What controls ENSO teleconnection to East Asia?

Jong-Seong Kug and Sunyong Kim

POSTECH, Pohang, Korea

Linear Regression w.r.t NINO3.4.SST

Z300, and Winds

Kuroshio Anticyclone/Cyclone!!

Son et al. (2014, Clim. Dyn.)

What makes the teleconnetion differences?

Linear Regression

Precipitation over the Korean Peninsula

Correlation between NINO3 SST and 5-pentad mean PRCP

Correlation between NINO3 SST and PRCP

November

December

What makes teleconnetion differences?

Question!! What are relative roles of CP and WNP precipitation anomalies in ENSO teleconnections?

Kim et al. (2017, GRL)

El Nino Composites: Seasonal Evolution

La Nina Composites: Seasonal Evolution

El Nino Composites

	December	January	
CP PRCP	3.02	3.51	Increase!! (16%)
WNP PRCP	-1.71	-1.34	Decrease!! (22%)

La Nina Composites

	December	January	
CP PRCP	-2.22	-2.36	Increase!! (6%)
WNP PRCP	1.47	1.11	Decrease!! (24%)

- Why are the teleconnections dramatically changed to the slight change of the tropical precipitation pattern?
- Suppose that at a given month, teleconnection is determined by P_{CP} and P_{WNP}

$$\begin{split} \Psi &= L_1(P_{CP}) + L_2(P_{WNP}) \qquad L_1(P_{CP}) \approx -L_2(P_{WNP}), \ P_{CP} \ast P_{WNP} < 0 \\ &O\left(\frac{\Psi}{L_1(P_{CP})}\right) \sim 0.1 \end{split}$$

• For a slight different month, changes in teleconnection ($\delta\Psi$) is determined by seasonal precipitation differences, δP_{CP} and δP_{WNP}

$$\Psi + \delta \Psi = L_1(P_{CP} + \delta P_{CP}) + L_2(P_{WNP} + \delta P_{WNP})$$

$$\delta \Psi = L_1(\delta P_{CP}) + L_2(\delta P_{WNP}) \quad \delta P_{CP}^* \delta P_{WNP} > 0$$

$$O\left(\frac{\delta \Psi}{\Psi}\right) \sim 1$$

$$O\left(\frac{\delta P_{CP}}{P_{CP}}\right) \sim 0.1 \ O\left(\frac{\delta P_{WNP}}{P_{WNP}}\right) \sim 0.1$$

From Dec to Jan $\delta P_{CP} > 0$: Strengthed $\delta P_{WNP} > 0$: Weakened

✓ Teleconnection can be dramatically changed with seasonal evolution

✓ Linear Baroclinic Model (developed by Prof. M. Watanabe) ✓ Prescribed heating from observed precipitation patterns

LBM Experiments

Son et al. (2014, Clim. Dyn.)

LBM Experiments

ENSO diversity: WNP and CP precipitation anomalies

NINO3.4 SST CP PRCP WNP PRCP

Kim et al. (2018, JGR)

Impacts of ENSO on East Asian Temperature

Kim et al. (2018, JGR)

Comparison: NINO3.4 vs MREG[WNP,CP]

Kim et al. (2018, JGR)

Temperature

Kim et al. (2018, JGR)

0.4

Ó

Nino3.4

0.1

0.2

0.3 0.4

0.2 0.3

0

Ó

0.1

ΤS

PR

- The WNP and CP precipitation anomalies associated with ENSO have opposite effects on teleconnection patterns over North Pacific and East Asia, which makes strong sensitivity/seasonal dependency of ENSO teleconnection.
- The WNP precipitation plays an important role in generating El Nino impacts over East Asia.
- Relative roles of WNP and CP precipitation anomalies can
 explain the diversity of El Nino impacts on East Asian climate to some extent.

Thank You !!!

Precipitation

MREG[WNP,CP]

140E

30N 20N 140E

Temperature

Nino3.4

100E

120E

MREG[WNP,CP]

120E

0.6

140E

0.7

140E

80E

Partial Correlation

Effect of WNP

Precipitation

Effect of CP

Temperature

Effect of CP

Effect of WNP

ENSO teleconnections and impacts are very sensitive to a detail structure of tropical precipitation anomalies

Precipitation anomalies over WNP play a critical role in modulating ENSO teleconnections and impacts, particularly on East Asia Climate.

Why are the teleconnections dramatically changed to the slight change of the tropical precipitation?

At a give month, assume that extratropical teleconnection is determined by P_{CP} and P_{WNP}

 $\Psi = L_1(P_{CP}) + L_2(P_{WNP}) \qquad L_1(P_{CP}) \approx -L_2(P_{WNP}), \ P_{CP} * P_{WNP} < 0$

Why are the teleconnections dramatically changed to the slight change of the tropical precipitation?

At a given month, teleconnection is determined PCP and PWNP

$$\begin{split} \Psi &= L_1(P_{CP}) + L_2(P_{WNP}) \qquad L_1(P_{CP}) \approx -L_2(P_{WNP}), \ P_{CP} \ast P_{WNP} < 0 \\ &O\left(\frac{\Psi}{L_1(P_{CP})}\right) \sim 0.1 \end{split}$$

For slight different month , changes in teleconnection ($\delta \Psi$) is determined δP_{CP} and δP_{WNP}

$$\Psi + \delta \Psi = L_1(P_{CP} + \delta P_{CP}) + L_2(P_{WNP} + \delta P_{WNP})$$

$$O\left(\frac{\delta P_{CP}}{P_{CP}}\right) \sim 0.1 \ O\left(\frac{\delta P_{WNP}}{P_{WNP}}\right) \sim 0.1$$

Effect of Seasonality in Multiple Regression Coefficients

Explained Variance: Correlation

CMIP5 - OBS

