

<u>TCC seminar,</u> <u>16:15–18:00, 29 January 2018,</u> <u>14:15–16:45, 30 January 2018,</u> <u>Tokyo, Japan</u>

An introduction to iTacs

- Interactive Tool for Analysis of the Climate System -

<u>Hirotaka Sato</u> & Staff Members of Tokyo Climate Center

> Tokyo Climate Center Japan Meteorological Agency

What's iTacs?

- iTacs stands for "Interactive Tool for Analysis of the Climate System".
- Available on web browsers through Graphical User Interface (GUI) with personal IDs.
- Only NMHS staff can use iTacs.
- No additional software or plug-ins are required in user's client PCs.

Available dataset and period

Atmospheric analysis dataset

JRA-55	1958~	The Japanese 55-year Reanalysis
SAT	1979~	NOAA's outgoing longwave radiation (OLR)

Oceanographic analysis dataset

SST	1891~	Sea surface temperature (COBE-SST)
MOVE-G2	$1958\sim$	Data assimilation by MOVE/MRI.COM-G2

Forecast dataset

JMA's one-month prediction model output

Other dataset

INDEX	ENSO index (NINO.3 etc.)
CLIMAT	Monthly CLIMAT reports
USER-INPUT	Text data input by user

Dataset	
-Dataset-	Ŀ
CLIMAT	II.
CONST	L
INDEX	
USER_INPUT	
JRA-55	
K1EM_20171108	E
K1EM_20171115	
MOVE-G2	
SAT	al
SST	

Available data type

 Various data types are available to perform climate diagnosis.

- **HIST** Historical actual analysis or observation data
- **NORM** Climatological normal data (averaged from 1981 to 2010)
- **ANOM** Anomaly data (difference from the climatological normal)

Samples of charts Various types of charts and statistical analyses are available on iTacs.

120E 180 Cross section diagram JRA-55 t37 ANOM lat = 30:40 lon = 130:140 leve time = 1958040100:2014040100 ave = 1YR(1+1M0 data 1975 1980 1985 1990 1995 2000 2005 2010

|eve| = 23:23

Advantages of iTacs

- iTacs is one of the most useful tools provided by TCC/JMA, which is designed for climate analysis and will strongly help your work.
- Use of iTacs costs <u>less time for data handling</u>, <u>more time for interpretation</u> of the climate system!!

Object of this lecture

- This lecture demonstrates and performs some exercises the basic operation of iTacs.
- This class overviews the influence of El Niño events on oceanographic condition and atmospheric circulation by utilizing iTacs.

Contents

- 1. What's iTacs?
- 2. Basic operations Horizontal map-
 - Access to iTacs
 - Basic operating procedure
 - Longitude-latitude map
 - Multiple data
- 3. Basic operations Other kinds of maps-
 - □ Vertical and latitude/longitude profile
 - Cross section diagram

Access to iTacs

 Registered users can access iTacs from Tokyo Climate Center (TCC) website.

TCC Website (http://ds.data.jma.go.jp/tcc/tcc/index.html)

Basic operating procedure (1)

Basic operating procedure (2)

Longitude-latitude map (1)

 Let's draw monthly mean sea surface temperature (SST) and its anomaly in December 2015.

Longitude-latitude map (2)

Data 1								
Dataset		Element	Data type			A	rea	
SST	•	Sea SurfaceData 🛛 👻	HIST 👻		ALL			-
		Temperature (SST) [(💌		Lat:	-90	-	90	Ave 🔲
		-element2-			_	-	360	Ave 🔳
		Temperature (SST) [C.De	eg.]					
		Ice concentration (ice=1	no_ice=0) [fract	ion]				
		Derivative: 🔲 Ion 🔲 Iat						
Analysis metho	d: -Ana	alysis method-	•					

1. Select "SST" in the "Dataset" field.

- Various datasets are available;
 JRA-55, SST, MOVE-G2, CLIMAT, INDEX, USER-INPUT etc.
- 2. Select "Sea Surface Data" for "element1" and "Temperature" for "element2".

Available elements will be shown in a pull-down menu.

Longitude-latitude map (3)

Data 1			3										
Dataset		Element	Data type				A	rea		Level	Tir	ne ui	nit
SST	-	Sea Surface Data 🔹	HIST 💌		A	LL			-	1 🔹	MONTHL	Y	•
		Temperature (SST) [C 🔻	-Data_type-	Lat:	: -9	90	-	90	Ave		Ave	Yea	r-to-year
		Vector SD Derivative: Ion Iat	HIST NORM ANOM ANOM_SD	Lon	n: 0)]-	360	Ave		Time 1	filter	
Analysis method:	-Ana	alysis method-	•										

3. Select "HIST" for "Data type" .

Available options are as follows:

- **HIST** : Historical actual analysis or observation data.
- **NORM** : Climatological normal.
- **ANOM** : Anomaly data.
- ANOM_SD : Anomaly data normalized by their standard deviations, indicative of significance for the anomaly.

Longitude-latitude map (4)

4. Select "ALL" for "Area".

- You can change the longitude/latitude range more precisely with setting boxes.
- 5. Select "1" for "Level".
 - Options in the "Level" menu will change depending on your selection of "element".

Longitude-latitude map (5)

- 6. Select "MONTHLY" for "Time unit".
 - There are several styles for range selection: DAILY, PENTAD DAY, MONTHLY and ANNUAL
- 7. Select "RANGE" for "Showing period" and "2015 12", for both upper and lower boxes (left box: year, right box: month).

Available options are as follows:

- **RANGE**: Setting the start and end points of the targeted time period.
- **YEARS**: Setting individual years.
- **INDEX**: Setting a SST index border to pick up years (e.g. NINO.3).

17

Longitude-latitude map (6) Finally, click the "Analysis Data Submit" button and the image will be displayed.

