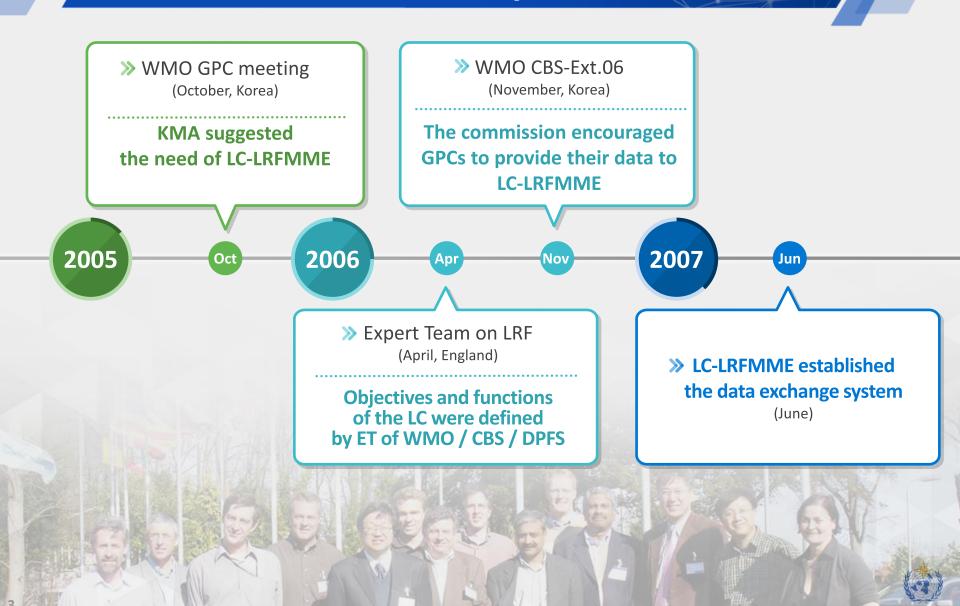
WMO LC-LRFMME

WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble


Goal

Provide a conduit for sharing global prediction models

Develop a well-calibrated MME system and user-friendly services

History

History

WMO CBS-XIV (April, Croatia)

LC-LRFMME was officially endorsed

>>> WMO Cg-XVI (May, Switzerland)

Cg-XVI requested to expand its role to include exchange of extended-range predictions

2009

Ар

2011

Арі

Vlay

2016

Present

» LC-LRFMME started to provide Probabilistic MME predictions in terms of tercile-based categorical probabilities (April)

» LC-LRFMME has developed the pilot real-time MME system for sub-seasonal forecast

