Introduction and Basic Operation of iTacs

Hirotaka SATO,

Tokyo Climate Center, Japan Meteorological Agency (TCC/JMA)

1. What's iTacs?

"iTacs" stands for "Interactive Tool for Analysis of the Climate System". It can be widely used for climate services like climate monitoring, climate researches and of course seasonal forecast. It is available on web browsers such as Internet Explorer, Firefox through Graphical User Interface (GUI) with no additional software or plug-ins. Moreover, you don't have to prepare data by yourself. National Meteorological and Hydrological Services (NMHSs) can use it with personal IDs.

Fig.1 Schematic diagram for iTacs

iTacs is built on JMA servers and various types of dataset are saved in the system. You can access and use it via internet with your client PCs. The Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015) and outgoing longwave radiation (OLR) provided by NOAA can be used for atmospheric analysis. COBE-SST (Ishii et al. 2005) is also available in oceanographic analysis. The detailed elements available on iTacs are listed in APPENDIX.A.

Atmospheric analysis	JRA-55 (Kobayashi et al. 2015)	From 1958 to present						
1 5	OLR provided by NOAA	From 1979 to present						
Oceanographic analysis	COBE-SST (Ishii et al. 2005) From 1891 to present							
	MOVE/MRI.COM-G2 (Toyoda et al. 2013)	From 1958 to present						
Atmospheric forecast	Output of JMA's one-month prediction model							
Others	ENSO monitoring indices, CLIMAT reports, user-input data etc.							

Table.1 Available dataset on iTacs

In iTacs, various types of charts such as two-dimensional map, cross section diagram, timeseries graph can be drawn, and some types of statistical analyses such as Empirical Orthogonal Function (EOF) analysis, regression or correlation analyses can be performed. iTacs is one of the most useful tool and will help you to understand climate system.

Fig.2 Various types of charts available on iTacs

2. Application for using iTacs

Only registered users can access iTacs at the TCC website. User ID and password are needed to use the iTacs^{*}. JMA permits persons at NMHSs to use the iTacs. If you or your colleagues are interested to use the iTacs, please access the following URL for the application.

iTacs: http://extreme.kishou.go.jp/tool/itacs-tcc2015/

You can see "Requests for iTacs access" section on this web page. Please carefully read the conditions of use and disclaimer. If you agree to them, please apply to TCC (<u>tcc@met.kishou.go.jp</u>) by e-mail completely filling the items. JMA will issue ID and password if the application is accepted.

* ID and password of the seminar participants are already issued.

3. Basic operations -Horizontal map-

If you input your ID and password on the iTacs login page, you will see the main display of the iTacs as shown below. The standard procedure for drawing a chart by iTacs is as follows:

- Select dataset, element, and data type.
- Set geophysical parameters: area (longitude and latitude), pressure level or depth.
- Set chronological parameters: average period (e.g., daily, monthly), period to show (e.g., year, month, day).
- Select analysis method (if needed).
- Set graphic parameters (if needed).
- Click a submit button and draw a map.

A	nalysis Dataset Analysis [For Dat	ecast Dataset									
	Select parameter	rs	Graphic Options									
	Data1		Flamont		Data type		۵۲۵۵		Lovo		Time unit	Showing period
	JRA-55	~	Pressure Levels	~	HIST V		ALL	~	500hPa	~	MONTHLY V	RANGE V
			γ (Geopotential He	ig 🗸		Lat:	-90 - 90	Ave			Ave Year-to-ye	ar 2015 🗸 12 🗸
						Lon	: 0 - 360	Ave			Time filter	2015 🗸 12 🗸
			□Vector □SD Derivative: □Ion	lat								
	Analysis method:	-An:	lucic mothod									

Fig.4 Main display of iTacs

3.1. Longitude-latitude map

As a starter, let's make a monthly sea surface temperature (SST) map in December 2015. Set parameters on "Data1" box as shown below.

