

Establishment and verification of China Multi-Model Ensemble prediction system version 2 (CMMEv2.0)

Wu Jie National Climate Center, CMA

6 November, 2023, Tokyo

Outlines

1. Backgrounds

2. Establishment and Product

3. Predictability Verification

4. Summary and discussions

The Target of Climate Prediction

Seamless Prediction: WWRP-WCRP

The Major Prediction Method

(Ren et al., 2023, AAS)

Based on dominant predictability sources, physical statistical models, dynamical models and dynamical-statistical method has been widely used for prediction
 Dynamical model has become the most important foundation for subseasonal to decadal prediction

S2S Database

BoM(ammc) d 0-62 T47L17 3*11 2/week fix 1981-2013 6/month	3*11
CMA(babj) d 0-60 CMA (babj) 4 2/week on the fly past 15 years 2/week	4
CNR- ISAC(isac) d 0-32 0.75x0.56 L54 41 weekly fix 1981-2010 every 5 days	5
CNRM(Ifpw) d 0-32 T255L91 51 weekly fix 1993-2014 4/month	15
ECCC(cwao) d 0-32 0.45x0.45 L40 21 weekly on the fly 1998-2017 weekly	4
ECMWF(ecmf) d 0-46 Tco639/319 L91 51 2/week on the fly past 20 years 2/week	11
HMCR(rums) d 0-61 1.1x1.4 L28 20 weekly on the fly 1985-2010 weekly	10
JMA(rjtd) d 0-33 Tl479/Tl319L100 50 weekly fix 1981-2010 3/month	5
KMA(rksl) d 0-60 N216L85 4 daily on the fly 1991-2010 4/month	3
NCEP(kwbc) d 0-44 T126L64 16 daily fix 1999-2010 daily	4
UKMO(egrr) d 0-60 N216L85 4 daily on the fly 1993-2016 4/month	7

Imperfections of model directly prediction

Base on ECMWF S2S model

OBS FCS (lead 3 weeks) ROCA

(Domeisen etal., 2022, BAMS)

Developing of Multi-Model Ensemble

NMME THE NORTH AMERICAN MULTIMODEL ENSEMBLE SubX BY THE NUMBERS Forecasts

Phase-L Seasonal-to-Interannual Prediction: Phase-2 toward Developing Intraseasonal Prediction

APCC

Table 1. The Participating Orga	anizations and Institutes in the APCC MME Prediction
Country	Organization/Institute
Australia	Australian Bureau of Meteorology (BoM)
Canada	Meteorological Service of Canada (MSC)
China	Beijing Climate Center (BCC)
	Institute of Atmospheric Physics of China (IAP)
Japan	Japan Meteorological Agency (JMA)
Korea	Korea Meteorological Administration (KMA)
	National Institute of Meteorological Research of Korea (NIMR)
	Seoul National University (SNU)
	Pusan National University (PNU)
Peru	Meteorological and Hydrological Weather Service of Peru (SENAMH
Russia	Main Geophysical Observatory of Russia (MGO)
	Hydrometeorological Centre of Russia (HMC)
Chinese Taipei	Central Weather Bureau of Chinese Taipei (CWB)
USA	Center for Ocean-Land-Atmosphere Studies (COLA)
	International Research Institute for Climate and Society (IRI)
	National Aeronautics and Space Administration (NASA)
	National Center for Environmental Prediction (NCEP)

A few MME systems of climate prediction have been developed in the world, which can provide MME seasonal forecasts (e.g., the NMME, EUROSIP and APCC-MME).

ECMWF

Operational	System	Effective hindcas			
from	ECMWF	Met Office	Météo-France	NCEP JMA	period
September 2012	4	7	3	2	1991-2010
December 2012	4	8	3	2	1991-2010
January 2013	4	8	4	2	1991-2010
July 2013	4	9	4	2	1991-2010
July 2014	4	10	4	2	1991-2010
July 2015	4	11	4	2	1991-2010
June 2016	4	11	5	2	1991-2010
july 2016	4	12	5	2	1991-2010
March 2017	4	12	5	2 2	1991-2010

- Single model prediction is inevitably affected by the uncertainty from initial condition and physical process
- NMME, ECMWF, APCC has build up MME prediction system

