Operational system and Future plan of JMA's Seasonal Forecast models

Kazutoshi Onogi Climate Prediction Division Japan Meteorological Agency

2011.11.10 TCC

Contents

- 1. Seasonal forecast models
 Current status
 Future plan
- 2. JRA-55 reanalysis

Currently Operational JMA's Medium-range to Seasonal Prediction Systems

Specifications of the NWP EPS system for 1-month forecast

Model	JMA AGCM		
Horizontal resolution	TL159 (reduced Gaussian grid)		
Vertical Layers	60 (Top Layer Pressure:0.1hPa)		
Time integration range	One-month forecast: 34 days Early Warning Information: 17 days		
Ensemble size	50 members		
Perturbation method	Breeding Growing Mode (BGM) & Lagged Average Forecast (LAF) method		
SST	Persisted anomaly		
Land surface Parameters	Initial conditions of land parameters are provided by a land surface analysis system. Observation of snow depth reported in SYNOP is assimilated.		

Improvement of 1-month forecast score

ACC of geopotential height at 500 hPa in NH for 1-month forecast

Initial time

Specifications of the NWP model for Long-range forecast

Model	JMA/MRI-CGCM	
Horizontal resolution	AGCM: TL95 (about 1.875 ^o Gaussian grid ~180km) OGCM: 1.0deg in Ion. X 0.3-1.0 deg in lat.	
Vertical Layers	AGCM: 40 (Top Layer Pressure:0.4hPa) OGCM: 50	
Time integration range	7 months	
Executing frequency	Every five days (9 members for each initial date)	
Ensemble size	51 members from six different initial dates.	
Perturbation method	Breeding Growing Mode (BGM) & Lagged Average Forecast (LAF) method	
SST	One-tiered method	
Land surface Parameters	Climatology	
Initial field	JCDAS (CDAS based on JRA-25 DA system)	

Coupled Ensemble Prediction System

Improvement by CGCM (Atmosphere)

Anomaly Correlation Coefficient of Steam function at 850 hPa

Comparison of SST forecast for NINO3.4 region

(Anomaly Correlation Coefficient)

NINO.3.4 region: 120W-170W, 5S- 5N

Jin E. K., James L. Kinter III, B. Wang, C.-K. Park, I.-S. Kang, B. P. Kirtman, J.-S. Kug, A. Kumar, J.-J. Luo, J. Schemm, J. Shukla and T. Yamagata, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim. Dyn., 31, 647–666.

Model development plan and schedule

AGCM and CGCM plans

- Improving precipitation forecast skill in the tropics
- AGCM (to be implemented around 2013)
 - □ Higher resolution (TL159L60 \rightarrow TL319L100)
 - Improvement of physics (cloud, radiation, convection, land surface, ...)
 - Stochastic Physics for initial perturbation
 - Sea Ice anomaly (investigation)
 - Weekly-Monthly seamless system
- CGCM (to be implemented around 2014)
 - □ Sea Ice model (investigation)
 - □ Higher resolution (TL95L40 \rightarrow TL159L60)
 - □ Improvement of physics
 - □ Including polar region (> 75 lat.) in the ocean model

Weekly-Monthly seamless EPS (plan)

 Currently Weekly and Monthly ensemble prediction systems are separated.
 Weekly : NPD, Monthly : CPD

Development toward a seamless forecast system

Japanese 2nd reanalysis JRA-55

JRA-55 (JRA Go! Go!)

- It covers 55 years, extending back to 1958, when the global radiosonde observing system was established.
- Many of the deficiencies found in the first Japanese reanalysis JRA-25 have been improved.
- It aims at providing a comprehensive atmospheric dataset that is suitable for studies of climate change or multi-decadal variability, by producing a more timeconsistent dataset for a longer period than JRA-25.

An interim report of JRA-55 (Ebita et al. 2011) is available from http://www.jstage.jst.go.jp/article/sola/7/0/7_149/_article/-char/ja/

Comparison between JRA-25 and JRA-55

	_	_
	JRA-25	JRA-55
Reanalysis years	1979-2004	1958-2012
Equivalent operational NWP system	As of Mar. 2004	As of Dec. 2009
Resolution	T106L40 (~120km) <i>(top layer at 0.4 hPa)</i>	TL319L60 (~60km) <i>(top layer at 0.1 hPa)</i>
Assimilation scheme	3D-Var	4D-Var (with T106 inner model)
GHG concentrations	Constant at 375 ppmv (CO_2)	Annual mean data is interpolated to daily data (CO2,CH4,N2O)
	Onogi et al. 2007 (JMSJ)	Ebita et al. 2011 (SOLA) (as an interim report)
		To be completed in 2013

Improvement of vertical profiles

Vertical profiles of global mean bias and RMS difference between radiosonde temperature measurements and the background (solid lines) and analyzed values (dotted lines) from JRA-25 (black) and JRA-55 (red) for January 1981.

Forecast Scores

Time series for RMS of 2-day forecast of geopotential height at 500 hPa for NH (top) and SH (bottom)

Potential vorticity at 350K isentropic level

Thank you !