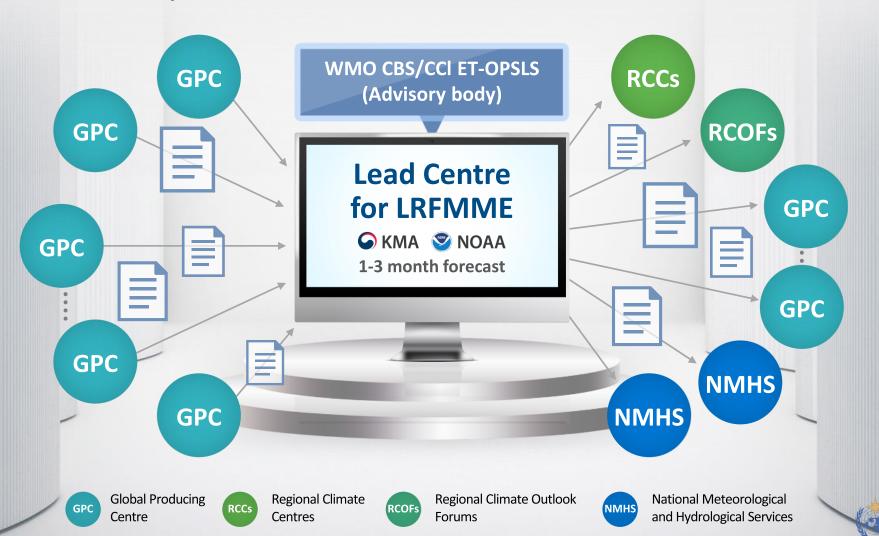
Background

12 WMO-designated Global Producing Centres (GPCs) for long-range forecasts

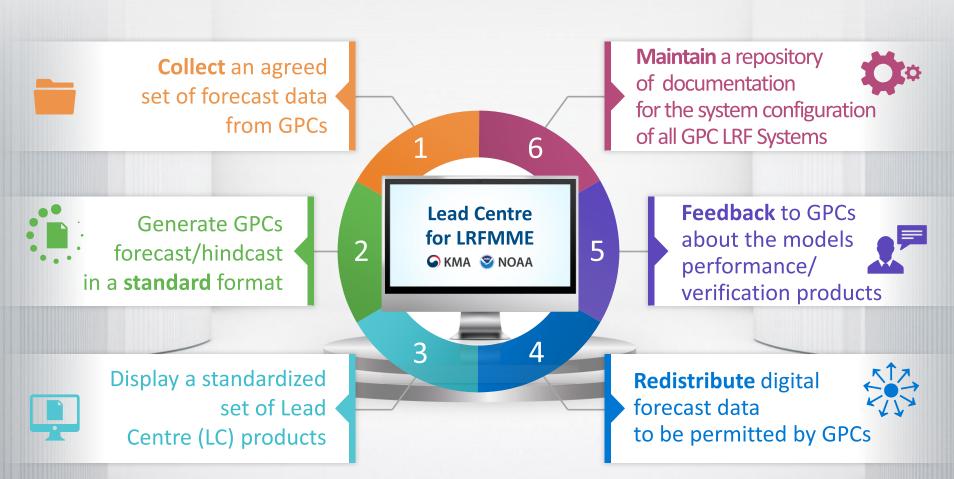
- adhering to agreed procedures/ standards in delivery of global long-range forecasts (e.g. products, timeliness, verification/ validation info, system documentation)

Linkage is needed among GPCs and other organizations including NMHSs, RCCs and RCOFs to ensure wider and more effective use of LRF

12 WMO GPCs for LRF


- Beijing: China Meteorological Administration (CMA) / Bejing Climate Center (BCC)
- CPTEC: Center for Weather Forecasting and Climate Research / National Institute for Space Research (INPE), Brazil
- **ECMWF:** European Centre for Medium-Range Weather Forecasts
- Exeter: Met Office, United Kingdom
- Melbourne: Bureau of Meteorology (BOM), Australia
- Montreal: Meteorological Service of Canada (MSC)

- Moscow: Hydrometeorological Centre of Russia
- Pretoria: South African Weather Services (SAWS)
- Seoul: Korea Meteorological Administration (KMA)
- Tokyo: Japan Meteorological Agency (JMA) / Tokyo Climate Center (TCC)
- Toulouse: Météo-France
- Washington: Climate Prediction Center (CPC) /
 National Oceanic and Atmospheric
 Administration (NOAA), United States of America


Functions

LC-LRFMME provides a conduit between GPC and NMHS, RCC, RCOF, etc.

Functions

LC-LRFMME provides a conduit between GPC and NMHS, RCC, RCOF, etc.

Summary of data provided by the GPCs

Information on the data configuration supplied by the 12GPCs

GPC ····	Beijing	СРТЕС	ECMWF	Exeter	Melbourne	Montreal	Moscow	Pretoria	Seoul	Tokyo	Toulouse	Washington
Forecast system	1-tier (coupled)	2-tier	1-tier (coupled)	1-tier (coupled)	1-tier (coupled)	1-tier (coupled)	2-tier	1-tier (coupled)	1-tier (coupled)	1-tier (coupled)	1-tier (coupled)	1-tier (coupled)
	For	ecast										
Ensemble size	24	15	41	42	33	20	10	40	42	51	41	40
	Hin	dcast										
Period	1991- 2010	1979- 2010	1981- 2010	1993- 2015	1981- 2011	1981- 2010	1981- 2010	1982- 2009	1991- 2010	1979- 2014	1991 -2014	1983- 2010
Ensemble size	24	15	41	42	33	20	10	40	42	51	41	40
Digital data	0	0	×	×	0	0	0	0	0	×	×	0

An "X" indicates that data is not currently available in LC-LRFMME, because of GPC's data Policy

Digital products

Both forecast and hindcast of monthly mean anomalies of the GPCs' ensemble mean for lead time of 1~3 month, following the month of submission.