Dataset	Element	Data type			Area		Level	Time uni	t Showi	ing period
SST	▼ Sea Surface Data ▼	HIST	•	ALL		-	1 -	MONTHLY	▼ RA	NGE 🔻
	Temperature (SST) [C 🗸	•	Lat:	-90	- 90	Ave 🔲		Ave Year-	to-year 2015	▼ 12 ▼
			Lon:	: 0	- 360	Ave 🔲		🔲 Time filter	2015	▼ 12 ·
	Vector SD									
	Derivative: 🔲 Ion 🔲 Iat									
nethod:	-Analysis method-	•	DA	ATA1 SST	sst HIST	lat = -9	0:90 lon = ():360 level = 1:1	1	
CK!			DA		time = 20	15120100.2	015120100	ave = 1MO		
			90N 📊							CPD/JMA
se parameter cod	le		90N -			<u></u>		<i></i>	E C	CPD/JMA
se parameter cod	le		90N T		<u>Squ</u>	<u></u>				CPD/JMA
se parameter cod Analysis Data S	le ubmit		90N 60N -	A free to	<u>E</u> g-	<u></u> ,				CPD/JMA
se parameter cod Analysis Data S	ubmit		90N -	A Contraction	E gr	<u> </u>	917.			CPD/JMA
se parameter cod Analysis Data S	ubmit		90N - 60N - 30N -		50 - 80 -					
se parameter cod Analysis Data S	ubmit		90N 60N - 30N -	Contraction of the second	50 - 50 -		91 I I I I I		1221 27	CPD/JMA
se parameter cod Analysis Data S	ubmit		90N -		80 - 80 -					CPD/JMA
se parameter cod Analysis Data S	ubmit		90N - 60N - 30N - EQ -		80 - 80 -					CPD/JMA
se parameter cod Analysis Data S	ubmit		90N - 60N - 30N - EQ -		50 - 50 - 7 \ 10					CPD/JMA
se parameter cod	ubmit		90N - 60N - 30N - EQ -		8 ° - 1 21 12					CPD/JMA
se parameter cod	ubmit		90N - 60N - 30N - EQ -		8° - 8° - 1 ₂₂₁ 24 12					
se parameter cod Analysis Data S	ubmit		90N - 60N - 30N - EQ - 30S -		8 ° - 1 21 12 21 12			14 24 27 27 24 15 16 19		CPD/JMA
se parameter cod Analysis Data S	le ubmit		90N - 60N - 30N - EQ - 30S - 60S -		50 - 50 - 7					
se parameter cod	ubmit		90N - 60N - 30N - EQ - 30S - 60S -		8° - 8° - 127 21 12 8					CPD/JMA

Longitude-latitude map (7)

 You can also draw anomaly charts by selecting "ANOM" for "Data type".

Topics: El Niño event

 In winter 2015/16, SST exhibited positive anomaly over the central to eastern equatorial Pacific and negative anomalies over the western tropical Pacific, indicating the occurrence of El Niño event.

Topics: El Niño Southern Oscillation (ENSO)

 The occurrence of El Niño and La Niña events (ENSO) modulate zonal contrast of SST in the equatorial Pacific.

Exercise (1)

- Show OLR anomaly averaged over the period from December 2015 to February 2016 as shown below.
- Dataset "SAT" is available to draw the OLR.

 Please try to set longitude range <u>from 30°W to 330°E</u> not to split areas in Africa and Europe.

- Adjust contour parameters (see color bar of the figure)
- Select "Blue-Red" for "Color Table"

DATA1 SAT olr ANOM lat = -90:90 lon = -30:330 level = 1:1 time = 2015120100:2016020100 ave = 3MO

Hint: Area setting

Answer to Exercise (1)

Analysis Da	taset				La	t: -90 -	90 (90°N)
Select parameters	Graphic Options				Lo	n: -30 -	330
Data 1						(30°W)	(330°E)
Dataset	Element	Data type		Area	Level	Time unit	Showing period
SAT 🗸	OLR [W/m^2]	ANOM 🗸	ALL	×	1 🗸	MONTHLY V	RANGE 🗸
	□Vector □SD Derivative: □Ion □Iat		Lat: -90 Lon: -30	- 90 Ave - 330 Ave		Ave Year-to-yea	2015 V 12 V 2016 V 2 V

Graphic Optio	ns	
Colorizing: COLOR V	☑ Show Contour Labels ☑ Show Color Bar	Polar Stereographic: North pole No Scale Labels
Image Format: png 🗸 Font: default 🗸	Set Contour Parameters for data1 interval: 10 min: -55 ma	x: 55 Flip the X-axis Flip the Y-axis
Color Table: Blue - Red	Set Vector size: [inch] value:	skip: 1 No Caption

Select "Blue-Red" color table.

Set contour parameters as follows. interval: 10, min: -55, max: 55

Outgoing Longwave Radiation (OLR)

- OLR is an index representing brightness temperature observed from space.
- Take note: <u>In the tropics</u>,
 - Lower OLR Cooler temp. seen from space
 - Top of cumulonimbus Active convection
 - Higher OLR Warmer temp. seen from space
 - Near the earth surface <u>Suppressed convection</u>

Topics: Anomalous convective activity associated with the El Niño event

 During El Niño events, enhanced (suppressed) convective activity is statistically seen over the central to eastern (western) equatorial Pacific.

Multiple Data

- Vector or Stream-line: Map vectors or stream lines.
- DATA1_DATA2: Overlay two kinds of elements on one map at the same time.
 – Contour lines are overlaid on a shaded map.
- **SUBTRACT**: Map the difference of two data.
 - This function is mainly used to show time variation or the difference between two levels.

Vectors (1)

- How to draw vector maps
 - For example, let's make a low-level wind field map step by step.
 - Barbs are not available. (Barb: And F)

Vectors (2)

Data 1

Vectors (3)

Graphic Options

Modify the vector size and its skip interval.

- If you want to make vector size larger, make "size" larger or "value" smaller.
- If vectors are too crowded, you should change "skip" value. In this setting, vectors are drawn at every 5 grids.

Stream lines

Drawing stream lines

Data 1

Graphic Options

DATA1_DATA2:Overlaying two data

- How to draw two data
- Sea level pressure (contour) and its anomalies (shading).

DATA1 JRA-55 slp ANOM lat = -35:35 lon = 60:300 level = 1:1 time = 2015120100:2016020100 ave = 3MO

3-month mean sea level pressure and its anomalies from Dec. 2015 through Feb. 2016

DATA1_DATA2:Overlaying two data

Basic Rule: The Data1 for shading (the lower layer) and Data2 for contours (the upper layer).

*As an exception, when you make a vector/stream line map, Data 1 must be for vector/stream line and Data 2 is for shading or contours.

<u> </u>	Dataset	Element	Data type	Area		Level	Time unit	Showing period
	JRA-55 🔹	Surface 👻	ANOM -	ALL	-	1 •	MONTHLY -	RANGE 🔻
		SLP (Sea Level Presst 🔻		Lat: -35 - 35	Ave 🔲		🛛 Ave 🔲 Year-to-year	2015 - 12 -
Ch				Lon: 60 - 30	0 Ave		🔲 Time filter	2016 • 2 •
Sn	ading	Vector SD Derivative: Ion Iat	_		This a "DAT	area v A1 D	vill appear ATA2" is s	r after elected.
\leq	Analysis method: DATA	A1_DATA2	•					
3	Data2							
	Dataset	Element	Data type	Area		Level	Time unit	Showing period
	JRA-55 🗸	Surface 👻	HIST 👻	ALL	-	1 •	MONTHLY -	RANGE 👻
		SLP (Sea Level Presst 👻		Lat: -35 - 35	Ave 🔲		🛛 Ave 🔲 Year-to-year	2015 - 12 -
CO	ntour	SD SD		Lon: 60 - 30	0 Ave		Time filter	2016 - 2 -

- 1. Set parameters in "Data1" field.
- 2. Select "DATA1_DATA2" in the "Analysis method" box.
- 3. Set parameters in "Data2" field and submit.

