Exercise for Guidance

TCC Training Seminar on Application of Seasonal Forecast GPV Data to Seasonal Forecast Products 18-21 January 2011

Objectives

- To understand how to make guidance for seasonal-mean temperature and precipitation.
- To find out effective predictors.
- To make more accuracy guidance.

Procedure

- 1. Single Regression Model
- 2. Multiple Regression Model
- 3. Probabilistic Forecast
- 4. Verification
- 5. Create a presentation
- 6. Presentation (5 minutes)

Today Tomorrow

The day after tomorrow

Preparations

- Observation data (yourself)
- **Predictors** (init. 1st May for JJA, 28th Oct for DJF)
 - GPV data over your stations [GPVdata.xls]
 - Indices such as NINO3SST, Asia Monsoon, etc.

 [indices.xls]
- Textbook [Exercise for Guidance.doc]

Indices

- Open the ExerciseForGuidance.xls.
- Paste observation data on a Temperature/Precipitation worksheet.

Temperature/Precipitation worksheet

- Calculate the power of 1/4 for normalization in case of precipitation.
- Calculate normal from 1979 to 2008.

- Open GPVdata.xls and indices.xls.
 Predictors
- Select a predictor and paste E line. In case of temperature, paste D line.

In case of Tokyo, ACC is near zero. So I try the other predictors.

- Try using the other predictors.
- We can find out more effective predictor for Tokyo. It is the Indian Ocean SST.

Let's try to look for most effective predictor for your country.

• Calculate the forecasts using single regression equation.

× M	licrosoft Excel - Exercis	eForGuidance									
1991	ファイル(F) 編集(E)	表示(V) 搏	入(I) 書式(O)	ツール(T) データ	7(D) ウィンドウ	ナ(W) ヘルプ	(H)				
:											
: LI			8 43 🗳 • 父 1	•) • (= • 😸)	Σ - 2↓ %↓ ₩	100%	<u> </u>	MS PLS	~9 <i>0</i>	• 11 • B	
	H4 🔻	f≈ =\$E\$ 3	35*\$E4+\$E\$36								
	A	B	С	D	E	F	G	Н	I	J K	
1			Observation					Fore cast		Probabilistic Forecast	
2	Y	ear Target	Precipitation	power of 1/4	Predictor 1	Predictor 2	Predictor 3	Xs	power of 4	σn"2 N(Xs, σn)	
3		JUA/DJI	- deg mm	deg mm 0.25	IOBW SST			1.00	· 、	Prob. of above-normal	
4	13	90 LIA	200	4.0	-0.01			4.00			
6	10	01 I IA	403	4.0	-0.03			4.00			
7	19	82 . LIA	517	48	0.06			4.59			
8	18	AUL E8	506	4.7	016			4.49			
9	19	184 JUA	315	5 4.2	-0.16			4.80			
10	18	85 JUA	642	2 5.0	-0.19			4.83			
11	19	86 JUA	508.5	5 4.7	-0.19			4.83			
12	18	87 JUA	312.5	5 4.2	0.29			4.37			
13	18	AUL 88	697.5	5 5.1	0.06			4.59			
14	18	AUL 98	719.5	5.2	-0.2			4.84			· · · · ·
15	18	AUC US	300.5	4.2	0.03			4.62		 Calculate the 	torecasts using single
17	10	02 I IA	902	4.0	0.04			4.01			, iorocasts asing single
18	19	93 JUA	988.5	56	-0.03			4.68			
19	18	94 JUA	330.5	4.3	-0.09			4.74	≻	rogrossion of	nuation
20	19	95 JUA	387.5	5 4.4	0.03			4.62		IEGIESSIULI EU	
21	18	96 JUA	321	4.2	-0.01			4.66		U	•
22	19	97 JUA	499.5	5 4.7	0.03			4.62			
23	18	98 JUA	450.5	5 4.6	0.36			4.30			
24	18	AUL 99	835.5	5 5.4	-0.27			4.91		- Innut "=\$F\$3	$5 \times \text{SP} 4 + \text{SP} \text{S} 6^{\prime\prime}$ at H4
25	20	AUL UU	767.5	5.3	-0.2			4.84			$\frac{1}{2}$
20	20	101 JUA 102 LIA	322.0	4.2	0.04		-	4.01		-	
28	20	103 JUA	642.5	50	0.03			4.62			
29	20	04 JJA	215.5	3.8	-0.06			4.71			
30	20	105 JUA	607.5	5.0	0.16			4.49			
31	20	06 JUA	429.5	5 4.6	-0.06			4.71			
32	20	107 JUA	342.5	5 4.3	0.14			4.51			
33	20	08 JUA	661	5.1	-0.21			4.85			
34	Normal			4.6					•		
35	Cingle Degrai-		Slope		-0.97	#DBV/O	#DIV/0!				
30	angle Regression		Correlation		4.05	#DIV/0	#DIV/0				
38			Soffelation		0.33	#01970	#D1070	-			
39			slope		#VALUE	#VALUE	#VALUE				
40	Multi Regression		intercept		#VALUE						
41			Correlation		#DIV/0!						
42											
43											
44											
45											
40				-			-				
47							1				
49											
14 4	▶ N \Temperature \	Precipitation,	/ · · · · ·							1	
172	<u>الا</u>										
- - 4		<u> </u>									