- ◆ Dataset: SST (COBE-SST).
- Element: Sea Surface Data \rightarrow Temperature (SST).
- Data type: HIST (historical actual observation or analysis).
- Area: ALL $(90^{\circ}S 90^{\circ}N, 0^{\circ} 360^{\circ}E)$.
- Level: 1 (Surface data).
- Time unit: MONTHLY.
- ♦ Showing period: RANGE, 2015 12 (December 2015) for both upper and lower boxes.

Data 1														
Datase	t	Element	Data type			Area		Lev	/el	Time u	nit	Showing	g per	iod
SST	•	Sea Surface Data 🔹	HIST -]	ALL		-	1	-	MONTHLY	-	RAN	GE 🔻	•
		Temperature (SST) [C 🕶		Lat:	-90	- 90	Ave 🔲			🗖 Ave 🔲 Yea	ar-to-year	2015 -	12	-
				Lon	0	- 360	Ave 🔲			Time filter		2015 -	12	•
		Vector SD Derivative: Ion Iat												

Fig.5a Parameter setting on iTacs to draw SST map in December 2015

Finally, click "Analysis Data Submit" button and the image will be displayed.

Fig.5b Image of SST in December 2015 created by the setting shown in Fig.5a

You can select the following options in "Data type" pull-down menu.

- HIST: Historical actual analysis or observation data.
- NORM: Climatological normal data (averaged from 1981 to 2010).
- ANOM: Anomaly data (HIST minus NORM: difference from the climatological normal)
- ANOM_SD: Anomaly data normalized by their standard deviations.

Select "ANOM" in "Datatype" box to draw anomalies (Fig.6a). Changing "Color Table" and "Contour Parameters"

in "Graphic Options" tab as shown in Fig.6b, it becomes easier to recognize the above- and below-normal SST anomalies.

Fig.6 SST anomalies in December 2015 with (a) the color table "Rainbow" (default setting), (b) "Blue–Red" and (c) Graphic options of the contour setting for (b)

You can adjust the area by setting "Lat" and "Lon" parameters in the "Area" field. The negative values of latitude and longitude mean south latitude and west longitude, respectively (See Fig.7).

Fig.7 Example of area setting on iTacs

The following options are available in "Showing period" pull-down menu to pick up the time range to show.

- RANGE: Set the start and end points of the targeted time period.
- ◆ YEARS: Set individual years.
- INDEX: Pick up years based on a condition of SST index (e.g., NINO.3, IOBW).

3.2. Vector and Stream line

Vector and stream lines maps can be also made with iTacs. Let's see the 850hPa wind filed in January 2016 by vector map. To draw vectors, please check the "vector" box in the "Element" field. If you check this box, the second element boxes will appear. The first variable is treated as X component, and the second one is treated as Y component, where X and Y means horizontal and vertical direction on the map, respectively. Set parameters as below (see also Fig. 8a).

- ♦ <u>Data1</u>
 - ➢ Dataset: JRA-55.
 - ➢ Element: Pressure Levels → U (Zonal Wind) and V (Meridional Wind). Check the "Vector" box to set the second component.
 - ➢ Data type: HIST.
 - Area: Lat: -35 35, Lon: $60 300 (35^{\circ}S 35^{\circ}N, 60^{\circ}E 60^{\circ}W)$.
 - ➢ Level: 850 hPa.
 - Time unit: MONTHLY, check "Ave" box to calculate three-month mean.
 - Showing period: RANGE, 2015 12 for upper box and 2016 2 for lower box.

Now you can draw the vector map, but it would be better to modify graphical options related to vector. If you don't, you will get the figure like Fig. 8b, in which vectors are too crowded to see its wind field. Please set the vector size option like this (see also Fig. 8c).

- Graphic Options
 - Set Vector size: 1 [inch] value: 20 skip: 5

This setting means that 1 inch on the map is equivalent to 20 m/s wind and the vectors are displayed on every 5th grid point both in X direction and Y direction. Please try to find appropriate vector size and skip interval.

