission Overview

• Himawari-8 and -9 are the third generation geostationary meteorological satellites operated by Japan Meteorological Agency (JMA).

- Switchover of operational satellite from Himawari-8 to -9 is planned on 13th December 2022.
- Parallel dissemination of Himawari-9 products started on 27th September.

16 November 2022

Meteorological Satellite Center (MSC) of JMA

AHI Specifications

 Advanced Himawari Imager (AHI) onboard Himawari-8 and -9 is the same series imager as ABI on GOES satellites and AMI on GK2A.

Band	Wavelength [µm]	Spatial Resolution at SSP [km]		
1	0.47	1	RGB band Composited	
2	0.51	1		
3	0.64	0.5		
4	0.86	1		
5	1.6	2		
6	2.3	2		
7	3.9	2		
8	6.2	2	Water Vapor	
9	7.0	2		
10	7.3	2		
11	8.6	2	SO ₂	
12	9.6	2	03	
13	10.4	2	Atmospheric Window	
14	11.2	2		
15	12.3	2		
16	13.3	2	CO ₂	

900

Wavenumber (cm⁻¹)

1000

1100

4

700

800

16 November 2022

The 12th Asia-Oceania Meteorological Satellite Users' Conference

Image Navigation and Registration (INR)

Navigation accuracy

- Absolute navigation accuracy is analyzed by landmark matching approach using observation imagery and referential maps.
- The landmark analysis indicates a Himawari-8 and -9 navigation accuracy of ~0.3 km.
- Information on daily Himawari-8 and -9 accuracy is available on the monitoring web page.
 https://www.data.jma.go.jp/mscweb/data/monitoring/navigation.html

The 12th Asia-Oceania Meteorological Satellite Users' Conference

Image Navigation and Registration (INR)

Inter-band navigation (co-registration) accuracy

- Relative navigation accuracy is analyzed via pattern matching between imagery of the reference band and the other bands.
- Himawari-9 navigation accuracy with respect to Band 13 is ~40 m for VNIR bands and ~20 m for IR bands, which is almost identical to those of Himawari-8. (20 m corresponds to 0.01 pixel for IR bands at SSP.)

Radiometric Calibration(vs Himawari-8)

- Direct comparison between Himawari-8 and Himawari-9 data is also made. (SRF difference between Himawari-8 and Himawari-9 AHI is not considered.)
- The figure shows the difference between Himawari-8 and Himawari-9.
- The difference between Himawari-8 and Himawari-9 is about -3% in B03 and within ± 1K in B13.
- The graphs shows scatter plots of Himawari-8 and Himawari-9 data with the regression line.

Radiometric Calibration(vs Himawari-8)

	slope	intercept
B01	1.047504	-0.192599
B02	1.005938	-0.030515
B03	0.977463	-0.020175
B04	0.996984	-0.001054
B05	0.944775	-0.014441
B06	0.983935	0.005019

- The table shows the slope, intercept, and brightness temperature difference for each band.
- In VNIR bands, there are differences of about 5%.
- In IR bands , there are differences of 0.1K to 2K at standard radiance.

	slope	intercept	<u>H9-H8</u> @StdTb	<u>H9-H8</u> @220K	<u>H9-H8</u> @250K	<u>H9-H8</u> @290K
B07	0.991184	2.709637	0.189 @285.95К	0.770	0.506	0.153
B08	0.997591	0.555582	-0.010 @234.65К	0.026	-0.047	-0.143
B09	1.004864	-0.808532	0.378 @243.85К	0.262	0.408	0.602
B10	0.998054	0.510754	0.015 @254.59K	0.083	0.024	-0.054
B11	0.998931	0.286968	-0.016 @283.82К	0.052	0.020	-0.023
B12	0.997384	0.630637	-0.048 @259.45К	0.055	-0.023	-0.128
B13	1.001289	-0.414588	-0.046 @286.18K	-0.131	-0.092	-0.041
B14	0.997660	0.615102	-0.054 @286.10К	0.100	0.030	-0.064
B15	1.002840	-0.756607	0.049 @283.78K	-0.132	-0.046	0.067
B16	0.970155	6.296058	-1.754 @269.73К	-0.270	-1.165	-2.359

Data period:2022/10/01-07 B01-B06: 00-06UTC, B07-B16: 10-13UTC SRF difference between Himawari-8 and Himawari-9 AHI is not considered.

Radiometric Calibration (VNIR bands

- Calibration accuracy is validated by following approaches developed under the GSICS framework.
 - RTM based approach utilizing MODIS (Aqua and Terra)
 - Direct comparison (ray-matching approach) with VIIRS (SNPP and N20)
- Although there are differences depending on the methods and the reference satellites, observation values of Himawari-9 are within ~5% from the references.
- The bias correction coefficients have not been determined yet. The correction coefficients in the header part of the Himawari-9 Standard Data (HSD) will be updated in the future when the validation period gets enough to catch the annual variation.

The 12th Asia-Oceania Meteorological Satellite Users' Conference

Radiometric Calibration (IR bands)

- Calibration validation method for IR bands is also developed under the GSICS framework, which utilizes hyper spectral IR sounders.
- The brightness temperatures (T_b) observed with Himawari-9 are within 0.3 K from the reference at a standard radiance. (T_b corresponding to clear sky ocean surface).
- Similar to Himawari-8, there is no significant diurnal variation for the T_b bias.
- 0.3 T_b bias at the std. radiance [K] 0.2 vs. Metop-B/IASI 0.1 Himawai-9 Himawari-8 0.1 0 0.0 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 -0.2 -0.3

16 November 2022

Destriping(B03)

- In the visible bands , stripes can be seen especially in high radiance.
- By utilizing a north-south (NS) scan, it is possible to estimate the sensitivity difference between the detectors and calculate the correction coefficients.
- The correction coefficients have been applied in B03 to reduce stripes seen in high radiance.

corrected

Concept of the NSscan

Summary

- Switchover of operational satellite from Himawari-8 to -9 is planned on 13th December 2022.
- Validation of Himawari-9/AHI Data Quality
 - INR accuracy is ~0.3 km (for reference mapping) and 40 m (between bands) at SSP.
 - VNIR bands observation is within ~5% from the reference. The bias correction coefficients have not been determined and will be updated in the future.
 - The observed brightness temperatures (T_b) are within 0.3 K from the reference at the standard radiance, and their bias has no significant diurnal variation.
 - The stripes has been reduced in B03 by utilizing NS scan.