- Calculate power of 4 on I line in case of precipitation.
- You can see a time series line chart. Red line indicates the forecasts.

× Mi	crosoft Excel - ExerciseFo	rGuidance																				
9	ファイル(E) 編集(E) 表	示(⊻) 挿入	(<u>I</u>) 書式(<u>O</u>) %	ソール(<u>エ</u>) データ	7(<u>D</u>) ウィンド	ウ(<u>₩</u>) へレプ(<u>H)</u>										di,	顧問を入力して	ください			•_ # ×
	🛎 🖬 🖪 🕘 🖪 🗳	🍄 📖 🐰	🗈 😤 • 🛷 🔤	9 - (* - 😣 🤉	ε - ≩↓ Ζ↓ μ	4 100%	- 0	MS Pゴシ	ック		• 11 •	BI		🔤 📑 %	· .00 .00	读读	III • 🗞 • 🛛	A -				
-	I4 👻	f ≈ =H4^4																				
	A	В	С	D	E	F	G	н	I	J	K	L	M	N	0	Р	Q	R	S	T	U	V T
1			Observation					Forecast			Probabilistic Forecast											- Â
2	Year	Target	Precipitation	power of 1/4	Predictor 1	Predictor 2	Predictor 3	Xs	power of 4	ơ n^2	N(Xs, of n)											
3		JUA/DJF	deg mm	deg mm^0.25	IOBW SST						Prob. of above-normal	_										
4	1979	JUA	256	4.0	-0.01			4.66	470.8													
5	1980	JUA	543	4.8	0.05			4.60	447.6							٦	ime Seri	es of fore	ecast and	lobserva	ion	
6	1981	JUA	403	4.5	-0.03			4.68	478.7													
7	1982	JUA	517	4.8	0.06			4.59	443.8				1200									
- 8	1983	JUA	508	4.7	0.16			4.49	407.3													
9	1984	JUA	315	4.2	-0.16			4.80	532.8													- 90%
10	1985	JUA	642	5.0	-0.19			4.83	545.9				1000				•					I
11	1986	JUA	508.5	4.7	-0.19			4.83	545.9								8					- 80%
12	1987	JUA	312.5	4.2	0.29			4.37	363.2										•			- 70%
13	1988	JUA	697.5	5.1	0.06			4.59	443.8				800				-H		-			- 10%
14	1989	JUA	719.5	5.2	-0.2			4.84	550.3							-	- 11		11			- 60%
15	1990	JUA	300.5	4.2	0.03			4.62	455.2							I	- 11		1 \	t		1
16	1991	JUA	452	4.6	0.04			4.61	451.4				600		$-\Lambda$	1.	- 1 1			- A-	*	50%
17	1992	JUA	357.5	4.3	0.16			4.49	407.3				1 1			$I \Lambda$			ΠN	_ /\ _	Λ	1 100
18	1993	JUA	988.5	5.6	-0.03			4.68	478.7				···· /	$\nabla $		11 🕨			V 1	4r	\sim	- 40%
19	1994	JUA	330.5	4.3	-0.09			4.74	503.1				400	• • (1 1				\vee			30%
20	1995	JUA	387.5	4.4	0.03			4.62	455.2				1/		¥ ¥	· ¥		* *		* \/	•	00.0
21	1996	JUA	321	4.2	-0.01			4.66	470.8											¥		- 20%
22	1997	JUA	499.5	4.7	0.03			4.62	455.2				200									
23	1998	JUA	450.5	4.6	0.36			4.30	341.1													- 10%
24	1999	JUA	835.5	5.4	-027			4.91	582.0													08
25	2000	JUA	/6/.5	5.3	-0.2			4.84	550.3					- 0 0	4 W O P		- 0 0 .	4 6 9 7		- ~ ~ +	юøр	
26	2001	JUA	322.5	4.2	0.04			4.61	451.4				93	888	868686	8886	66666	66666	880	8888	888	8
27	2002	JUA	395.5	4.5	0.09			4.50	432.0											20000	0 0 0	~
28	2003	JUA	642.5	5.0	0.03			4.62	455.2													
29	2004	JUA	215.5	3.8	-0.06			4./1	490.8													
30	2005	LIA	607.5	5.0	0.16			4.49	407.3				-				-					
00	2006	LIA	429.5	4.0	-0.06			4.71	490.8			-	-				-					
32	2007	LIA	342.5	4.0	=0.21			4.01	554.7													
24	2000 Normal	oon	001	0.1	-021			4.00	004.7								-					-
04	NUTTIAN			4.0	1					±1+												

