

Impact of microwave radiance assimilation over land using dynamic emissivity in the global NWP system of JMA

Keiichi KONDO^{1, 2}, Kozo OKAMOTO², Takeshi IRIGUCHI¹, Hideyuki FUJII³, Hiroyuki SHIMIZU¹, Kazumasa AONASHI⁴

> 1: JMA, 2: JMA/MRI, 3: JAXA , 4: Kyoto University

● 気象庁 Japan Meteorological Agency

Motivation

- It is important to estimate land surface emissivity for the radiance assimilation in the NWP systems.
 - The emissivity spatiotemporally varies depending on surface conditions.
- In the current global NWP system of JMA, the climatological atlas emissivity is used for the microwave (MW) radiance assimilation over land.
- JMA/MRI is working on applying a dynamic emissivity (DE, Karbou et al. 2006) method to the global NWP system of JMA to reduce uncertainty related to the radiative transfer calculation.
 - The DE method can dynamically estimate the emissivity.
 - Land surface temperature (LST) was additionally estimated by using satellite observations.

Japan Meteorological Agency

Dynamic Emissivity (Karbou et al. 2006)

• Radiative transfer equation under clear sky condition $T_b(\nu,\theta) = T_s \varepsilon(\nu,\theta)\Gamma + \{1 - \varepsilon(\nu,\theta)\}\Gamma T_a^{\downarrow}(\nu,\theta) + T_a^{\uparrow}(\nu,\theta)$

 $T_b(\nu, \theta)$: brightness temp. ν : frequency θ : zenith angle T_s : land surface temp. (LST) T_a^{\downarrow} : downwelling T_b T_a^{\uparrow} : upwelling T_b Γ : transmissivity

• Estimated land surface temperature (LST) T_s

$$T_{s} = \frac{T_{b}(\nu,\theta) - (1 - \varepsilon_{atlas})T_{a}^{\downarrow}(\nu,\theta)\Gamma - T_{a}^{\uparrow}(\nu,\theta)}{\varepsilon_{atlas}\Gamma}$$

 T_s is estimated from observed T_b , atmospheric model variables and monthly mean ε_{atlas} .

• Estimated emissivity $\varepsilon(\nu, \theta)$

$$\boldsymbol{\varepsilon}(\boldsymbol{\nu},\boldsymbol{\theta}) = \frac{T_b(\boldsymbol{\nu},\boldsymbol{\theta}) - T_a^{\downarrow}(\boldsymbol{\nu},\boldsymbol{\theta})\Gamma - T_a^{\uparrow}(\boldsymbol{\nu},\boldsymbol{\theta})}{\left(T_s - T_a^{\downarrow}(\boldsymbol{\nu},\boldsymbol{\theta})\right)\Gamma} < \boldsymbol{\varepsilon}$$

 $\varepsilon(\nu, \theta)$ is estimated from observed T_b and atmospheric model variables. Here, a model surface temperature is used as T_s .

Target sensors of DE

- Target sensors : AMSU-A, ATMS
- Emissivity is estimated at 50.30 GHz (Bormann et al. 2017).
- LST is also estimated at 50.30 GHz.
- The estimated emissivity is used at surface-sensitive CHs over land.
 - AMSU-A
 - 53.596 GHz+115 MHz (ch5)
 - 54.40 GHz (ch6)
 - 54.94 GHz (ch7)
 - ATMS
 - 53.596 GHz+115 MHz (ch6)
 - 54.40 GHz (ch7)
 - 54.94 GHz (ch8)

СН	Central frequency	Absorption	Assimilation	
		Absorption	(Operational)	
1	23.800 GHz	H ₂ O		2
2	31.400 GHz	window		3
3	50.300 GHz	0 ₂		5
4	52.800 GHz	02	○ (sea)	IC
5	53.595 GHz \pm 115 MHz	0 ₂	○ (sea)	20
6	54.400 GHz	0 ₂	0	dm) 30
7	54.940 GHz	0 ₂	0	利用 加加 加加 加加 加加 加加 加加 加加 加加 加加 加加 加加 加加 加加
8	55.500 GHz	0 ₂	0	100
9	57.290 GHz (=f0)	0 ₂	0	200
10	$f0 \pm 217 \text{ MHz}$	0 ₂	0	300
11	$f0 \pm 322.2 \text{ MHz} \pm 48 \text{ MHz}$	0 ₂	0	500
12	$f0 \pm 322.2 \text{ MHz} \pm 22 \text{ MHz}$	0 ₂	0	700
13	f0 \pm 322.2 MHz \pm 10 MHz	0 ₂	0	
14	$f0 \pm 322.2 \text{ MHz} \pm 4.5 \text{ MHz}$	0 ₂	0	Weig
15	89.000 GHz	window		