Krishnamurti et al., 1999, Science; Kirtman etal, 2014, BAMS; Mishra etal., 2019, CD)

Advantages of MME (e.g. NMME)

0.8 0.9

Improve the reliability for probabilistic prediction

Provide skillful prediction for extreme event
Achieve the common deficiencies for model update

(Kirtman etal, 2014, BAMS; Becker etal, 2014 JC)

Prediction skills of SubX

Questions and Challenges

- Number of Chinese domestics dynamical models have been developed recently (CMA, IAP, NUIST, FIO et al), most of them optimize the simulation over East Asian specifically
- It is necessary to establish China Multi-Model Ensemble (CMME) system and focus on the prediction skill of East Asian especially

Outlines

1. Backgrounds

2. Establishment and Product

3. Predictability Verification

4. Summary and discussions

Introduction of CMMEv2.0

Based on several domestic operationally-run climate models and internationally imported data, Beijing Climate Center has established the China Multi-model Ensemble Prediction System(CMME). It consist of 4 sub-systems and provides the prediction and verification products of basic climate elements such as temperature and precipitation, as well as the primary climate variability modes.

2.1 CMME-S2D sub-system

- CMME-S2D subsystem consists of 9 climate models, (6 domestic running models and 3 internationalal import data model) 207 ensemble members.
 - CMME-S2D provides the monthly and seasonal prediction products of the air temperature, precipitation and sea surface temperature in the next six months. (currently)
- Compared to CMMEv1.0, 3 new models (CAMS, NUIST, JMA) are added and EC model has been updated to S5

模式 Models	机构 Organization	大气分辨率 Atmosphere Resolution	海洋分辨率 Ocean Resolution	集合数 Ensemble Size	预报时长(月) Forecast lead month
BCCCSM1.1m	国家气候中心 BCC	T106, L26	1/3°~30km, L40	24	13
FGOALS-f2	大气所 IAP/CAS	1×1, L32	1×1, L50	35	6
FGOALS-s2	大气所 IAP/CAS	R42, L26	1×1, L30	4	6
NZC-PCCSM4	大气所 IAP/CAS	2.5×1.9, L26	1×1	8	6
CAMS-CSM	气科院 CAMS	T106, L31	1×1, L50	8	6
NUIST	南信大 NUIST	T106, L19	2×2(赤道0.5), L40	9	24
ECMWF-S5	欧洲中心 ECMWF	T319, L91	ORCA 0.25, L75	15	6
NCEP-CFSv2	美国国家环境预报中心 NCEP	T126, L64	1×1, L40	4	10
JMA-CPS3	日本气象厅 JMA	TL319, L100	0.25 x 0.25, L60	100	6

Initialization of domestic running models

- For the 3 domestic running models (FGOALS-f2, FGOALS-s2 and NZC-PCCSM4), the Newtonian relaxation Nudging is used to assimilate atmospheric and oceanic reanalysis data. The standard isobaric surface wind field, temperature field and altitude field data of CRA-40 reanalysis were selected for the atmospheric assimilation, and multi-layer ocean temperature data of GODAS reanalysis data were selected for ocean assimilation.
- The assimilation time window of atmospheric reanalysis is 6 hours, and that of ocean data is 1 day. The lagged averaged forecast (LAF) method is used to generate the ensemble members.

Products of CMME-S2D sub-system

- Predictand: T2m anomaly, Precipitation anomaly percentage, SST anomaly
- Multi-timescale (Month and Rolling-seasonal) and Multi-domains (Global, Continent and China) ensemble prediction (9 single models and 1 ensemble mean)
- The products are real-time updated monthly on the NCC official website.

http://cmdp.ncc-cma.net/pred/cn_cmme_s2d.php?cmmeCat=CMME-S2D

Probabilistic Prediction (new!)