DATA1_DATA2:Overlaying two data

Graphic Options

4. Set Contour parameters for data1 (SLP anomalies) and data2 (SLP).

SUBTRACT: Data1 minus Data2

- The value of "Data1 minus Data2" will be mapped.
 - 1. Set the "Data1" (the base data).
- 2. Select "SUBTRACT" in the "analysis method" box.
- 3. Set the "Data2" field and submit.

Exercise (2)

- Let's see the climatological mean stream function (ψ) and wind vector at 850hPa for January.
 - Stream function (ψ) is used for diagnosing large-scale non-divergent (i.e. rotational) wind fields.
 - Check the relationship between ψ and wind fields.

Hint 1: This is a vector and shading plot. In this case, is the data1 vector or shading?

Hint 2: When you draw climatological normal fields, you don't care about year setting (any year is OK).

Velocity Potential and Stream Function

- Wind fields = Divergent winds + Rotational winds
 - Under an assumption of perfect fluid (i.e. no viscosity).

• Divergent winds = $\nabla \chi$, where χ is Velocity potential

– Divergent wind blows in the upgradient direction of χ .

• Rotational winds = $\mathbf{k} \times \nabla \psi$, where ψ is

Stream function (k is a unit vector in vertical direction)

Α

- Rotational wind blows parallel to the contours of ψ , with low value to the left, regardless of which hemisphere you think.
- Air flow around a local ψ maximum (i.e. clockwise) corresponds to anticyclonic rotation in the N.H. and cyclonic rotation in the S.H.

Answers to Exercise (2)

Vector variables must be set as "Data 1". Set parameters for U and V.

Graphic Options Set parameters for shading and Show Contour Labels vector Colorizing: COLOR -Show Color Bar Labels Drawing: SHADE Set Contour Parameters Draw Credit Inside Image Format: png 👻 interval: min: Reverse the Axes Apply All Pics Set Contour Parameters for data2 Flip the X-axis Flip the Y-axis Font: default 👻 picture size interval: 3 min: -15 max: 15 Color Table: Blue - Red No Caption Set Vector size: 1 [inch] value: 20 skip: 5 8

Tips: Stream function (ψ)

Note:

- Wind vectors are nearly parallel to the ψ lines.
- Clockwise circulations ³⁶/₂ around the local maximum of ψ, and vice_ versa.
 - <!> Positive ψ values don't always mean clockwise circulations. You should see ψ's maximum/minimum rather than the value itself.
- The magnitude of ψ 's gradient corresponds to the rotatiinal wind speed.

Exercise (3)

- Let's see the climatological mean velocity potential
 (χ) and divergent wind vectors at 200hPa for January.
 - Velocity potential (χ) is used for diagnosing large-scale divergent wind fields. In the tropics, those divergent winds are related with convective activity.
 - Check the relationship between χ and divergent wind fields.

Hint: To draw divergent wind vectors, select "Udiv" and "Vdiv" from pressure-level

data of JRA-55.

Answers to Exercise (3)

Data₁

Vector variables must be set as "Data 1". Set parameters for divU and divV.

Tips: Velocity potential (χ)

Note:

- Divergent wind vectors are perpendicular to the *χ* lines.
- Divergent winds around³⁸⁵/₆₆₆
 the local minimum of χ, and vice versa.
 - <!> Negative χ values don't always mean divergent winds. You should see χ's maximum/minimum rather than the χ value itself.
- The magnitude of χ 's gradient corresponds to the divergent wind speed.

Topics: Tropical Convection and Divergence

- In the tropics, upper-level divergence (i.e., the minimum of χ) is associated with deep convection.
- Active convection over the Maritime continent.
- <u>Climatological normal for January</u>

Exercise (4)

- Make anomaly maps for January 2016.
 - [Left] $\chi 200$ (contour) and OLR (shade)
 - [Right] ψ 850 (contour) and OLR (shade)

Where is upper-level divergence/convergence anomalies? How about their relationship with OLR anomalies? What circulation anomalies is collocated with those OLR anomalies?

Answers of Exercise (4)

Data1 Left

Data2

Dataset	Element	Data type		Area		Level	Time unit	Showing period
JRA-55 👻	Pressure Levels -	ANOM +	ALL		-	200hPa 👻	MONTHLY -	RANGE 👻
	χ (Velocity Potential) 👻		Lat: -35	- 35	Ave 🔲		🗖 Ave 🔲 Year-to-yea	r 2016 🔻 1 👻
	SD SD	-	Lon: 60	- 300	Ave 🔲		Time filter	2016 • 1 •

Graphic Options

	Show Contour La	bels	
Colorizing: COLOR -	Show Color Bar		
Drawing: SHADE -	Set Contour Para	neters for data1	
Image Format: png 👻	interval: 10	min: -55	max: 55
Font: default 👻	Set Contour Para	neters for data2	
Color Table: Blue - Red 👻	interval: 2	min: -10	max: 10
	Set Vector size:	[inch] value:	skip:

Answers of Exercise (4)

Data1 Right

Data2

Dataset	Element	Data type		Area		Level	Time unit	Showing period
JRA-55 👻	Pressure Levels -	ANOM +	ALL		-	850hPa 👻	MONTHLY -	RANGE 👻
	ψ (Stream Function) 👻		Lat: -35	- 35	Ave 🔲		Ave Year-to-yea	2016 🔻 1 👻
	SD SD	-	Lon: 60	- 300	Ave		Time filter	2016 • 1 •

Graphic Options

	Show Contour La	bels	
Colorizing: COLOR -	Show Color Bar		
Drawing: SHADE -	Set Contour Para	neters for data1	
Image Format: png 👻	interval: 10	min: -55	max: 55
Font: default 👻	Set Contour Para	neters for data2	
Color Table: Blue - Red 👻	interval: 2	min: -10	max: 10
	Set Vector size:	[inch] value:	skip:

Topics: Anomalies associated with El Nino

Contents

- 1. What's iTacs?
- 2. Basic operations Horizontal map-
 - Access to iTacs
 - Basic operating procedure
 - Longitude-latitude map
 - Multiple data
- 3. Basic operations Other kinds of maps-
 - Vertical and latitude/longitude profile
 - Cross section diagram

Line graph & Cross section diagram

• Time series and profile graph are useful to see the variability or spatial structure simply.