(a)

|--|

Dataset		Element		Data type			Α	rea		Level	Time ur	it	Showi	ng	peri	od
JRA-55	•	Pressure Levels	-	HIST -		South A	me	rica	-	850hPa 🔻	MONTHLY	-	RA	NGE	•	
		U (Zonal Wind) [m/s]] -		Lat:	-35	-	35	Ave		Ave Yea	r-to-year	2016	•	1	•
					Lon:	60	٦.	300	Ave		Time filter		2016	•	1	•
		Pressure Levels	-													
		V (Meridional Wind)	-													
		x: Stream	line													
		Vector 🔲 SD														
		Derivative: 🔲 Ion 🔲	lat													
Analysis method:	-Anal	ysis method-	•													

Fig.8 Parameter settings for making 850 hPa wind vectors for January 2016 and their corresponding maps

3.3. Overlaying two data

Users can overlay two kinds of elements on the same image by using "DATA1_DATA2" analysis method. Let's chart and superimpose three-month mean sea level prerrusre and its anomalies from December 2015 to February 2016 on a map. Set parameters on "Data1" and "Data2" box as shown below (See also Fig.9a).

- Data1
 - Dataset: JRA-55.
 - > Element: Surface \rightarrow SLP (Sea Level Pressure).
 - ➢ Data type: ANOM.
 - Area: Lat: -35 35, Lon: $60 300 (35^{\circ}S 35^{\circ}N, 60^{\circ}E 60^{\circ}W)$.
 - ➢ Level: 850 hPa.
 - > Time unit: MONTHLY, check "Ave" box to calculate three-month mean.
 - Showing period: RANGE, 2015 12 for upper box and 2016 2 for lower box.

"Data2" box will appear after selecting "DATA1_DATA2" in "Analysis method" pull-down menu.

- ♦ <u>Data2</u>
 - ➢ Data type: HIST.
 - > Other parameters are the same as Data1.
- Graphic Options
 - ➢ Color Table: Blue − Red.
 - Set Contour Parameters for data1: interval:1, min:-4, max:4.
 - Set Contour Parameters for data2: interval:2, min:1000, max:1020.

Dataset		Element	Data typ)e		Area		Level		Time unit	Showing	j perio
JRA-55	•	Surface .	ANOM	-	ALL		-	1	•	MONTHLY -	RANC	ж. т
		SLP (Sea Level Pressu	•	La	at: -35	- 35	Ave 🔲		[Ave Year-to-year	2015 🔻	12 .
				Lo	on: 60	- 300	Ave 🔲		[Time filter	2016 🔻	2 -
		Vector SD Derivative: Ion Ia	:									
nalysis method: D	ATA	1_DATA2	•									
nalysis method: D Data2	ATA	1_DATA2	•									
nalysis method: D Data2 Dataset	ATA	1_DATA2	• Data typ	00		Area		Level		Time unit	Showing	1 perio
nalysis method: D Data2 Dataset JRA-55	ATA	1_DATA2 Element Surface	▼ Data typ HIST	96	ALL	Area	•	Level 1	•	Time unit MONTHLY	Showing	g perio GE 👻
nalysis method: D Data2 Dataset JRA-55		I_DATA2 Element Surface SLP (Sea Level Pressu	• Data typ HIST	e T	ALL at: -35	Area - 35	v Ave	Level 1	•	Time unit MONTHLY Z Ave Year-to-year	Showing RAN	g perio GE ↓ · 12
nalysis method: D Data2 Dataset JRA-55	ATA	I_DATA2 Element Surface SLP (Sea Level Pressu ~	Data typ HIST	De ▼ La Lo	ALL at: -35 on: 60	Area - 35 - 300	Ave	Level 1	•	Time unit MONTHLY • Ø Ave @Year-to-year Time filter	Showing RAN 2015 - 2016 -	g perio GE ▼ , 12 , 2
nalysis method: D Data2 Dataset JRA-55	ATA1	I_DATA2 Element Surface SLP (Sea Level Pressu •	Data typ HIST	De ▼ La Lo	ALL at: -35 on: 60	Area - 35 - 300	Ave Ave	Level 1	•	Time unit MONTHLY • Ø Ave @Year-to-year Time filter	Showing RAN 2015 - 2016 -	g perio GE ↓ • 12 • 2