Preliminary investigation (Passive cycle)

- To investigate impacts of DE, calculating radiative transfer model and QC are performed without DA cycles.
 - Background brightness temperature (Tb) is calculated from the given first guess by using the estimated emissivity and is compared with observation Tb.
 - This is not a DA cycle experiment.
- Global NWP system of JMA (operational system as of Dec. 2021)
 - Hybrid 4D-Var system (Outer: TL959L128 (20 km), Inner: TL319L128 (55 km))
- Experimental settings
 - The DE is applied to AMSU-A/chs. 5, 6, 7 and ATMS/chs. 6, 7, 8 over land.
 - AMSU-A/ch5 and ATMS/ch6 are not used over land in the operational system of JMA because they contaminated analyses and degraded forecasts.
 - However, this experiment is not a DA cycle, therefore the contaminated analyses are not used.
- Period: Aug. 2021, Jan. 2022

	Name	Emissivity	LST
	CNTL	Atlas emissivity	$Model\ LST\ (as\ same\ as\ the\ operational\ settings)$
	TEST1 (DE)	DE	Model LST
	TEST2 (LST)	Atlas emissivity	Retrieved LST
÷	TEST3 (DE+LST)	DE	Retrieved LST

Statistical verification of O-B STD^{TEST1: DE} TEST3: DE+LST

Statistical verification of O-B STD^{TEST1: DE} TEST3: DE+LST

Statistical verification of O-B STD^{TEST1: DE}

Statistical verification of O-B STD TEST1: DE TEST3: DE+LST

Summary of preliminary investigation

• TEST1 (DE)

AMSU-A

The FG is generally closer to the observation, particularly over the arid areas and coastlines.
Over the Antarctic and high latitude areas in winter, the STDs of O-B are increased.

 \rightarrow Negative impact from snow ?

- TEST2 (LST)
 - The increase and decrease of STD are different from TEST1.
 - The STD gets much larger than that of TEST1 over the mid Asia and India.

ATMS

- TEST1 (DE)
 - Generally, the STD of O-B becomes small in the same areas as AMSU-A.
- TEST2 (LST)
 - As different from AMSU-A, the STDs are increased over Australia and South America.

 \rightarrow Bias corrections or local times of satellites?

- Impacts from the retrieved LST (TEST2 or TEST3) are different from AMSU-A even if the frequencies are the same.
 - The STDs of FG are increased over Australia and South America, which should be investigated.

Performance: TEST1 \geq TEST3 > TEST2

DA cycle experiments are performed for TEST1 and TEST3

Experimental settings of DA cycle

- Global NWP system of JMA (operational system as of Dec. 2021)
 - Hybrid 4D-Var
 - Outer model: TL959L128 (20 km)
 - Inner model: TL319L128 (55 km)
- settings
 - The DE is applied to AMSU-A/chs. 6, 7 and ATMS/chs. 7, 8 over land.
 - Although AMSU-A/ch5 and ATMS/ch6 are used over land in the preliminary investigation to investigate their impacts, they are not used in the operational settings.

Name	Emissivity	LST
CNTL	Atlas emissivity	$Model \ LST$ (as same as the operational settings)
TEST1 (DE)	DE	Model LST
TEST3 (DE+LST)	DE	Estimated from observation

Period: 21 Jul. 2020 – 11 Sep. 2020, 21 Dec. 2020 – 11 Feb. 2021

 At chs.9-12 in January, the STD of TEST1 is decreased, namely the FG is improved, which may come from the DA cycle impact.

気象厅 Japan Meteorological Agency

Comparison with multi-center analyses (TEST1, T, Aug.)

14

Comparison with multi-center analyses (TEST1, T, Jan.)

Summary of DA cycle experiments

- The DE method was investigated by using the global NWP system of JMA for MW temperature sounders over land to improve analysis and forecast.
 - The DE method improves the forecast in August, but degrades it in January in the NH.
 - One possible cause is a mistreatment of DE over snow cover.

Future works

- We will investigate the impacts on the DE and retrieved LST as follows,
 - Difference between AMSU-A and ATMS
 - Satellite local time, bias corrections
 - Snow cover, desert and coast line
- Assimilating more surface-sensitive channels (AMSU-A/ch5, and ATMS/ch6) over land should be investigated to improve forecasts of lower atmosphere.
- QC parameters for precipitation detection over land will be determined to avoid the negative influence from thick clouds and precipitations.

THANK YOU VERY MUCH!