Vertical and lat/longitude profile

Cross section diagram

• Cross section diagram is also useful to see the variability or spatial structure.

Time cross section

- Longitude-time cross section
- To see time evolution and highlight some wave propagation
- Let's see the time evolution of the equatorial SST anomalies associated with the 1997/98 big El Niño event.

Longitude-time cross section of SST anomalies averaged over 5°S – 5°N (i.e. along the equator) from January 1996 to July 1999.

Time cross section

Graphic Option	S		
Colorizing: COLOR V Drawing: SHADE V Image Format: png V Font: default V Color Table: Blue - Red V	 ✓ Show Contour Labels ✓ Show Color Bar ✓ Set Contour Parameters for data1 interval: 0.4 min: -2.4 max: 2.4 □ Set Vector size: [inch] value: skip: 1 	 Polar Stereographic: North pole Logarithmic Coordinates Reverse the Axes Flip the X-axis Flip the Y-axis No Caption 	□ No Scale Labels □ Draw Credit Inside □ Apply All Pics picture size %

Time cross section

DATA1 SST sst ANOM lat = -5:5 lon = -30:330 level = 1:1 time = 1996010100:1999070100 ave = 1MO

Integrated Exercise (1)

- Show longitude-height cross section of zonal/vertical wind anomaly vector and vertical wind anomaly (shading) averaged from 5°S to 5°N during the period from December 1997 to February 1998.
- Try to adjust vector scale and skip interval to improve the visibility of the figure.
- Select logarithmic coordinates for vertical axis.
- Adjust contour parameters (see color bar of the figure).
- Select "Green-Brown" for "Color Table".

Hint: How to draw vertical motion by vectors

In iTacs……

In pressure coordinate data set, vertical motion is given by pressure velocity ω , where $\omega \equiv dp/dt$.

If $\omega < 0$, it means the pressure of an air parcel there becomes lower, which corresponds to upward motion because pressure becomes smaller towards upper levels in general.

 $\begin{array}{c|c} p \\ \vdots \\ 300 \\ 500 \\ 700 \\ 1000 \end{array}$ Upward motion means dp/dt < 0. An air parcel

Data 1

#2: To highlight vertical component because omega values are too small compared to meridional winds in general.

Answers to Integrated Exercise (1)

Data1 wind anomalies

Contents

- 4. Statistical Analysis in iTacs
 - Introduction
 - Correlation / Regression Analysis
 - Composite Analysis
- 5. Other Advanced operations
 - Data download
 - User data input

Statistical Analysis in iTacs

- Various statistical analysis methods are available.
 - Correlation/Regression analysis
 - Composite analysis
 - Single/multi EOF, SVD analysis
 - FFT analysis
 - Wavelet analysis
- They can be powerful and helpful for understanding our climate system. Of course, statistics is also necessary for seasonal forecast.

Keep in mind that statistical results **DO NOT ALWAYS** give us the physical nature of the target systems or phenomena. Statistics is just a matter of mathematics. We need physical interpretation after statistical analysis.

Contents

- 4. Statistical Analysis in iTacs
 - **D** Introduction
 - Correlation / Regression Analysis
 - Composite Analysis
- 5. Other Advanced operations
 - Data download
 - User data input

Basic Statistics in Brief

For Dec. thru Feb. (DJF) 3-month mean,

Blue: NINO.3 SST anomaly (Positive: El Nino-like, Negative: La Nina-like) Red: SLP anomaly at Darwin

When NINO.3 SST anomalies are positive, SLP anomalies at Darwin tend to be positive.

Next step is..., How can we evaluate the relationship objectively and quantitatively?

If we link **each pair** of NINO.3 SST and Darwin's SLP values to **a point** on a x-y map, we can clearly see a <u>linear relation</u> between them. We can evaluate the relationship with **correlation coefficients**. In this case, the correlation coefficient is <u>+0.82</u>.

Correlation coefficient: How close they have a linear relationship

Basic Statistics in Brief

• Correlation coefficient: How close they have a linear relationship

- Correlation coefficient values are between -1 and +1.
- The value close to +1 (or -1) means there is a clear positive (negative) linear relationship between the targeted data pair, and the value around zero means there is little (or weak) relation between them.

Correlation Analysis (1)

 We confirmed that there is a strong positive correlation between NINO.3 SST anomalies and Darwin sea level pressure (SLP) anomalies.

<u>Question</u>: How about another station's SLP? Rather, how about **every grid points** throughout the world?

Evaluating the correlation coefficients between NINO.3 SST and SLP **at every grid points** and then **mapping** each value on each grid.

 Let's make a correlation map between three-month mean sea level pressure (SLP) and SST anomaly in NINO.3 for DJF from 1958/1959 to 2016/2017.

Correlation Analysis (2)

• Setting "Data1" and "Data2".

Data 1

Data2

Dataset	Element	Data typ	e	Area		Area		Area		Time unit	Showing period
JRA-55 🔹	Surface 👻	ANOM	•	ALL		-	1 🔹	MONTHLY -	RANGE 🔻		
	SLP (Sea Level Pressu 🔻		Lat	-90	- 90	Ave 🔲		🗖 Ave 🗹 Year-to-year	1958 🔻 - 2016 👻		
			Lon	: 0	- 360	Ave 🔲		Time filter	12 - 2 -		

"Year-to-year" must be checked in correlation and regression ana ysis.

Although the end of the period may appear to be February 2016, this setting means DJF average from 1958/1959 (December 1958 to February 1959) to 2016/2017 (December 2016 to February 2017). Consider the setting for year and month separately.

Analysis method: CORRELATION_COEFFICIENT -

Select "CORRELATION_COEFFICIENT".

Dataset	Element		Data	type	ype Time unit			Lag			Significance
INDEX -	NINO.3	-	ANOM	-	MONTHLY	-	0	-	YEAR	-	95%(two side) 👻
	SD SD				Ave Ve	ar-to-year					67
"Data2"	lags set pe	eric	bd		Sele	ct op	tio	ns	indic	ate	confidence
behind "	Data1".				level	indi	cat	zec	l by t	-tes	ting.

Correlation Analysis (3)

• Setting Graphic Options.

Set "Drawing" "CONTOUR" to shade the grids exceeding confidence level.

Set contour line (i.e., correlation coefficient) properties.

Correlation Analysis (4)

Correlation coefficient between NINO.3 index and SLP in DJF from 1958/59 to 2015/16.

The gray shading indicates a 95% confidence level as indicated by t-testing. In other words, <u>their</u> <u>relationships are</u> <u>robust</u>.