Graphic Optic	ons			
	Show Contour La	oels		
Colorizing: COLOR -	Show Color Bar			
Drawing: SHADE -	Set Contour Parar	neters for (data 1	
mage Format: png 👻	interval: 1	min: -4	max:	4
ont: default 👻	Set Contour Parar	neters for o	data2	
Color Table: Rainbow	interval: 2	min: 100	0 max:	1020
	Set Vector size:	[inch] value:	skip: 1

Fig.9a Parameter setting and graphic options to draw sea level pressure and its anomalies map in DJF 2015/2016

Finally, click "Analysis Data Submit" button and the image will be displayed.

Fig.9b Image of 850-hPa stream function in DJF 2015/2016 created by the setting shown in Fig.8a

Please keep in mind the basic rule for Data1_Data2 that the Data1 is mapped as shading, and Data2 is mapped as contour lines. But as an exception, when you make a vector/stream line map, Data1 must be for vector/stream line and Data2 is mapped as shading or contour lines (not shown in this note).

3.4. Mapping the difference of two data

Users can calculate and map the difference of two data by using "SUBTRACT" analysis method. Let's chart monthly SST anomaly change from October to December 2015. Set parameters on "Data1" and "Data2" box as shown below (See also Fig.10a).

♦ Data1

Selec

- ➢ Dataset: SST.
- ▶ Element: Sea Surface Data \rightarrow Temperature (SST).
- ➢ Data type: ANOM.
- Area: Lat: -90 90, Lon: $-30 330 (90^{\circ}\text{S} 90^{\circ}\text{N}, 30^{\circ}\text{W} 330^{\circ}\text{E})$.
- ► Level:
- ➢ Time unit: MONTHLY.
- Showing period: RANGE, 2015 12 for both upper and lower boxes.

"Data2" box will be adjustable after selecting "SUBTRACT" in "Analysis method" pull-down menu.

- Data2
 - Showing period: RANGE, 2015 10 for both upper and lower boxes.
 - > Other parameters are the same as Data1.

1.

- Graphic Options
 - \blacktriangleright Color Table: Blue Red.
 - Set Contour Parameters for data1: interval:0.2, min:-1.1, max:1.1.

In the setting above, the value of "Data1" minus "Data2" will be calculated and mapped. Click "Analysis Data Submit" button and the image will be displayed.

Graphic Opt	ions ☑ show (ontour La	hels			
Colorizing: COLOR V Drawing: SHADE V	Show (ontour La	hale			
Colorizing: COLOR V Drawing: SHADE V	Show (ontour La	hale			
	Show (olor Bar	10613			
Image Format: png 🗸	Set Co	itour Para	meters for d	lata1	_	
Font: default 🗸	interval:	.2	min: -1.1		max:	1.1
Color Table: Blue - Red	Set Ve	tor size:	[inch]] value:		skip: 1

Fig.10a Parameter setting and graphic options to draw monthly SST anomaly difference between October and December 2015

Detailed Options for Image 1

Fig.10b Image of SST anomaly change from October to December 2015 created by the setting shown in Fig.10a

In a similar way, users can also perform the four basic arithmetic operations of two data by using the corresponding analysis method shown in Table.2.

Analysis method	Mapped value	Usage example
ADD	Addition ("Data1" plus "Data2")	_
SUBTRACT	Difference ("Data1" minus "Data2")	Time difference, vertical shear.
MULTIPLY	Multiplication ("Data1" times "Data2")	_
DIVIDE	Division ("Data1" divided by "Data2")	Precipitation ratios ("HIST" divided by "NORM").