Threshold of prec tercile

Use 3 models (BCCCSM、JMA_CPS3、NUIST) and 53 members
 Identified tercile threshold based on the hindcast of each model
 Plot AN, BN and NN according to the similar neritics of NMME

Prediction on DJF(23-24) ini from OCT

Forecast: lead 2 month (issue at 202310)

2.2 CMME-S2S sub-system (new!)

Products of CMME-S2S

中国多模式集合预测系统 (CMMEv2.0)

Next month prediction

Prec. Anomaly Percentage for 202206 Ini. date: 20220526

Ten-days prediction

Pentad Prediction

150°W

120°W

30°W

00°

http://cmdp.ncc-cma.net/pred/cn cmme v2.php?cmmeCat=CMME-S2S

-20 -10 0 10 20 50 100 200

Dynamical-Statistical Prediction Model (DSPM)

Establish DSPM for each sub-region in summer and winter

Predictor: HGT, UWND, SHUM, OLR, SLP et al

The subseasonal couple evolution mode

OLR vs PREC winter

Prediction skills and sources of DSPM

Skill improvements (DSPM-BCC)

2.3 CMME-CPPS sub-system (improve!)

Climate Phenomenon Prediction System (CPPS):

- **D** System off ENSO Monitoring, Analysis and Prediction (SEMAP)
- □ ISV/MJO Monitoring and Prediction System (IMPRESS)
- □ Mid-high-latitude-polar Atmospheric TEleconnections and Sea ice-snow variations (MATES)
- □ A prediction system of Primary East-Asian Circulation pattErns (**PEACE**)

(Ren etal, 2017, JMR)

CMME-ENSO

90%-100%

80%-90%

70%-80%

60%-70%

50%-60%

40%-50%

30%-40%

20%-30%

10%-20%

00%-10%

Deterministic Prediction

this winter (2.0C)

Provide multi-model deterministic and probabilistic prediction **Grouped** by fully coupled GCM, intermediate coupled model, statistical-AI based models and Hybrid dynamical-statistical models It shows a medium-strength El nino event will be formed during

China Multi-Model Ensemble (CMME): ENSO Probability Prediction Niño3.4 Index Forecasts 202309-202408 Issued on 20230925

Probabilistic Prediction

Participant Models or Methods

	Fully coupled GCMs (CGCMS)	模式名称	所属单位
	BCC CSM1.1m	BCC_CSM1.1m	国家气候中心(NCC)
		CAMS_CSM	中国气象科学研究院(CAMS)
	$$ FGOALS_f2_1.3 $$ FGOALS_s2	FGOALS-f2_1.3	中科院大气物理研究所(IAP)
	-+ FIO CPS2.0	FGOALS_s2	中科院大气物理研究所(IAP)
	FU CGCM	FIO_CPS	自然资源部第一海洋研究所(FIO)
		FU_CGCM	复旦大学(FU)
		IAP_CIESM	中科院大气物理研究所(IAP)
		NUIST_CFS	南京信息工程大学(NUIST)
	Intermediate coupled models (ICMs)	NZC_PCCSM4	竺可桢-南森国际研究中心(NZC)
	-O- IAP ENSO EPS	IAP_ENSO_EPS	中科院大气物理研究所(IAP)
		IOCAS_ICM	中国科学院海洋研究所(IOCAS)
		LASG_NFSV-ICM	中科院大气物理研究所(IAP)
	Statistical & Al-based models	SIO_ICM	自然资源部第二海洋研究所(SIO)
		BCC_RZDM	国家气候中心(NCC)
	FU-IAP ASCSM	FU_IAP_ASCSM	复旦大学(FU)
	─▲ NTU TEEM ─▲ NUIST AI	NTU_TEEM	台湾大学(NTU)
e	Sbrid dynam-statis models	NUIST_AI	南京信息工程大学(NUIST)
	(HDSMs)	BCC_ADEPS	国家气候中心(NCC)
1	BCC ADEPS CAMS CLIM	CAMS_CLIM	中国气象科学研究院(CAMS)
,	Change OF The State		

CUG CMA SPPM

中国地质大学 武汉(CUG)

CUG-CMA SPPM

http://cmdp.ncc-cma.net/pred/cn_cmme.php?Elem=CMME-ENSO

(Dr. Ren Hong-Li)

Products of other CPPS

中国多模式集合预测系统 (CMMEv2.0)

http://cmdp.ncc-cma.net/pred/cn_cmme_v2.php?cmmeCat=CMME-CPPS

Outlines

1. Backgrounds

2. Establishment and Product

3. Predictability Verification

4. Summary and discussions

Extraction of Dominant SST patterns

• EOF2

- EOF1
- The spatial distributions of EOF1 are generally well captured even at 3-month lead time
- The explained variances are larger than obs

 Most models can capture the CP ENSO, except for a westward shift of maximum positive SSTA