SLPs tend to increase associated with positive NINO.3. The red contours indicate positive values

of correlation coefficients. Simply stated, **positive** (**negative**) SLP anomalies during **El Niño** (**La Niña**). SLPs tend to decrease associated with positive NINO.3. The blue contours indicate negative values of correlation coefficients. Simply stated, **positive** (**negative**) SLP anomalies during La Niña (El Niño). 69

Corr. coeff. ~ +1 for all of them, but regression coefficients are different.

- All of these examples have strong positive linear relationships.
- We also use regression coefficients to evaluate their relationship.

(Linear) Regression coefficient: The slope of a regression line

Since the slope is given by $\Delta y / \Delta x$, regression coefficients mean how much the variable y changes when the variable x changes.

Correlation and Regression analysis

- Correlation coefficient means the degree of the correlation, and the regression coefficient means the gradient of the regression line.
 - Correlation coefficient close to +1 or -1 means there is a clear linear relation between the targeted data pair, and that around zero means there is little (or weak) relation between them.

Regression and correlation analysis are often used to examine the circulation pattern related to the focused one-dimensional time series.

Regression Analysis (1)

- Let's make a regression map of three-month mean sea level pressure (SLP) onto SST anomaly in NINO.3 for DJF from 1958/1959 to 2016/2017.
- For a regression analysis, "Data1" is a responsible (dependent or y-axis) variable, and "Data2" is an explanatory (independent or x-axis) variable.
- In this case, "Data1" is SLP and "Data2" is SST anomaly in NINO.3.
Regression Analysis (2)

• Setting "Data1" and "Data2".

Data 1

Regression Analysis (3)

• Setting Graphic Options.

Regression Analysis (4)

Regression coefficient is +0.8.

This means SLP tends to be +0.8hPa higher than normal here when NINO.3 SST index is +1.0 higher than normal. Recall that regression coefficients are the slope of regression lines, $\Delta y / \Delta x$. In this case, x is NINO.3 SST index and y is SLP.

Exercises (5)

- Make a regression coefficients map of 850hPa stream function (ψ850) anomalies onto NINO.3 SST anomalies for DJF.
 - Set the statistical period from 1958/59 to 2016/17.
 - Stream function can be found in Dataset of "JRA-55", Element of "Pressure Levels".
 - NINO.3 is defined as the area in <u>5°S-5°N,150°-90°W</u>.
 - Set the confidence level **95% (two side)**.

Regression coefficient of ψ 850 onto NINO.3 SST anomalies for DJF.

Can you imagine the circulation pattern?

Answers to Exercises (5)

Topics: Typical Anomalies associated with El Niño

Do you remember the Matsuno-Gill response pattern?

When El Niño events occur, positive westerly anomaly = Weak Trade winds

Matsuno-Gill response (Gill, 1980) 78

Contents

- 4. Statistical Analysis in iTacs
 - **D** Introduction
 - Regression / Correlation Analysis
 - Composite Analysis
- 5. Other Advanced operations
 - Data download
 - User data input

Composite analysis (1)

 Composite analysis: To collect many samples matching given conditions (e.g., El Nino condition) and do statistical analysis of them (e.g., taking an average). It is a kind of conditional sampling.

Exa	ample	By comp characte	oosite analysi eristics assoc	's, we c iated witl	an get common n a given condition.
FUI	1958 1959	Designate (eg. SSTA	ed Condition in NINO.3 >	0.5 C)	
	1960		Subset of dat	a	Composite map
	1961	Diale and	1963		90N CPD/JMA
	1962	PICK OUT	1965		60N
	•	years	•	Average	30N
	•		•	Average	305
	•	a given	1997		605
	2014	Condition	2002		905 60E 120E 180 120W 60W 0
	2015		2009		
	2016		2015		80

Composite analysis (2)

Let's make a composite map of 850-hPa zonal wind when NINO.3 SST anomalies for DJF > 0.5 (i.e. El Nino –like condition).

- 1. Set the "Data1".
- 2. Select "COMPOSITE" in the "analysis method" box.
- 3. Set the "Data2" (give a composite condition).

	1 Data i			Select the compositing element				
				Sciece the compositing clement				
	Dataset	Element	Data type	A	Area 🗸	Level	Time unit	Showing period
	JICK-55	U (Zonal Wind) [m/s] -	ANOM	Lat: -90 - Lon: 0 ·	90 Ave 360 Ave	SJUII a	Ave Vear-to-year	1958 - 2016 - 12 - 2 -
		Vector SD Derivative: Ion Iat				Check	< "Year-to	-year"
2	Analysis method: CO	MPOSITE	•					
	Data2							
(3)	Dataset	Element	Data	type	Time unit			
		SD		0.5	Ave Vear-to	o-year		

Composite analysis (3)

Let's make a composite map of 850-hPa zonal wind when NINO.3 SST anomalies for DJF > 0.5.

Colorizing: COLOR • Image ShaDE • Image Format: png • Show Color Bar Font: default • Set Contour Parameters for data1 Interval: 0.5 min: -3 Max: 3 Color Table: Blue - Red Set Vector size:

Composite analysis (4)

Composite analysis (5): "Another Way"

If you know already target years for compositing, you do not have to use "COMPOSITE" method. Select "YEARS" and input the years and months in "Showing period".
 Data1

Exercise (6)

- Make a composite map of longitude-height cross section of zonal/vertical wind anomaly vector and vertical wind anomaly (shading) averaged from 5°S to 5°N for El Niñolike condition DJF.
 - The El Niño-like condition years are 1965, 1969, 1972, 1976, 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2006, 2009, 2015, where El Niño-like condition means NINO.3 SST anomalies > 0.5.

You can draw multi variable composite maps with "another way".

Composite of wind anomalies along the equator in DJF during El Niño years.