- 2m surface temperature
- Precipitation
- Mean sea level pressure
- 850hPa temperature
- 500hPa geopotential height
- Sea surface temperature

Graphical products

Individual forecast

- Plots for each GPCs' forecast anomalies in common graphical format (Rectangular, Time series, Stereographic type, etc.)
- Consistency map
- SST Plume (Nino3.4 SST anomalies)

Deterministic MME

- Simple composite mean(SCM)
- Regular Multiple Regression
- Sigular Value Decomposition(SVD)
- Genetic Algorithm(AG)

Probabilistic MME

Tercile-based categorical probabilities

Verification

- Hindcast for both MME and Individual GPCs
- Forecast for MME

Further plan

About the Sub-Seasonal Multi-Model Ensemble

Sub-Seasonal time scale

2 weeks ~2 months

Sub-seasonal to Seasonal Prediction Research Implementation Plan (Dec2013, WMO)

* http://iri.columbia.edu/news/qa-subseasonal-prediction-project/ Weather forecasts Seasonal forecasts Sub-seasonal forecasts 0 10 20 30 40 50 60 70 80 90 100 110 120

FORECAST LEAD TIME (days)

Larger ensemble can give higher skill

Technical challenge in Sub-seasonal MME

Further plan

Pilot real-time MME service for sub-seasonal forecasts

- WMO Cg-XVI(2011) requested LC-LRFMME to expand its role to include exchange of extended-range predictions.
- In the meeting of the S2S steering group (2014), it was agreed to make use of the S2S research archive of sub-seasonal forecasts to develop a real-time multi-model display at the LC-LRFMME.
 - * S2S: Sub-seasonal to Seasonal Prediction Project

Further plan

Pilot real-time MME service for sub-seasonal forecasts

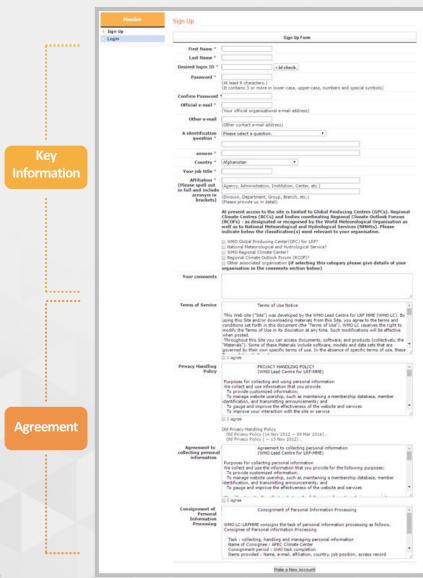

- The LC-LRFMME is planning to provide MME forecasts and its verification results through website after ET-OPSLS and GPCs agree
 - **ET-OPSLS**: Expert Team on Operational Predictions from Sub-seasonal to Longer-time Scales.

Products/variables	Covering periods	Charts	Verification scores	
· Accumulated prec · Average 2m temp	Weeks 1,2,3,4, 3-4,1-4	Probabilistic maps · terciles	Reliability diagrams / ROC	
MJO Need:	32 days	· Hendon and Wheeler Diagram · Hovmoller	Temporal correlation and RMSE	
Velocity Potential	Weeks 1,2,3,4, 3-4,1-4	Velocity potential anom aly (Ensemble mean for each period)	correlation	

How to register on the WMO LC-LRFMME

http://www.wmolc.org

Login | Sign Up


- Sign up: You can register on the website after signing up.
- Login: You can log in to LC-LRFMME homepage by clicking this button and entering your ID and password.