PC2 Time Series DJF

Prediction skills of Niño Index

Correlation skills of CMME for Niño3.4 index reach 0.87 at 6-month lead, and reach 0.77 and 0.75 for EP and CP ENSO index, which are higher than all individual models
 The spring prediction barrier still exist, but become relieved than single model

Prediction Skills of dominant ocean modes

Skill of IOBM for different ini months

Prediction skills for PREC anomaly

CFSv2(0.04)

FGOALS-s2(0.04)

PCCSM4(0.04)

TCC skills over East Asian (Land)

CAMS(-0.01)

FGOALS-f(0.08)

120E NUIST(0.04)

150E

90% 95% 99% 0.6

150E CMME(0.10)

0.8

0.7

The skill of CMME is better than any single model, especially over East Asian

Real-time Verification of CMME

Prediction skills for T2m anomaly

- Skill of CMME is higher than each single mode and persistent prediction, es over Mid-high latitude
- The predictions that target on Oct to Jan are higher than the other months

Interannual variation of Prediction Skills

- Interannual variations of PCC skills are depended on the amplitude of ENSO event
- CMME can better capture the modulations of ENSO event, but model tend to over-estimate the influence of ENSO

Yearly variation of PCC and abs(Niño3.4)

Regression of DJF PREC against Niño3.4

Predictability sources of East Asian

Yearly variation of PCC over EA and abs(Niño3.4)

Indo-western Pacific ocean capacitor (IPOC) effect

Xie et al

Predictability sources of East Asian

Skill differences between CMMEv2 and v1

- Compared to its previous version, the improvement of T2m over tropics are more significant
- The PREC skill over East Asia during JJA has also been enhanced

1208

0

-0.2

-0.8

-0.6

-0.4

0.2

0.4

60E

0.6

0.8

T2m Ini Sep fcs DJF

305

Skill Dependence on Ensemble members

- Question: Whether the ensemble model numbers should be further increased?
- The best skills become saturation after the ensemble models increased to 5-6 models, but the median skill of random ensemble mean is still increasing
- The **optimal sub-group ensemble** of 5-6 models could have better skill than 9-model equalweighted ensemble mean

Dependence of MME skills on the numbers of models for 3-month lead JJA PREC

Prediction Skills of CMME-S2S

d) NCEP (FCS 1)

100°E

100°E

100°E

100°E

100°E 120°E

(t) NCEP (FCS 5)

(p) NCEP (FCS 4)

(I) NCEP (FCS 3)

(h) NCEP (FCS 2)

120°E

120°E

120°E

120°E

80°E

80°E

80°E

80°E

80°E

(x) NCEP (FCS 6)

100°E

120°E

50°N

50°N

50°N

50°N

50°N

50°N

100°E

100°E

100°E

100°E

100°E

120°E

120°E

120°E

120°E

120°E

) RPSS-NCEP (FCS 1)

(h) RPSS-NCEP (FCS 2)

100°E

100°E

100°E

(t) BPSS-NCEP (ECS 5)

100°E

(x) RPSS-NCEP (FCS 6)

100°E

(p) BPSS-NCEP (ECS 4

(I) RPSS-NCEP (FCS 3)

120°E

120°E

120°E

120°E

80°E

80[°]E

80°E

80°E

80°E

80°F

MSSS of pentad PREC FCST (a) MME (FCS 1) 50°N 50° 50°N 40° 30°№ 20°N 80°E 100°E 120°E 80°E 100°E 120°E 80°E (e) MME (FCS 2) (f) BCC (FCS 2) (g) Fgoals f2 (FCS 2) 50°N 50°N 50°N 30° 20°N 80°E 100°E 120°E 80°E 100°E 120°E 80°E (I) MME (FCS 3) (j) BCC (FCS 3) (k) Fgoals f2 (FCS 3) 50°N 50°N 50°N 20°N 80°E 100°E 120°E 80°E 100°E 120°E 80°E (m) MME (FCS 4) (n) BCC (FCS 4) (o) Fgoals f2 (FCS 4) 50°N 50°N 50°N 20° 80°E 100°E 120°E 80°E 100°E 120°E 80°E (a) MME (FCS 5) (r) BCC (FCS 5) (s) Fgoals f2 (FCS 5) 50°N 50° 50°N 30° 20°N 80°E 100°E 120°E 80°E 100°E 120°E 80°E (w) Fgoals_f2 (FCS 6) (u) MME (FCS 6) (v) BCC (FCS 6) 50°N 50°N 50°N 20° 80°E 100°E 120°F 100°E 120°E 80°E 80°E

