

Information and Research Institute of Meteorology, Hydrology and Environment, NAMEM, MONGOLIA

Current status and future perspective of climate prediction over Mongolia

The 5th Session of the EASCOF, 8-10, November, 2017, Tokyo, Japan

A.Davaadorj, CH.Sarantuya, P.Gomboluudev and L.Oyunjargal Weather and Environmental, Numerical Modeling Research Division, IRIMHE, NAMEM

Outline

- Current status of Climate prediction
 - Plan for Types
 - Methods
 - Statistic methods
 - Dynamic methods
 - S2S project validation
- Further plan

Plan for type & content

Stations used in monthly and seasonal forecast (filled colors show topography)

Definition of the categories used in monthly and seasonal forecast, 1981-2010

Category	Temperature /ºC/, T	Precipitation /%/, P		
Above norm	T>+1	P>80		
Near norm	-1 <t<+1< td=""><td>50<p<80< td=""></p<80<></td></t<+1<>	50 <p<80< td=""></p<80<>		
Below norm	T<-1	P<50		

Plan for type & content

МОНГОЛ ОРНЫ Дулааны улирлын цаг агаарын Ерөнхий төлөв Weather Outlook for Warm season

Monthly forecast 20-23th every month In addition 3 months outlook

Seasonal outlook

2 times a year / Summer outlook in end of March Winter outlook in end of August /

Methods

Statistic methods

Dynamic methods

Development of the technology of NWPs

Development of NWPs

Dell PowerEdge R900 Server

	Хуучин	Шинэ		
	"Dell PowerEdge R900" Server	"Cray XE6m" Supercomputer		
Installation	2009.07	2011.11		
Core Number	24	768		
Core Type	8-Core Intel Xeon [®] 2.4 GHz	16-Core AMD Opteron(TM) 2.1 GHz		
Peak performance	~230 GFlops	6,457.2 GFlops		
Main Memory	64 GB (256 GB)	1.5 TB		
Capacity of Storage	15 TB	128 TB		
OS	Red Hat (RHEL) Linux 4	Suse (SLES) Linux 11		

Cray XE6m Supercomputer

Accuracy of monthly weather forecast

Subseasonal to Seasonal project validation over Mongolia

Model	Time- Range	Ens	Freq.	Hcst length	Hcst Freq	Ocean couplin g	Active Sea Ice	Case- 2015
ECMWF	0-46	10	2/weekly	Past 20 y	2/weekly	Yes	Planned	77
NCEP	0-34	40	4/daily	1999-2010	4/daily	Yes	Yes	334
CMA	0-45	4	daily	1992-now	daily	Yes	Yes	334
JMA	0-34	50	2/weekly	1981-2010	3/month	No	No	94
Met.Fr	0-60	51	monthly	1993-2014	monthly	Yes	Yes	7
ISAC-CNR	0-32	40	weekly	1981-2010	6/month	No	No	4
HMCR	0-63	20	weekly	1981-2010	weekly	No	No	47

S2S Model experiment /2015/

Taylor Diagram for Temperature

Taylor Diagram for Precipitation

Future Perspective

Were requested Climate Change Adaptation Project to Green Climate Fund. UNDP passed our project to Green Climate Fund. We plan to update our supercomputer Cray XC40 or Cray XC50, if this project will be begin.

Summary

Since 1987, meteorological service of Mongolia have started to produce the monthly weather forecast. The main method for long range weather prediction was solely synoptic method. As long range weather prediction is challenging issue, we needs to focus on not only seasonal prediction, but also climate analysis.

Since then, our researchers developed some classic statistical methods based on Multiple Linear Regression and Discriminant Analysis. In 2009, we developed two statistic downscaling methods one from APCC MME model output, and second one from TCC model outputs.

However, recent years our statistic methods is not enough for seasonal climate prediction. Therefore, we need new dynamic approach for long range weather prediction. In 2014, we started to run PNU model, but that is very expensive in term of computation and storage. Thus, we have not made it fully operation yet.

In the future, we are planning to run General circulation model. This year we have started to study and test Community atmosphere model.

Thank you for your attention