

11-18 November 2022

Online, Hosted by Japan Meteorological Agency

12th Asia - Oceania Meteorological Satellite Users' Conference

Mapping Global Agricultural Drought with Chinese Meteorological Satellite Data

Fan Jinlong¹, Qin Zhihao², Zhang Yeping¹, Wu Jianjun³, Li Yuxuan^{1,2}, Mei Shigang^{1,4}, Lv Jin¹, Su Qiaomei⁴

- 1. National Satellite Meteorological Center, China Metrological Administration, Beijing China
- 2. Chinese Academy of Agricultural Sciences, Beijing China
- 3. Beijing Normal University, Beijing China
- 4. Taiyuan University of Technology, Taiyuan China

> 1 Brief Introduction of China Meteorological Satellite

> 2 FY Satellite Data Processing for Global Agricultural Drought

> 3 Global Agricultural Drought Map

> 4 Conclusions and Questions

1. Brief Introduction of Chinese Meteorological Satellite

1. Brief Introduction of Chinese Meteorological Satellite

风云四号 B星

2021年7月1日 12:00(北京时)

Polar Orbiting and Geostationary Satellite

极轨	发射日期	静止	发射日期
FY-1A	1988年9月7日	FY-2A	1997年6月10日
FY-1B	1990年9月3日	FY-2B	2000年6月25日
FY-1C	1999年5月10日	FY-2C	2004年10月18日
FY-1D	2002年5月15日	FY-2D	2006年12月8日
FY-3A	2008年5月27日	FY-2E	2008年12月23日
FY-3B	2010年11月5日	FY-2F	2012年1月13日
FY-3C	2013年9月23日	FY-2G	2014年12月31日
FY-3D	2017年11月15日	FY-2H	2018年6月5日
FY-3E	2021年7月5日	FY-4A	2016年12月11日
		FY-4B	2021年6月3日

1. Brief Introduction of Chinese Meteorological Satellite

AVNIR 1996-1997

GLI 2002-2003 SGLI 2017

FY-3 A/B/C VIRR

Band No.	Central wavelength(µm)	Spectral Range(µm)	SNR or NE∆T @ specified input
1	0.455	0.43 - 0.48	3.0 @ 0.5 %
2	0.505	0.48 - 0.53	3.0 @ 0.5 %
3	0.555	0.53 - 0.58	3.0 @ 0.5 %
4	0.630	0.58 - 0.68	3.0 @ 0.5 %
5	0.865	0.84 – 0.89	3.0 @ 0.5 %
6	1.360	1.325 - 1.395	3.0 @ 0.5 %
7	1.600	1.55 - 1.64	3.0 @ 0.5 %
8	3.740	3.55 - 3.93	0.40 K @ 300 K
9	10.80	10.3 - 11.3	0.2 K @ 300 K
10	12.00	11.5 - 12.5	0.2 K @ 300 K

FY-3 A/B/C MERSI

No.	Center	Bandwidth	SNR or NEρ or NEΔT @	IFOV at
	wavelength		specified input	s.s.p.
1	412 nm	20 nm	300 @ 44.9 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
2	443 nm	20 nm	300 @ 41.9 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
3	470 nm	50 nm	100 @ 50% albedo	250 m
4	490 nm	20 nm	300 @ 32.1 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
5	520 nm	20 nm	500 @ 29.0 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
6	550 nm	50 nm	100 @ 50% albedo	250 m
7	565 nm	20 nm	500 @ 21.0 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
8	650 nm	50 nm	100 @ 50% albedo	250 m
9	650 nm	20 nm	500 @ 10.0 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
10	685 nm	20 nm	0.05 %	1000 m
11	765 nm	20 nm	0.05 %	1000 m
12	865 nm	20 nm	0.05 %	1000 m
13	865 nm	50 nm	100 @ 50% albedo	250 m
14	905 nm	20 nm	0.10 %	1000 m
15	940 nm	20 nm	0.10 %	1000 m
16	980 nm	20 nm	0.10 %	1000 m
17	1030 nm	20 nm	0.10 %	1000 m
18	1640 nm	50 nm	0.08 %	1000 m
19	2130 nm	50 nm	0.07 %	1000 m
20	11.50 μm	2.50 μm	0.3 K @ 300 K	250 m