Table.2 Analysis method of the four basic arithmetic operations on iTacs

4. Basic operations -other kinds of map-

Users can create various types of image such as line graph and cross section diagram (Fig.11). These operations are useful to see the variability or spatial structure simply.

Fig.11 Example of time-series graphs available on iTacs

4.1. Area-averaged time series

Daily, monthly and inter-annual time-series are available by adjusting "Area", "Level", "Time unit" and "Showing period". As an example, let's chart daily time-series of area-averaged OLR anomalies. Set parameters on "Data1" box as shown below (See also Fig.12a).

- Dataset: SAT (OLR is available by selecting "SAT" in this box).
- Element: OLR $[W/m^2]$.
- Data type: ANOM.
- Area: Lat: -10 10, Lon: 90 150 (over and around the Maritime Continent).

> Check "Ave" box in both "Lat" and "Lon" fields to calculate area-averaged value.

- Level: 1 (OLR is surface data).
- Time unit: DAILY.
- Showing period: RANGE,
 - > Upper box: 2016 5 1 (from 1 May 2016),
 - > Lower box: 2016 8 31 (to 31 August 2016).

Datal															
Dataset		Element		Data type			Area			Level	Time u	nit	Show	ing per	iod
SAT	~	OLR [W/m^2]	\checkmark	ANOM V		ALL		~	1	~	DAILY	~	R	NGE 🗸	•
					Lat:	-10	- 10	Ave 🗹			Ave Ye	ar-to-year	2016 🗸	5 🗸	1 🗸
		Vector SD			Lon	90	- 150	Ave 🗹			Time filter		2016 🗸	8 🗸	31 🗸
		Derivative: Ion I	at												

Fig.12a Parameter setting on iTacs to draw time-series of OLR anomalies from 1 May to 31 August 2016 Finally, click "Analysis Data Submit" button and the image will be displayed.

TCC Training Seminar on Seasonal Forecast, 29 January - 2 February 2018

Fig.12b Daily time-series of OLR anomalies created by the setting shown in Fig.11a

OLR is one of the most important indices of tropical convective activities. It can be assumed that lower values of OLR indicate more enhanced convective activities, except for the mid-latitudes in winter season and the high-latitudes. In Fig.11b, negative (positive) anomalies indicate that the convective activities are stronger (weaker) than normal.

Selecting "MONTHLY" in "Time unit" box, users can draw monthly time-series.

Next, let's chart inter-annual time-series of 200-hPa velocity potential anomalies. Set parameters on "Data1" box as shown below (See also Fig. 13a).

- ♦ Dataset: JRA-55.
- Element: Pressure Levels $\rightarrow \chi$ (Velocity Potential).
- ◆ Data type: ANOM.

• Area: Lat: -10 - 10, Lon: 90 - 150 (over and around the Maritime Continent).

> Check "Ave" box in both "Lat" and "Lon" fields to calculate area-averaged value.

- Level: 200hPa for both upper and lower boxes.
- Time unit: MONTHLY.
 - > Check "Year-to-year" box to calculate inter-annual variabilities.
- Showing period: RANGE, Year: 1958 2016, Month: 5 8 (MJJA mean from 1958 to 2016).

Dalai	D	a	ta	1
-------	---	---	----	---

Dataset	Element	Data type	Area	Level	Time unit	Showing period
JRA-55 ✔	Pressure Levels ✓ x (Velocity Potential) ✓ □ Vector □ SD Derivative: □ Ion □ Iat	ANOM	ALL Lat: -10 -10 Ave Lon: 90 -150 Ave	200hPa ∨ 200hPa ∨	MONTHLY ▼ Ave ☑Year-to-year ☐Time filter	RANGE 1958 5 - 8 - 1958 - 195

Fig. 13a Parameter setting on iTacs to draw inter-annual time-series of four-month (May – August) averaged 200-hPa velocity potential anomalies over and around the Maritime Continent from 1958 to 2016

Finally, click "Analysis Data Submit" button and the image will be displayed.