Questions

- 1. What predictor do you select?
- 2. Can you get an accuracy guidance?
- 3. How does its guidance predict the hottest/coldest/drought/wet year in your country?

• Try to look for most effective combination of predictors.

) 3 3	x 120 🕫	🗈 🛍 • 🕩 🔊	- (* - 😣 X	• 21 X1 1	4 100%	- 0	MS Pゴシ	ック		• 11 • B						
•	\land IOBW S	IST														
A	В	C	D	E	F	G	н	I	J	K						
Year	Target	Diservation Precipitation	ower of 1/4	Predictor 1	Predictor 2	redictor 3	Forecast Xe	rower of 4	σn ²	N(Xs_din)						
188	JUA/DJF	deg mm d	leg mm^0.25	IOBW SST	2030	INCS SST		10 NOT 01 4	0112	Prob. of above-normal						
1979	JUA	256	4.0	-0.01	-1.61	-0.01	4.66	470.8								
1980	JUA	543	4.8	0.05	1.93	0.48	4.60	447.6								
1981	JUA LIA	403	4.5	-0.03	-1.21	0.06	4.68	4/8.7								
1983	JUA	508	4.7	0.16	2.59	1.95	4.49	407.3								
1984	JUA	315	4.2	-0.16	-6.63	-0.76	4.80	532.8								
1985	JUA	642	5.0	-0.19	-8.17	-0.77	4.83	545.9								
1986	JUA LIA	508.5	4.7	-0.19	-5.93	0.06	4.83	545.9 363.2								
1988	JUA	697.5	5.1	0.06	-0.26	-1.87	4.5									
1989	JUA	719.5	5.2	-0.2	-4.87	-0.25	4.8	0						,		
1990	JUA	300.5	4.2	0.03	2.01	0.25	4.6	Se	PC	t the most a	attecti	Ve co	mhinatio	n ot		
1991	JUA	452	4.6	0.04	2.28	0.23	4.6	00				•0 00	moniau			
1993	JUA	988.5	+.J 5.6	-0.03	-1.68	0.8	4.6		111	1	2 - 1					
1994	JUA	330.5	4.3	-0.09	-5.34	-0.37	7 4.	pre	alla	tors after f	riai an	nd erro	Dr.			
1995	JUA	387.5	4.4	0.03	0.31	-1.06	4.6	P.0								
1996	JUA	499.5	4.2	-0.01	-0.13	-0.44	4.62	455.2								
1998	JUA	450.5	4.6	0.36	9.07	-0.2	4.30	341.1								
1999	JUA	835.5	5.4	-0.27	-4.28	-1.23	4.91	582.0								
2000	JUA	767.5	5.3	-0.2	-2.64	-0.42	4.84	550.3								
2001	JUA	395.5	4.2	0.04	4.65	-0.01	4.01	432.6								
2003	JUA	642.5	5.0	0.03	0.58	-1.25	4.62	455.2								
2004	JUA	215.5	3.8	-0.06	2.19	-0.01	4.71	490.8								
2005	JUA LIA	607.5	5.0 4 A	-0.06	3.13	-0.03	4.49	407.3								
2007	JUA	342.5	4.3	0.14	3.15	-0.76	4.51	414.4								
2008	JUA	661	5.1	-0.21	-0.95	0.02	4.85	554.7								
		1.	4.6	0.07	0.00	0.07	-									
gression		intercept		-0.97	-0.03	-0.07										
		Correlation		0.33	0.27	0.15										
nccion		slope		-0.93	0.00	-0.01										
6581011		Correlation		0.38												
		- Stronger		0.00												
		++														
		+ +														
erature). Pre	cipitation /	1								· · · · · · · · · · · · · · · · · · ·						
1.1.2 /(Carl days	
		et a										nellA	US hel		tind ther	n.
														- ,		