FY-3D MERSI-2

Band No.	Center wavelength	Bandwidth	SNR or NEAT	Spatial Resolution
1	412 nm	20 nm	300 @ 44.9 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
2	443 nm	20 nm	300 @ 41.9 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
3	470 nm	50 nm	100 @ 35.3 W m⁻² sr⁻¹ µm⁻¹	250 m
4	490 nm	20 nm	300 @ 32.1 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
5	550 nm	50 nm	100 @ 29.0 W m ⁻² sr ⁻¹ µm ⁻¹	250 m
6	555 nm	20 nm	500 @ 21 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
7	650 nm	50 nm	100 @ 22 W m ⁻² sr ⁻¹ µm ⁻¹	250 m
8	670 nm	20 nm	500 @ 10 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
9	709 nm	20 nm	500 @ 6.9 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
10	746 nm	20 nm	500 @ 9.6 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
11	865 nm	20 nm	500 @ 6.4 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
12	865 nm	50 nm	100 @ 25 W m ⁻² sr ⁻¹ µm ⁻¹	250 m
13	905 nm	20 nm	200 @ 10.0 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
14	936 nm	20 nm	100 @ 3.6 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
15	940 nm	50 nm	200 @ 15.0 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
16	1240 / 1030 nm	20 nm	100 @ 5.4 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
17	1380 nm	20 / 30 nm	60/100 @ 6 W m⁻² sr⁻¹ µm⁻¹	1000 m
18	1640 nm	50 nm	200 @ 7.3 W m ⁻² sr ⁻¹ µm ⁻¹	1000 m
19	2130 nm	50 nm	100 @ 1.2 W m ⁻² sr ⁻¹ μm ⁻¹	1000 m
20	3.80 µm	0.18 µm	0.25 K @ 270 K	1000 m
21	4.05 µm	0.155 µm	0.25 K @ 300/380 K	1000 m
22	7.20 µm	0.50 µm	0.30 K @ 270 K	1000 m
23	8.55 µm	0.30 µm	0.25 K @ 270 K	1000 m
24	10.8 µm	1.0 µm	0.4 K @ 300 K	250 m
25	12.0 µm	1.0 µm	0.4 K @ 300 K	250 m

FY-3E MERSI-LL

Band No.	Central Wavelength(µm)	Band width(nm)	Spatial Resolution(m)
1	0.7	400	1000
2	3.8	180	1000
3	4.05	155	1000
4	7.2	500	1000
5	8.55	300	1000
6	10.8	1000	250
7	12.0	1000	250

Data and Product Service

风云卫星 微信公众号

移动应用

风云海洋 iOS版APP

风云海洋 安卓版APP

	IMAGES	PRODUCTS	S DOCUN	IENTS	_			
e > Data > Data Download					Stay Signe Sign In	d In NewUser	Forget Passw	vord
4 TANSAT FY-3 FY-2	FY-1 EOS	S/MODIS NO	DAA MTSAT	Other				
FY-3E FY-3D FY-3C F	Y-3B FY-	3A						
Instrument			١٨	loh lir				
GNOS >> HIRAS >			vv		IN			_
SIM >> SEM >	.tp://	satel	lite.n	smc.	org.c	cn/Po	ortal	S
VASS >>> TSHS >>	-		lata/	Satall	ito o	cny		
Product				Jaleii	ne.a	<u> 5 h y</u>		
+ L1 Data				Data Overview				
. Due durat				Data From/To:	m Resolution 2022-03-15—1	Spectral Image Today	er(MERSI)	
Product				File Count: 36.1	*10000			
				Volume: 71.8T	3			
Product	Format	Posolution	Start Date	Lact Date	Filo count	Volumo(GB)	Availability	Qual
FY-3E MERSI Level 1 1KM	HDF	1000M	2022-03-15	2022-11-07	67247	4392.6	View	Repo
Resolution Data FY-3E MERSI Level 1 1km	HDF	1000M	2022-03-15	2022-11-07	67245	4366.5	View	
FY-3E MERSI Level 1 250m	HDF	250M	2022-03-15	2022-11-07	67248	8201.2	View	
FY-3E MERSI Level 1 250M	HDF	250M	2022-03-15	2022-11-07	67240	55405.2	View	
Time Range								
ime Range	ast Month							
	Last Month	0.00						
Resolution Geolocation Data fime Range Last 3 days Last Week Start Date: 2022-11-06	art Time: 00:0	0:00						
Resolution Geolocation Data Fime Range Last 3 days Last Week Start Date: 2022-11-06 End Date: 2022-11-07	Last Month art Time: 00:0 nd Time: 23:5	0:00 9:59						
Resolution Geolocation Data Fime Range Last 3 days Last Week Start Date: 2022-11-06 End Date: 2022-11-07 Time range: Each Day	Last Month art Time: 00:0 nd Time: 23:5	0:00 9:59						