For more information in detail

Please see the
WMO LC-LRFMME Website
User Manual in
Notice and News

How to register on the WMO LC-LRFMME

- Step 1 To register with the website, click on the "Sign Up" button. Then fill out your basic information.
- Please read the Terms of Service, Privacy Handling
 Policy, and Agreement, and check each box "I agree" to
 confirm that you agree with the terms. Then click
 "Make a New Account."
- Step 3 After signing up, click on a hyperlink "[LINK]" in your email message that you filled in the "Sign up" page.
 - Step 4 At this link page, you will get authentication after entering logging in with your ID, password.
 - Step 5 The administrator will give you a membership grade, such as grade A, B or C, depending on your affiliation.

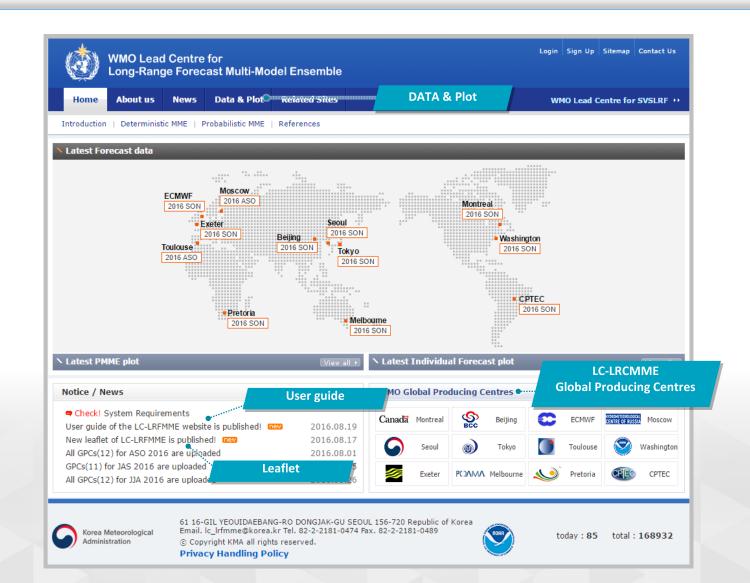
>> Member	ship Grade	A (GPCs)	B (NMHSs and RCCs)	C (Others)
Digital data	Upload	0		
	Download	0	0	
Image	Upload			
plots	Download	0	0	
Multi-model ensemble image plots				0

http://www.wmolc.org •

For more Information, Please contact!

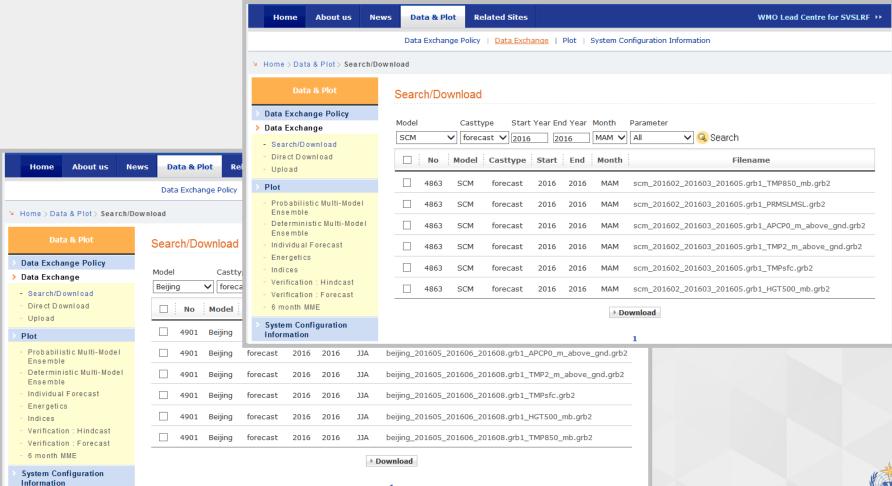
Climate Prediction Division Korea Meteorological Administration