TCC Training Seminar on Seasonal Forecast, 29 January - 2 February 2018

Fig. 13b Inter-annual time-series of 200-hPa velocity potential anomalies created by the setting shown in Fig. 13a

4.2. Vertical and latitude/longitude profile

As with the time-series graph, users can make vertical/horizontal profiles graph by using spatial average functions. Selecting two different levels in "Level" box, users can make the vertical profile of area-averaged elements as shown in Fig.14.

• Area: Check "Ave" in both "Lat" and "Lon" boxes to calculate area-averaged value.

◆ Level: 1000 hPa – 1 hPa.

Checking "Logarithmic Coordinates" in the Graphic Options is recommended in vertical profile graph for pressure coordinate

Fig.14 Example of parameter setting and the figure to draw a vertical profile of height anomalies

Checking either "Ave" boxes, users can make the latitude or longitude profile of a specific level. Fig.15 shows an example of the parameter setting for a longitude profile of meridional mean values.

- Area: Check "Ave" box in "Lat" field to calculate zonal averaged values.
- Time unit, Showing period: Select a specific time or time mean.

Area	Level	Time unit	Showing period
ASIA	500hPa 💌	MONTHLY	RANGE 💌
.at: 25 - 35 Ave 🗹	500hPa 💌	Ave Vear-to-year	2015 🔻 6 💌
on: 90 - 180 Ave 🗆]	Time filter	2015 🔻 7 💌
· · · · · · · · · · · · · · · · · · ·			

Fig.15 Example of parameter setting on and the figure to draw a longitude profile of 500-hPa height anomalies

4.3. Cross section diagram

Cross section diagram is also useful to see the variability or spatial structure of atmospheric or oceanographic characteristics.

Fig.16 Example of cross section diagrams available on iTacs

Selecting two different levels in "Level" box, users can make the vertical profile of area-averaged elements as shown in Fig.17.

- Area: Check "Ave" box in "Lon" fields to calculate area-averaged value.
- ◆ Level: 1000 hPa 100 hPa.
- Time unit, Showing period: Select a specific time or time mean.

Checking "Logarithmic Coordinates" in the Graphic Options is recommended in vertical profile graph.

Area	Level Time unit	Showing period 100					CP	PD/JMA
ALL ✓ Lat: -60 Ave	1000hPa ∨ MONTHLY ∨ 100hPa ∨ ØAve □Year-to	e-year 2016 ♥ 6 ♥						
Lon: 90 - 150 Ave 🗹	☐ Time filter	2016 200-						
		300 -	-					
Graphic Options								
Colorizing: COLOR V Show Cont	tour Labels	Polar Stereographic: Nort						
Drawing: SHADE V Show Colo Image Format: png V Set Contou Font: default V interval:	or Bar ur Parameters for data1 min: max:	Coordinates Coord						
Color Table: Rainbow Set Vector	r size: [inch] value: skip: 1		0s 50s 40s 30	is zós tós	EQ 10N 20	N 30N	40N 5	50N 60N

Fig.17 Example of parameter setting and the figure to draw a vertical cross section of normal pressure vertical velocity

Let's chart a longitude-time cross section of meridional mean 200-hPa velocity potential anomalies. Set parameters on "Data1" box as shown below (See also Fig.18a).

- ♦ Dataset: JRA-55.
- Element: Pressure Levels $\rightarrow \chi$ (Velocity Potential).
- ♦ Data type: ANOM.
- Area: Lat: -5 5, Lon: 0 360.
 - \blacktriangleright Check "Ave" box in "Lat" field to calculate meridional mean from 5°S 5°N.
- Level: 200hPa for both upper and lower boxes.
- Time unit: DAILY.
- Showing period: RANGE,
 - > Upper box: 2015 5 1 (from 1 May 2015),
 - Lower box: 2015 10 31 (to 31 October 2015).
- Graphic Options
 - \blacktriangleright Color Table: Blue Red.
 - Set Contour Parameters for data1: interval:3, min:-15, max:15.