Copyright © NSMC 2013. All Rights Reserved.

NSMC NCSW

 Data
 Noise Removal
 Cal/Geometric/Atmospheric
 High Level

 Download
 Noise Removal
 Correction/Global Tiling
 Products

Flowchart to retrieve the biophysical parameters for further applications

111

Our team has put efforts in the past 10 years on the development of processing FY3 VIRR/MERSI data under the support of series of research projects mainly from National Key R&D Program:

The processing chain for FY3 VIRR/MERSI L1b data has established with the grant 2016YFA0600301/2.

The hydrometeorological application of FY3 VIRR/MERSI data has developed with the grant 2017YFB0504105.

A Global Agricultural Drought Monitoring system is in development with the grant 2019YFE0127600. The drought information has been retrieved completely from FY3 VIRR/MERSI data and served the global user community since this year.

The application of FY3 VIRR/MERSI data for the hydrometeorology will be enhanced in next 3 years supported by the grant 2021YFE0117400. And then this will improve our capability to provide the information to the global community.

Global satellite data basic processing capability

FY3D_MERSI-2_LST_10Day_2020-06-11

Biophysical parameters retrieved from FY3 VIRR/MERSI data

Flowchart to develop the drought indices

FY3A 2009-2014 + 6-year data FY3B 2011-2021 +10-year data

FY3C 2014-8-year historical data + 2022FY3D 2018-4-year historical data

Drought Indices for the second 10 day of June, 2022

3. Global Agricultural Drought Map

FY3C-VIRR Global Drought Maps in 2022

3. Global Agricultural Drought Map Drought conditions in Europe

Drought Map for West Europe in **middle of June 2022**

Rhine

- This Summer's Drought Is Europe's Worst in 500 Years
- Europe's drought could signal the death of river cruising

Figure 7: Low-Flow Index (LFI) at the end of June 2022. A Low-Flow Index of 0 corresponds to no drought and a value of 1 to the highest drought hazard. @ Drought in Europe July 2022

- Drought devastates Hungarian agriculture
- Drought slashes maize crop in Hungary, could be a net importer –govt
- Hungarian farmers battle 'historic' drought

Jul Aug Sep ught 2022-08-01 st Dekadal **2nd Dekada 3rd Dekadal** NoDrought 110° 120° 130°

3. Global Agricultural Drought Map

Drought conditions in China

3. Global Agricultural Drought Map

FY3C-VIRR Vegetation Drought May 1-10,2022

Drought conditions in USA

FY3C-VIRR Vegetation Drought July 11-20,2022

3. Global Agricultural Drought Map Cloud development for easily making drought map

4. Conclusion and Question

- Under the support of series National Key R&D Project, an approach for the global agricultural drought monitoring with Chinese own satellite data is coming true.
- Biophysical parameters retrieved from FY3C VIRR were used to further compute the remote sensing based drought indices with the vegetation health index model.
- The spatial condition of global agricultural drought was mapped every dekadal and the drought intensity was categorized into five classes, such as extreme, severe, moderate, light and normal.
- The maps and the data are becoming available on the website and the PIE cloud.

Thank you very much for your attentions!