■ 61, Yeouidaebang-ro 16-gil, Dongjak-gu, Seoul, 07062, Republic of KOREA

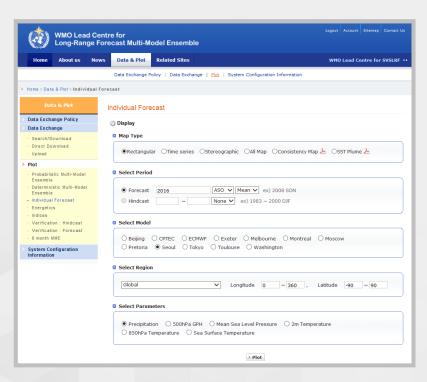

■ Tel: +82-2-2181-0475

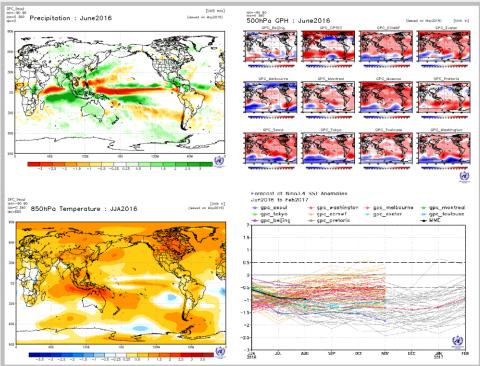
■ Fax: +82-2-2181-0489

■ E-mail : lc_lrfmme@korea.kr

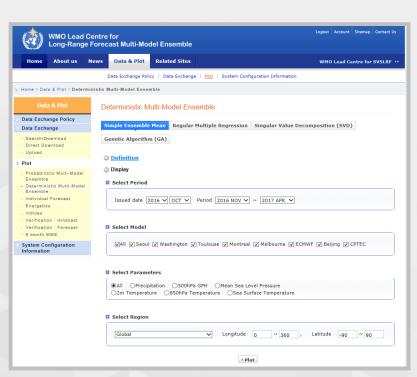

Supplementary Information

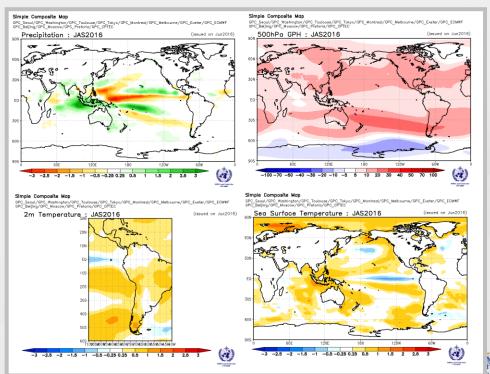
http://www.wmolc.org



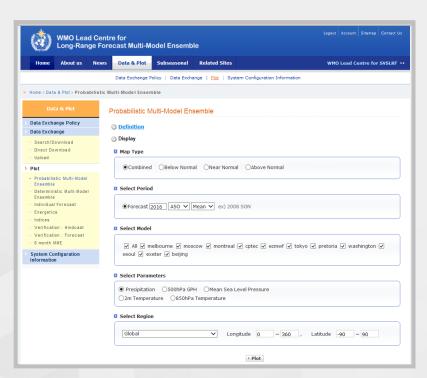

1. Digital products

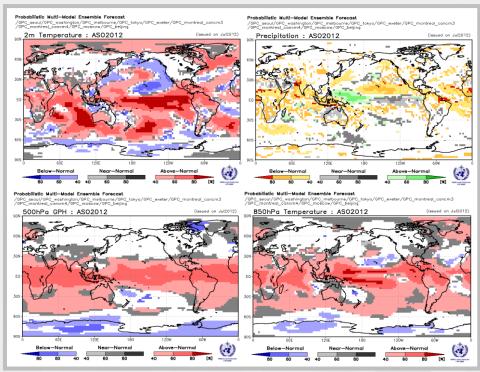
2. Individual Forecast





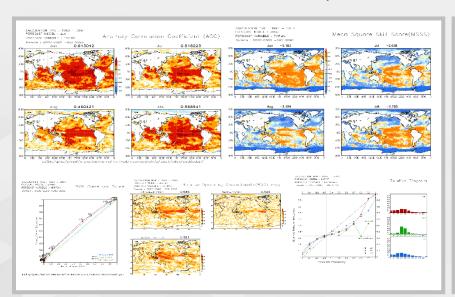
3. Deterministic Multi-Model Ensemble (DMME)