Answers to Exercise (6)

Data 1

Dataset	Element	Data type	Area		Level	Time unit	Showing period	
JRA-55 👻	Pressure Levels 🔹	ANOM -	AL	L	-	1000hPa 👻	MONTHLY -	YEARS 🔻
	U (Zonal Wind) [m/s] 🔻		Lat: -5	- 5	Ave 🔽	100hPa 🔫	🗹 Ave 🗹 Year-to-year	
	· · · · · ·		Lon: 0	- 360	Ave 🔲		Time filter	
	Pressure Levels -							
	ω (Pressure Vertical ' -							input years directly
	x: -100 Stream lin	e						(comma-separated or space-separated)
	Voctor SD							1965, 1969, 1972, 1976, 1982, 1986,
	Derivative: Ion Iat							2009, 2015
II and	omega							,
0 unu	onnega							12 🗸 - 2 👻
anoma	lies							
Analysis method: UAL								
DAT		•						
Data2								
DdldZ								
Dataset	Floment	Data type		Διοσ		Lovol	Time unit	Showing period
IRA-55 T	Pressure Levels -	ANOM -	ALI	Area	•	1000hPa -	MONTHLY -	YEARS -
J.C	ω (Pressure Vertical ' -		Lat: -5	5	Ave 🔽	100hPa -	Ave Vear-to-vear	
	SD		Lon: 0	- 360	Ave	-	Time filter	
			2011. 0					
								input years directly
								(comma-separated or space-separated)
Craphic	Ontions							1965, 1969, 1972, 1976, 1982, 1986,
Graphic	Options							1987, 1991, 1994, 1997, 2002, 2006, 2009, 2015
								2003, 2013
	Vs	how Contour	Labels					12 - 2 -
Colorizing: COL		how Color Par						
Colonzing. COLO		- Color Bar						
Drawing: SHADE		et Contour Pa	ramete	rs for data1				
Image Format: p	ng 👻 inter	val:	mir	n:	max:		Dec.	thru Feb. durina El
Font: default 🗸	✓ S	et Contour Pa	ramete	rs for data2				
Color Table: Cre	en - Brown - inter	val: 0.01	mir	n: -0.035	max:	0.035	Nino-	like years
Color Table. Ore				[in als]	20	alsia: 0		
	× 5	et vector size		[inch] value	20	skip. 8		86

Contents

- 4. Statistical Analysis in iTacs
 - **D** Introduction
 - Regression / Correlation Analysis
 - Composite Analysis
- 5. Other Advanced operations
 - Data download
 - User data input

Data download

- Users can download the data used to create a map.
- A plain text file and GrADS format files (control file and data file) are available.

(GrADS official website; <u>http://grads.iges.org/grads/head.html</u>) (GrADS tutorial on TCC; <u>http://ds.data.jma.go.jp/tcc/tcc/products/model/tips/tutorial.html</u>)

Using user input data (1)

- The time series data made by individual users is available in a dataset name "USER_INPUT".
 - The data must be **one-dimensional**.
 - For example, a correlation or regression coefficient map between single station data or user's original index and another dataset like JRA-55 can be created by this function.
- There are two ways for inputting data.
 - **UPLOAD_TXT** : Data are given by an uploaded text file.
 - **INPUT_DATA** : Data are directly input to the box.

Sample text file

#Daily temperature #undef = 9999 #element = Daily Ts 2013,07,01,23.6 2013,07,02,24.3 2013,07,03,24.5 2013,07,04,9999 2013,07,05,27.4 2013,07,06,28.9

<Data format>

- Data must be separated by commas and must be given by specified format as "year, month, day, value". In case of monthly data, "day"s are always given as "1".
- Sentences beginning with "#" have special meanings.
 - # : Comment (except for two cases shown below).
 - #undef = : Definition of missing data (default is -9999).
 - #element = : Data name used to save them on the server.

Using user input data (2)

Upload/input the data

Input the name to save them on the server, and click the "upload and save as" button. Control the uploaded data

Element	Input	txt	
lastused 🔹	1981,1,11,-19.5		
	1981,1,12,-20.9		
	1981,1,13,-17.8		
🗖 Vector 🗖 SD	1981,1,14,-21.6		
Derivative: 🗖 Ion 🗖 Iat	1981,1,15,-24.2		
	1981,1,16,-20.3		
	1981 1 18 -21 5		
	1981.1.1922.5		
	1981,1,20,-27.4		
	1981,1,21,-27.5		
	1981,1,22,-27.9		
	1981,1,23,-25.6		
	1981,1,24,-29		
	1981,1,25,-30		
	1981,1,26,-26.6		
	1981,1,27,-23.5		
	1981 1 20 22 0		
	Delete	Edit	
	Upload and save as	lastused	

- Select the data name and click "Delete" button to delete the data from the server.
- Click "Edit" button to edit the data in the box.

Integrated Exercise (2)

- Let's make a correlation map between monthly precipitation data you prepared and global SST anomaly for a specific calendar month(s). Set the period as appropriate.
 - Use "USER_INPUT" method. Set the confidence level **95%** (two side).

[Example] Station: Hong Kong Observatory Month: Dec-Feb Period: 1951/52 – 2016/17

Answers to Integrated Exercise (2)

Data₁ Don't forget! Dataset Element Data type Area Level Tim nt Showing period SST Sea Surface Data ALL 1 MONTHLY RANGE -ANOM Ŧ Ŧ -Ave Ave Vear-to-year 1951 - 2016 Temperature (SST) [C -Lat: -90 - 90 Time filter 12 - 2 -Ave Lon: -30 - 330 Vector SD Derivative: Ion Iat Set the period as appropriate. Analysis method: CORRELATION_COEFFICIENT -

Data2

]		
Dataset	Element	Input_txt	Time unit	Lag	Significance
USER_INPUT -	INPUT_DATA -	#station=""Hong Kong	MONTHLY -	0 👻 YEAR	 95%(two side)
USER_INPUT -	INPUT_DATA -	<pre>#station=""Hong Kong Observatory"",,, #WMOnumber=45005,,, #Precip,,, 1951,1,1,32.1 1951,2,1,24.4 1951,3,1,96.1 1951,4,1,172.5 1951,5,1,553.8 1951,6,1,560.9 1951,7,1,209.4 1951,8,1,480.5 1951,9,1,69.9</pre>	MONTHLY - Ave Year-to-year Time filter	ect confide "95% (two	ence level o side)".
		1951,10,1,82.7 1951,11,1,69.6 1951,12,1,12 1952,1,1,23.9 1952,2,1,30.1 1952,3,1,36.4 Upload			

Answers to Integrated Exercise (2)

• Setting Graphic Options.

Set "Drawing" "CONTOUR" to shade **Graphic Options** the grids exceeding Don't forget! confidence level. Colorizing: COLOR www.Contour Labels Drawing: CONTOUR Show Color Bar Image Format: png 👻 Set Contour Parameters for data1 Set contour line (i.e., interval: 0.1 min: -0.4 max: 0.4 correlation coefficient) Color Table: Blue - Red Set Vector size: [inch] value: skip: 1 properties. 90N 60N · 30N EQ · 30S 60S 90S 120W 6ÔE 120E 180 6ÓW Ó 93

Further Exercise

- How about other month(s)?
- How about relationships between other variables related to precipitation(like stream function, velocity potential, moisture flux, etc.)?
- How can you explain the relationship you found?
 - It is beyond this lecture.

