

Wintertime Surface Air Temperature Modes

<u>Hae-Li Park</u>, Kyong-Hwan Seo, and Jin-Yong Kim Department of Atmospheric Sciences, Pusan National University

Climate and Atmospheric Dynamics Lab.

Understand the leading interannual variability modes of surface air temperature during boreal winter

NH surface(T2m) warming trend in winter

Wintertime surface air temperature modes

T2m EOF [DJF] 1986-2017

Warm Arctic (near Greenland) Cold North Eurasia & South Eastern North America

Temperature Anomalies Dec-Feb 2010

Warm Arctic (near Bering Sea) Cold Canada & Northern US

Warm Arctic (near B-K Sea) Cold Europe & Asia

Simultaneous correlation with climate indices

EOF1 [DJF]

Climate indices [DJF]	Correlation with PC1
EA (East Asia)	-0.33*
SK (South Korea)	-0.38**
AO	-0.87**
B-K sea	-0.26
C-B sea	0.02
NAO	-0.80**
SCAND	0.63**
EA/WR	-0.38**
PNA	0.13
PDO	-0.28
NINO1+2	0.03
NINO3.4	0.09
QBO	-0.18

EOF2 [DJF]

Climate indices [DJF]	Correlation with PC2
EA (East Asia)	-0.19
SK (South Korea)	-0.18
AO	0.05
B-K sea	-0.13
C-B sea	0.41**
NAO	0.09
SCAND	0.21
EA/WR	-0.23
PNA	-0.49**
PDO	-0.28
NINO1+2	-0.42**
NINO3.4	-0.24
QBO	-0.06

EOF3 [DJF]

Climate indices [DJF]	Correlation with PC3
EA (East Asia)	-0.67**
SK (South Korea)	-0.44**
AO	-0.00
B-K sea	0.53**
C-B sea	-0.28
NAO	0.13
SCAND	0.35*
EA/WR	-0.20
PNA	-0.08
PDO	-0.28
NINO1+2	-0.20
NINO3.4	-0.15
QBO	-0.2

Relationship with winter temperature over EA and South Korea

Climate indices	PC1	PC2	PC3
EA [DJF] (East Asia)	-0.33*	-0.19	-0.67**
EA [DJ] (East Asia)	-0.43**	-0.08	-0.46**
EA [F] (East Asia)	-0.09	-0.24	-0.64**
SK [DJF] (South Korea)	-0.38**	-0.18	-0.44**
SK [DJ] (South Korea)	-0.51**	-0.16	-0.20
SK [F] (South Korea)	-0.04	-0.13	-0.58**

Correlation map associated with SK index [DJF]

Yellow Domain: EA (East Asia)

Understand the major teleconnection patterns that contribute to recent severe winter temperature in the NH (source of seasonal predictability)

Seasonal predictability of PC1 mode

Seasonal predictability of PC1 mode

Regression Map

Snow cover

Seasonal predictability of PC1 mode

ON

Seasonal predictability of PC2 mode

Regression Map

Dots: 95% significance

Eastern Pacific La Nina with Negative PNA pattern and Sea ice reduction in Bering sea can induce cold winter in Canada and North US.

Seasonal predictability of PC2 mode

Dots: 95% significance

Eastern Pacific La Nina with Negative PNA pattern and Sea ice reduction in Bering sea can induce cold winter in Canada and North US.

Seasonal predictability of PC3 mode

Regression Map

JF

Z50

Seasonal predictability of PC3 mode

Ural blocking circulation intensify sea ice reduction in B-K sea

Sea ice loss over B-K sea enhances tropospheric wavenumber-1 and -2 field, thus increasing upward wave propagation

Polar Vortex weakens (displacement) and cold Asia occurs in late winter

Part 3

Outlook of 2018/19 winter

EA T2m [DJF] = 0.44 x (K-B sea ice [ON]) + 0.33 x (Eurasian snow cover [SON])

EA T2m	[DJF]	[105E-135E, 25N-60N]
K-B sea ice	[ON]	[45E-130E, 70N-85N]
Eurasian snow cover	[SON]	[30E-70E, 50N-60N]

Model Performance

CORR = 0.46GMSS = 0.37

Correlation between index and predictors

Corr(K-B sic, Eura snow) = -0.02Corr(K-B sic, EA T2m) = 0.44Corr(Eura snow, EA T2m) = 0.32

Intensity	2018 Prediction
-1.48	Below Normal

Thank You for your attention

Climate and Atmospheric Dynamics Lab.

Winter 2018 Outlook

Low sea ice in Kara-Barents Seas → chance of very cold periods of weather across Asia will be increased

Most of the month of October, the Eurasian snow cover extent slowly advanced but strongly advanced at the end of October \rightarrow Will likely **favor** a neutral to weak PV and **relatively cold** winter temperature in Northern Eurasia

Monitoring closely the evolution of Eurasian snow cover extent and Arctic sea ice anomalies later this fall and winter will be important!

Winter 2018 Outlook

Snow Cover Oct

Temperature Anomalies Dec-Feb 2012

(with respect to a 1971-2000 base period) National Climatic Data Center/NESDIS/NOAA

SIC Oct

Low sea ice in Kara-Barents Seas → chance of very cold periods of weather across Asia will be increased

Most of the month of October, the Eurasian snow cover extent slowly advanced but strongly advanced at the end of October \rightarrow Will likely **favor** a neutral to weak PV and **relatively cold** winter temperature in Northern Eurasia

Monitoring closely the evolution of Eurasian snow cover extent and Arctic sea ice anomalies later this fall and winter will be important!