The Sixth Session of the East Asia Winter Climate Outlook Forum (EASCOF-6)

Seasonal Climate Outlook for coming winter of 2018/19 over Mongolia using dynamical model and statistical downscaling

Gerelchuluun Bayasgalan

Information and Research Institute of Meteorology, Hydrology and Environment, National Agency for Meteorology and Environmental Monitoring

> Seoul, Republic of Korea Nov 7-9, 2018

Contents

- Background
- Hindcast experiment of a CGCM
- Arctic impact
- Verification of prediction system
- Results
- Outlook for Winter 2018/2019

Background

Large scale climate variables (LCV)

26

Large scale temperature index (TI): TI is defined as area averaged (87-121E, 40-53N) monthly mean temperature at 2 meter from NCEP II.

Siberian high индекс (SHI): SHI is defined as area averaged (80-120E, 40-65N) monthly mean SLP from NCEP II

Data period: from 1981 to now

Background

Relationship between LCV's and local temperature in winter

Hindcast experiment of a CGCM

Time series of observed and predicted TI

Hindcast experiment of a CGCM

Time series of observed and predicted SHI

Artic Impact

Relationship between ASO SST/SIE and DJF TI/SHI

Artic Impact

MLR model based on AI and PI for TI and SHI

	TI _{MLR}								
Model	Sum of squares	df	Mean square	F	Sig.				
Regrssion	23.6	2	11.8	30.6	4.5×10^{-8}				
Residual	11.9	31	0.38						
Total	35.5	33	1.1						
R^2	0.66								
	SHI _{MLR}								
	SHI _{MLR}								
Model	SHI _{MLR} Sum of squares	df	Mean square	F	Sig.				
Model Regrssion	SHI _{MLR} Sum of squares 15.8	df 2	Mean square 7.90	F 12.43	Sig. 1.1×10^{-4}				
Model Regrssion Residual	SHI _{MLR} Sum of squares 15.8 19.8	df 2 31	Mean square 7.90 0.64	F 12.43	Sig. 1.1 × 10 ⁻⁴				
Model Regrssion Residual Total	SHI _{MLR} Sum of squares15.819.835.7	df 2 31 33	Mean square 7.90 0.64 1.1	F 12.43	Sig. 1.1 × 10 ⁻⁴				

Arctic Impact

Geopotential height at 500mb derived from MRL

Verification of prediction system

Correlation coefficients of observed and predicted indices with MDL, MRL and ANN

Verification of prediction system

Mean square skill score of observed and predicted indices with MDL, MRL and ANN

Verification of prediction system

Verification of T2m in deterministic and probabilistic prediction

Correlation coefficients

Ranked Probabilistic Skill Score

Results

SHI and aT2m prediction for winter 2018/2019

Outlook for 2018/2019

SHI expected to be weak in this winter according to dynamical and statistical model

Region	Temperature	Precipitation	Region	Temperature	Precipitation
	DEC			FEB	
W	0/-	-/0	W	0	+/0
С	-/0	+/0	С	0	0/+
E	0/-	+/0	Е	0	-/0
S	0	0	S	+/0	-/0
	JAN			DJF	
W	+/0	0	W	0	0/+
С	0	0	С	0	0/+
E	-/0	0/+	E	0/-	+/0
S	+/0	-/0	S	+/0	0/-

+	above	0	normal	-	below
---	-------	---	--------	---	-------