Data 1

Dataset	Element	Data type		Are	a	Level		Time unit		Showing pe	eriod
JRA-55 V	Pressure Levels ✓ X (Velocity Potential) ✓	ANOM V] Lat: Lon:	ALL -5 - 5 0 - 3	Ave 🗹	200hPa 200hPa	>	DAILY Vear-t	o-year	RANGE 2015 ♥ 2015 ♥ 10 ♥	✓ 1 ✓ 31 ✓
	Derivative: 🗌 Ion 🗌 Iat										

Graphic Options

Colorizing: COLOR V	Show Contour Labels
Drawing: SHADE	Show Color Bar
Image Format: png 🗸	Set Contour Parameters for data1
Font: default 🗸	interval: 3 min: -15 max: 15
Color Table: Blue - Red	Set Vector size: [inch] value: skip: 1

Fig.18a Parameter setting and graphic options to draw a longitude-time cross section of $5^{\circ}S - 5^{\circ}N$ mean 200-hPa velocity potential anomalies during the period from 1 May to 31 October 2015

Finally, click "Analysis Data Submit" button and the image will be displayed.

DATA1 JRA-55 chi37 ANOM lat = -5:5 lon = 0:360 level = 23:23 time = 2015050100:2015103100 ave = 1DY

Fig.18b Longitude-time cross section diagram (it is a so-called "Hovmöller diagram") created by the setting shown in Fig.18a

4.4. Time filter

Time filtering is used to create a time-series or time cross section images. It emphasizes climatological variability because it can remove high frequency variations. There are two types of the time filter in iTacs as shown below:

- Running mean: Smooth the original data simply.
- ◆ Lanczos filter: Pick up the given period component and mean them based on Duchon (1979).

Fig.19 Two types of time filtering function on iTacs

Using "Running mean" function, users can make smoothed time-series graphs as shown in Fig.19a.

- Time unit: DAILY.
 - Check "Time filter" and select "Running mean".
 - ▶ Input "5" in mean period (i.e. 5-day running mean).
- Other parameters are the same as Fig.12a.

Dat	ta 1																
	Dataset		Element		Data	type			Area			Level		Time unit	Showi	ng per	iod
SAT		\checkmark	OLR [W/m^2]	~	ANOM	~		ALL		~	1	~	DAILY	~	RA	NGE 🗸	•
			□ Vector □ SD Derivative: □ Ion □	lat			Lat: Lon:	-10 90	- 10 - 150	Ave 🗹			□ Ave	e 🗌 Year-to-yea ne filter ng mean 🗸 period 5	2016 V 2016 V	5 V 8 V	1 ¥ 31 ¥

Fig.20b As for Fig.12b, but smoothed by 5-day running mean created by the setting shown in Fig.20a

Smoothed time cross section diagrams are also available by using "Running mean" function as shown in Fig.21a.

- Time unit: DAILY.
 - Check "Time filter" and select "Running mean".
 - ▶ Input "5" in mean period (i.e. 5-day running mean).
- Other parameters are the same as Fig.18a.

Data 1

Graphic Options

Colorizing: COLOR 🗸	Show Contour Labels
Drawing: SHADE	✓ Show Color Bar
Image Format: png 🗸	Set Contour Parameters for data1
Font: default 🗸	interval: 3 min: -15 max: 15
Color Table: Blue - Red	Set Vector size: [inch] value: skip: 1

Fig.21a Parameter setting and graphic options to draw a longitude-time cross section of $5^{\circ}S - 5^{\circ}N$ mean 200-hPa velocity potential anomalies during the period from 1 May to 31 October 2015

Fig.21b As for Fig.18b, but smoothed by 5-day running mean created by the setting shown in Fig.21a