To learn more about iTacs

- Online help page and tutorial manual are available on the iTacs website.
- **Tutorial:** http://extreme.kishou.go.jp/tool/itacs-tcc2015/

Help page: http://extreme.kishou.go.jp/itacs5/assets/help.html

iTacs (Interactive Tool for Analysis of the Climate Syste	Online help for iTacs				
Announcement	top Select parameters - Dataset - Element - Data type - Area - Level - Average period - Showing period Analysis method Graphic Option - Detailed Options for Image x number of grid points for dataset format for USER INPUT color bar sample				
 > 30 September 2016 - Isentropic potential vorticity of JRA-55 is available on iTacs. > 12 February 2016 - iTacs version 4.0 service has terminated. The new version of iT 	Dataset				
iTacs version 5.0 Tools > iTacs v5.0 Tutorial Manual > Sea surface temperature (SST) and anomalies > Daily mean SST anomalies > B50-hPa stream function	データセットを選択します。選択したデータセットによって「element」が変化します。 <u>USER_INPUTを用いたユーザー作成データの利用について</u> USER_INPUTを選択すると、ユーザーが用意したデータを取り込んで措面することが出 来ます。データをチキスト形式のファイルで用意する場合は、「-element2」でUPLOAD TXTを選択します。その後「UPLOAD_TXT」でファイルを選択して、uploadボタンを押す と、データを取り込む事が出来ます。 直接」Tacalごデータを打ち込む場合は、「-element2」でINPUT DATAを選択します。そ の後「input txt]にデータを打ち込む場合は、「-element2」でINPUT DATAを選択します。そ の後「input txt]にデータを打ち込む場合は、「-element2」でUPLOATAを選択します。そ の後「input txt]にデータを打ち込む場合は、「-element2」でUPLOATAを選択します。その の後「input txt]にデータを打ち込む場合は、「-element2」でNPUT DATAを選択します。そ の後「input txt]にデータを打ち込む場合は、「-element2」でCNPUT DATAを選択します。そ の後「input txt]にデータを打ち込む場合は、「-element2」でNPUT DATAを選択します。そ の後「input txt]にデータを打ち込む場合は、「-element2」でNPUT DATAを選択します。そ	Select the "Dataset" pull-down menu. JRA-55, SST and a variety of other datasets are available. <u>Using "USER INPUT"</u> Any time series data can be uploaded and used. There are two ways to set data. • UPLOAD_TXT: Data come from an uploaded text file. • INPUT_DATA: Data are directly entered in the box. See <u>format for USER INPUT</u> .			
 Difference of monthly mean SST anomalies 500-hPa height and anomalies Time-longitude cross section of 200-hPa velocity potential 925-hPa water vapor flux anomalies and specific humidity anomalies Interannual variation of monthly mean 850-hPa temperature Composite of SST anomalies in La Nina years Regression and correlation analysis One-month prediction Map options Edit user information 	データ要素を選択します。 要素が多い場合、大きなカテゴリとしてelement1、そのカテゴリ内で詳細な要素をelement2としています。 Vectorボックスをチェックすると、こつめのブルダウンリストが表示され、ベクトルを描くことができます。その際、X方向は上のブルダウンリスト、バ方向は下のブルダウンリストとなります。さらに、 Stream lineボックスをチェックすると、流線を描くことができます。 また、"マの横にあるテキストボックスに任意の数字を入れることにより、Yの値にその指定した数 をかけた値を表示します。 SDボックスをチェックすると表示規関行の指定要素の標準偏差を描画します。Vector機能とSD機 能は同時には使えません。 Derivativeの、lonボックスにチェックを入れると東西微分、latボックスにチェックを入れると南北微 分値を描画します。	Select "element1" or "element2". Available choices will be shown in each pull- down menu depending on the dataset selected. To enable vector map drawing, the "Vector" box must be checked. Another pull- down menu is then displayed to allow selection of another element. Select the X and Y components of the vector from the first and second menus, respectively. Stream-line is available except when the map area contains a pole. The value in the "x:" box is the multiple scale of the coefficient for the Y component. The default setting is 1.0. If the "SD" box is checked, a standard deviation map is provided to show the variability of the selected element. The "SD" and "Vector" boxes cannot be set at the same time. A derivative map is also provided to show the derivative (rate of variability or gradient) for the meridional ("lat") or zonal ("lon") direction of the selected element.			

Thank you for your attention!

If you are interested or have any questions, please feel free to contact us.

- TCC Web Site: <u>http://ds.data.jma.go.jp/tcc/tcc/index.html</u>
- TCC E-mail: tcc[at]met.kishou.go.jp

References

- Duchon, 1979: Lanczos Filtering in One and Two Dimensions, *J. Applied Met.*, **18**, 1016-1022.
- Gill, 1980: Some simple solutions for heat-induced tropical circulation. *Q.J.R. Meteorol. Soc.*, **106**: 447–462.
- Ishii et al., 2005: Objective Analyses of Sea-Surface Temperature and Marine Meteorological Variables for the 20th Century using ICOADS and the Kobe Collection. Int. *J. Climatol.*, 25, 865-879.
- Kobayashi et al., 2015: The JRA-55 Reanalysis: General Specifications and Basic Characteristics. *J. Meteorol. Soc. Japan*, 93, 5-48.
- Toyoda et al., 2013: Improved Analysis of Seasonal-Interannual Fields Using a Global Ocean Data Assimilation System, *Theoretical and Applied Mechanics Japan*, **61**, 31-48.

Useful Link

- iTacs
 - http://extreme.kishou.go.jp/tool/itacs-tcc2015/
- Analysis charts
 - http://ds.data.jma.go.jp/tcc/tcc/products/clisys/acmi.html
- Composite maps for El Niño / La Niña events
 - http://ds.data.jma.go.jp/tcc/tcc/products/clisys/enso_statistics/index.html

Supplement

Contour parameter and color table

 Changing intervals for contour/shading, you can easily see the above- and below-normal SST areas.

Area setting (1)

Setting boxes will appear in the "Area" field and after selection for more precise area adjustment.

Area setting (2)

DATA1 SST sst ANOM lat = -90:90 lon = -180:180 level = 1:1 time = 2015120100:2015120100 ave = 1MO Shift the area CPD/JMA 90N 60N Lat: -90 – 90 30N (90S) (90N) EQ Lon: -180 - 180 30S (180W) (180E) 60S 90S · 6ÓW 60E 120E 120 180 DATA1 SST sst ANOM lat = -45:55 lon = 100:300 level = 1:1 time = 2015120100:2015120100 ave = 1MO Change the area 50N · 40N 30N Lat : -45 – 55 20N 10N (55N) (45S) Lon: 100 - 300 10S 20S (300E=60W) (100E) 30S 40S 100E 120E 140E 160E 180 160W 14**0**W 120W 1000 80w

You can adjust zonal and meridional range by setting "Lat" and "Lon" parameters in the "Area" field.