Improve the probabilistic skill significantly

100°E

(s) RPSS-Faoals f2 (FCS 5)

100°E

100°E

120°E

120°E

0.1

Probabilistic Skill of CMME-S2S

Reliability Diagram and Frequency Histogram

Under longer forecast lead time. MME still exhibit higher prediction Reliability

Verification of MME prediction of MJO

Skill verification of realtime MJO perdition

Contribution of model diversity and ensemble members

Establishment of CMME-VECOM Sub-system

- VECOM provide hindcast and realtime verification product of PREC, T2m, SST, and dominant climate phenomenon (ENSO, MJO, IOD, WPSH, EASM etal)
 Deth of deterministic and much shilistic werification method and
- Both of deterministic and probabilistic verification method are applied for CMME models

Verification Products of Hindcast and realtime

监测与诊断

陆面(积雪)

预测与检验

预测会商

灾害与影响

气候服务

科研质目

Outlines

1. Backgrounds

2. Establishment and Product

3. Predictability Verification

4. Summary and discussions

1) System Establishment: The China Multi-Model Ensemble (CMME) prediction system has been established and updated to its second version (CMMEv2.0), which include 4 subsystems (CMME-S2D, CMME-S2S, CMME-CPPS and CMME-VECOM 4). Dynamical-statistical method has also been developed to further improve the prediction skills. 2) Skill verification: Compared to SME, MME effectively reduce the prediction uncertainty and improved the reliability for deterministic and probabilistic prediction. The skills for Niño3.4 reach 0.87 at 6-month lead and above 27 days for MJO 3) Predictability sources: The predictability sources mainly come from ENSO, but also from NIO for East Asian. Both of the increasement of model diversity and ensemble members contribute to the skills improvement of MME, especially for the former one.

Further Development of CMME

Combined with ML and DL model

- Combine MME with artificial intelligence methods such as machine learning and deep learning,
- Build model error correction, optimal ensemble and intelligent downscaling schemes.
- Form **seamless** (subseaonal to decadal) intelligent grided climate prediction products.

Thank you

The major prediction method

次季节-季节-年际尺度一体化气候模式预测业务系统 Beijing <u>Climate Center Climate Prediction System version 3</u> (BCC-CPSv3)

- Based on dominant predictability sources, physical statistical models, dynamical models and dynamicalstatistical method has been widely used for prediction
- Dynamical model has become the most important foundation for subseasonal to decadal prediction S2S Database

status on 2019-11-11	Time range	Resolution	Ens. Size	Frequency	Re-forecasts	Rfc length	Rfc frequency	Rfc size
BoM(ammc)	d 0-62	T47L17	3*11	2/week	fix	1981-2013	6/month	3*11
CMA(babj)	d 0-60	CMA (babj)	4	2/week	on the fly	past 15 years	2/week	4
CNR- ISAC(isac)	d 0-32	0.75x0.56 L54	41	weekly	fix	1981-2010	every 5 days	5
CNRM(lfpw)	d 0-32	T255L91	51	weekly	fix	1993-2014	4/month	15
ECCC(cwao)	d 0-32	0.45x0.45 L40	21	weekly	on the fly	1998-2017	weekly	4
ECMWF(ecmf)	d 0-46	Tco639/319 L91	51	2/week	on the fly	past 20 years	2/week	11
HMCR(rums)	d 0-61	1.1x1.4 L28	20	weekly	on the fly	1985-2010	weekly	10
JMA(rjtd)	d 0-33	Tl479/Tl319L100	50	weekly	fix	1981-2010	3/month	5
KMA(rksl)	d 0-60	N216L85	4	daily	on the fly	1991-2010	4/month	3
NCEP(kwbc)	d 0-44	T126L64	16	daily	fix	1999-2010	daily	4
UKMO(egrr)	d 0-60	N216L85	4	daily	on the fly	1993-2016	4/month	7

Prediction Skills of dominant ocean modes

Skill of IOBM for different ini months