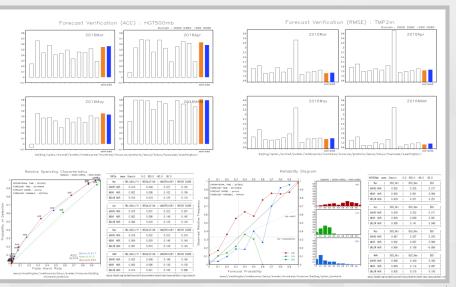

- Simple Composite Map(SCM)
- Regular Multiple Regression(RMR)
- Singular Value Decomposition(SVD)
- Genetic Algorithm(GA)



SCM

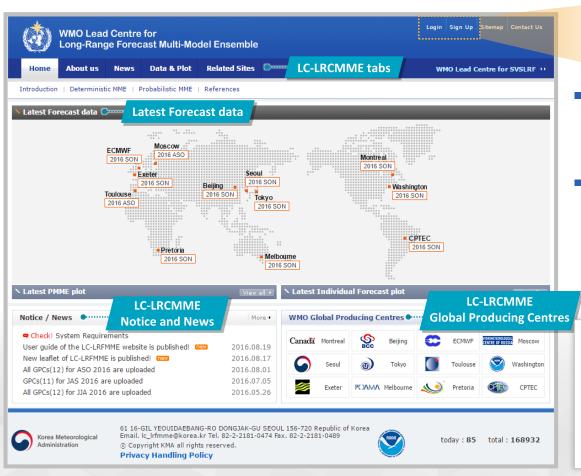
4. Probabilistic Multi-Model Ensemble (PMME)





5. Verifications

- The calculating and displaying function for verification of individual GPC hindcast data in LC-LRFMME web site is available.
- The standard verification system for long-range forecast (SVSLRF) diagnostics are calculated with same verification dataset and reference baseline for the GSCU.
- Verification products with common reference periods (1993-2009, 17years)
 from submission month of Sep2016



Survey for User Services

How to register on the WMO LC-LRFMME

http://www.wmolc.org

Login | Sign Up

- Sign up: You can register on the website after signing up.
- Login: You can log in to LC-LRFMME homepage by clicking this button and entering your ID and password.

For more information in detail

Please see the
WMO LC-LRFMME Website
User Manual in
Notice and News

Digital products

Both forecast and hindcast of monthly mean anomalies of the GPCs' ensemble mean for lead time of 1~3 month, following the month of submission.

- 2m surface temperature
- Precipitation
- Mean sea level pressure
- 850hPa temperature
- 500hPa geopotential height
- Sea surface temperature

Graphical products

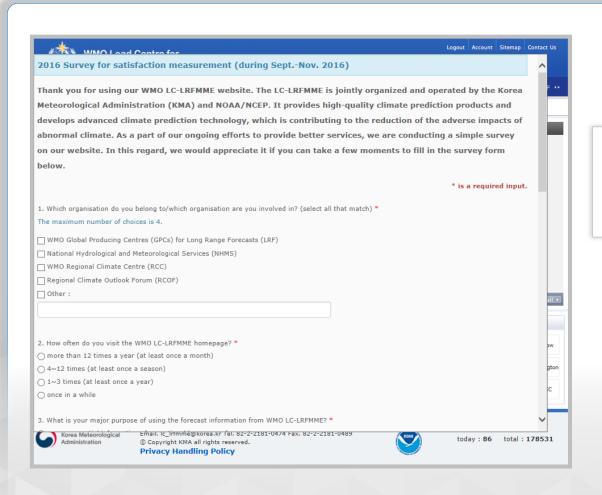
Individual forecast

- Plots for each GPCs' forecast anomalies in common graphical format (Rectangular, Time series, Stereographic type, etc.)
- Consistency map
- SST Plume (Nino3.4 SST anomalies)

Deterministic MME

- Simple composite mean(SCM)
- Regular Multiple Regression
- Sigular Value Decomposition(SVD)
- Genetic Algorithm(AG)

Probabilistic MME


Tercile-based categorical probabilities

Verification

- Hindcast for both MME and Individual GPCs
- Forecast for MME

Survey for User Services

Sep. 2016 ~ Nov. 2016

After login, You can Participate in the survey.

Thank you