References

- ✓ Duchon, C. E., 1979: Lanczos Filtering in One and Two Dimensions, J. Applied Met., 18, 1016-1022.
- ✓ Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective Analyses of Sea-Surface Temperature and Marine Meteorological Variables for the 20th Century using ICOADS and the Kobe Collection. Int. J. *Climatol.*, 25, 865-879.
- Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Japan, 93, 5-48.
- Toyoda, T., Y. Fujii, T. Yasuda, N. Usui, T. Iwao, T. Kuragano, and M. Kamachi, 2013: Improved Analysis of Seasonal-Interannual Fields Using a Global Ocean Data Assimilation System, *Theoretical and Applied Mechanics Japan*, 61, 31-48.

APPENDIX.A. Dataset and elements available on iTacs

Dataset	Element	•	Unit
JRA-55	Pressure Levels	x (Velocity potential)	$10^6 \text{ m}^2/\text{s}$
		Div (Relative divergence)	1/s
		θe (Equivalent potential temperature)	K
		ω (Pressure vertical velocity)	Pa/s
		W (Stream function)	$10^6 \mathrm{m^2/s}$
		θ (Potential temperature)	K
		q (Specific humidity)	kg/kg
		T (Temperature)	°C
		T-Td (Dew point depression)	°C
		U (Zonal wind)	m/s
		V (Meridional wind)	m/s
		Udiv (Zonal divergence wind)	m/s
		Vdiv (Meridional divergence wind)	m/s
		ζ (Relative vorticity)	1/s
		Y (Geopotential height)	m
	Flux	Wvf-x (Zonal water vapor flux)	kg/kg m/s
		Wvf-y (Meridional water vapor flux)	kg/kg m/s
	Surface	SLP (Sea level pressure)	hPa
		Ps (Surface pressure)	hPa
		qs (Surface specific humidity)	kg/kg
		Ts (Surface temperature)	°C
		T-Td (Surface 2-m dew point depression)	°C
		Us (Surface zonal wind)	m/s
		Vs (Surface meridional wind)	m/s
		Tprat (Surface total precipitation)	mm/day
		Latent heat flux (positive: upward)	W/m ²
		Sensible heat flux (positive: upward)	W/m ²
		Solar radiation flux (positive: upward)	W/m ²
		Longwave radiation flux (positive: upward)	W/m ²
		Net heat and radiation flux (positive: upward)	W/m ²
	Isentropic Levels	Potential vorticity	PVU $(10^{-6} \text{K m}^2 \text{kg}^{-1} \text{s}^{-1})$
SST	Sea Surface Data	Temperature (SST)	°C
SAT	OLR		W/m^2
INDEX	NINO.1+2		°C
	NINO.3		°C
	NINO.3.4		°C
	NINO.4		°C
	NINO.WEST		°C
	IOBW	°C	

Table.A1 List of analysis dataset and its elements available on iTacs

Dataset	Element		Unit
1MONTH_ENS_MEAN	Pressure Levels	χ (Velocity potential)	$10^6 {\rm m^2/s}$
		Ψ (Stream function)	$10^6 \mathrm{m^2/s}$
		T (Temperature)	°C
		T-Td (Dew point depression)	°C
		U (Zonal wind)	m/s
		V (Meridional wind)	m/s
		γ (Geopotential height)	m
	Surface	SLP (Sea level pressure)	hPa
		Ts (Surface temperature)	°C
		Rain (Daily Precipitation)	mm/day
1MONTH_HIND	Pressure Levels	Velocity potential	$10^6 \text{ m}^2/\text{s}$
		Stream function	$10^6 \text{ m}^2/\text{s}$
		Geopotential height	m
		Relative humidity	%
		Temperature	°C
		T-Td (Dew point depression)	°C
		Zonal wind	m/s
		Meridional wind	m/s
	Surface	Surface temperature	°C
		Surface pressure	hPa
		Rain	mm/day

Table.A2 List of forecast dataset and its elements available on iTacs