Multiple Data

 In a similar way, users can also perform the four basic arithmetic operations of two data by using the corresponding analysis method.

Analysis method	Mapped value	Usage example
ADD	Addition ("Data1" plus "Data2")	_
SUBTRACT	Difference ("Data1" minus "Data2")	Time difference, vertical shear.
MULTIPLY	Multiplication ("Data1" times "Data2")	_
DIVIDE	Division ("Data1" divided by "Data2")	Precipitation ratios ("HIST" divided by "NORM"). 107

Time filter

- Time filter should be used to create a time series image in the climate analysis.
- Climatological events are emphasized by a time filter, because it can remove high frequency variations.

Checking "Time filter" box, you can select two types of the time-filter.

- Running mean: Smooth the original data simply.
- Lanczos filter: Pick up the given period component and mean them based on Duchon (1979).

Running mean daily timeseries

- 1. Select OLR anomalies for element boxes.
- 2. Select 10°S-10°N, 90°-150°E for "Area" box.
 - Check "Ave" boxes.
- 3. Select "DAILY" for time unit, and showing period.
 - Showing period: 1 May 2016 31 Aug. 2016.
 - Check "Time filter" in time unit box, and select "Running mean" and "5(day)" in "mean period" box.

5-day running mean daily timeseries of OLR anomalies

Time cross section Running mean longitude-time cross section

- Select 5°S-5°N mean
 200-hPa velocity
 potential anomalies.
- 2. Set 5-day running mean in "Time unit" box.

Longitude-time cross section of <u>5-day running mean</u> 200-hPa velocity potential anomalies averaged over 5°S–5°N from 1 May to 31 October 2015.

Daily timeseries

- 1. Select OLR anomalies for element boxes.
- 2. Select 10°S–10°N, 90°– 150°E for "Area" box.
 - The area covers the Maritime continent.
 - Check "Ave" boxes.
- 3. Select "DAILY" for time unit, and showing period
 - Showing period: 1 May 2016 31 Aug. 2016.
 - Similarly, you can draw monthly or annual timeseries by setting "Time unit".

111

Inter-annual timeseries

- 1. Select 200-hPa velocity potential anomalies for element boxes.
- 2. Select 10°S–10°N, 90°– 150°E for "Area" box.
 - The area covers the Maritime continent.
 - Check "Ave" boxes.
- 3. Select "MONTHLY" for time unit, and showing period
 - Check "Year-to-year".
 - Showing period: 1958 2016, 5 – 8.

Inter-annual timeseries of 4-month (May – August) mean 200-hPa velocity potential anomalies

Standard deviation map

 A standard deviation map is available to see the variability of the selected element over the selected period.

sst HIST lat = -45:55 lon = 100:300 level = 1:1 time = 1958120100:2016020100 ave = 58YR(3*1MO) DATA1 SST

For standard deviation, don't check "Ave" box.

The standard deviation of DJF averaged SST from 1958/59 to 2015/16.

Detailed Options

•There are a lot of visual options to create maps.

- Contour : Color, thickness, style, label etc.
 - Axis : Color, interval, style and others.
- Map : Color, resolution, style and others.

Select parameters Graphic Options	Detailed Options for Image 1
Graphic Options	For Image 1 Lower layer apply apply Default About Graphics
✓ Show Contour Labels Colorizing: COLOR ▼ Drawing: SHADE ▼ □ Set Contour Parameters for data1 Image Format: png ▼ Font: default ▼ Color Table: Rainbow ▼ ○ Set Vector size: ○ Set Vector size: ○ finch] value: ○ skip:	contour Style: label format: thickness: 1 size: 0.09 skip interval: contour line thickness: levels: color: thin contour: not to draw: - marker type: closed circle line style: solid color: black thickness: 6 grid style: none color: orange vector label vector head size: define rainbow color: color bar portrait X: Y: scale: 1.0
Check! Detailed Options fields are shown	About Axis
	For image 1 apply 114

Procedure of setting detailed options

1. Select target Lower layer: Data1 Upper layer: Data2 In the case of vector map Lower layer: Data2 Upper layer: Data1

<u>2. Set options</u> Set contour style, color, thickness, etc.

A <u>3. Apply the settings</u> Click the "apply" button	
Defore Subinit IS Clicke	-u.
About Graphics	
contour Style: default Color: rainbow Image: Color: Image: Color: <th>ral:</th>	ral:
marker type: closed circle line style: solid grid style: none color: orange vector label vector head size: define rainbow color: color: color bar portrait X: Y: scale:	
About Axis	
About Map	
For Image 1 apply	115

About Graphics: Contour color and label

 After selecting the layer, set color and label to change contour properties.

similar to shade color.

About Graphics: Color table

 Set levels and colors separated by comma in the boxes to define the color table by yourself. The color numbers are defined as the right table.

e.g.) levels:-2,-1,0,1,2 color: 4,11,5,7,12,2

For example, the color setting like the right map is more suitable to focus on the positive value.

About Graphics: grid style

About Axis: value

About Axis: Label sizeDefault sizeLabel size: 0.3

120

value:

About Map

• Map resolution, political boundaries are customizable in the "About Map" box.

political boundaries.

About Map	About Map
map 🗹 quality Iowres 💌	map 🗹 quality hires 💌
coast line style: solid color: black thickness: political boundaries (valid in 'mres' and 'bires')	coast I ne hires style: colid color: black thickness: 10 political boundaries (valid in 'mres' and 'hires')
style: none color: black hickness: DATA1 JRA-55 t37 ANOM lat = -10:50 lon = 60:160 level = 7:7	yle: solid color: dark-blue thickness: DATA1 JRA-55 137 ANOM lat = -10:50 long = 60:160 level = 7:7 time = 2015080100:2015080100 over = 1MO over = 1MO level = 7:7
 John John John John John John John John	Solution solution solution 50N 45N 40N 35N 30N 25N 20N 15N 10N 5N 15N 10N 5N 10N 5N 20N 15N 10N 5N 10N 5N 10N 5N 10N 5N 10N 5N 10N 10N 5N 10N 10N 10N 10N 10N 10N 10N 10
Ouality must be set "m	res" or "hires" to show

Notice about detailed options

- In iTacs, <u>the detailed options' settings are</u> <u>always saved per individual user IDs.</u>
 - If several people share <u>the same iTacs ID</u> and one of them changes some of detailed options, the changes will **influence the other people's use** of course.
 - Users must explicitly set detailed options again by themselves to return to the default settings.
 - Unlike the other settings such as element, period, analysis method, they cannot be shared by user parameter code.