- Let's use ITACS for looking for effective predictors.
 - Preparing observation data for CSV format at first.

💌 Mi	icrosoft Excel	- TokyoJJAF	Prec	-		
9	ファイル(<u>E</u>)	編集(<u>E</u>) 閉	表示(⊻)	挿入	、(<u>I</u>) 書式(<u>C</u>	<u>2)</u> ツール(エ) 🗄
0	Year	Mont	h D	ay	Value	9
	A	В	С		D	E
1	1979	6		1	256	
2	1979	7		1	256	
3	1979	8		1	256	
4	1980	6		1	543	
5	1980	7		1	543	
6	1980	8		1	543	
7	1981	6		1	543	
8	1981	7		1	543	
9	1981	8		1	543	
10	1982	6		1	517	
11	1982	7		1	517	
12	1982	8		1	517	
13	1983	6		1	508	
14	1983	7		1	508	
15	1983	8		1	508	
16	1984	6		1	315	
17	1984	7		1	315	
18	1984	8		1	315	
19	1985	6		1	642	

In case of JJA, you need to input 6,7,8 on B line and JJA value on D line, respectively.

🕞 🕞 🗢 😰 http://boreas.cpd.naps.kishou.go.jp/~fipx1/analyze3.0/index1.php?&dataset=SAT&element=olr&element_edit=0&dtype=ANOM&area=0,360,-90,90,DI⪫_s=-40⪫_e=40&lon_s=0&lon_
ファイル(F) 編集(E) 表示(V) お気に入り(A) ツール(T) ヘルプ(H)
x Google キーワードを入力して検え 🛃 検索・ 🖓 🛅 - 🛧 M - 🌞 🧃 - 🆓 - 🧟 - 🧟 - 🦉 - 🦉 - 🦛
🖕 お気に入り 🛛 🍰 🙋 FrontPage - longfcst; 🦅 Yahoo! JAPAN 🖉 Welcome to `気象庁行 🝙 気象庁 アメダス 🧱 GrADS Online Docume 🙋 東京アメッシュ 🖉 実況経過+週間資料 の 🙋 伊藤の7
🔡 🔹 🌈 Welcome to `気象庁行 📵 akira ito JMA3000 🌈 予約時の英語教えて下 🥻 ITACS v3.0 🛛 🗴 🌈 Welcome to Diagnosis 🌈 K8E(JMA/MRI-CGCM) 👩 気象庁 レーダー・ナ.

data1						
dataset	element	data type	area	level	average period	show period
SAT 🗸	OLR(W/m2)	ANOM -	ALL ALL	1000 hPa 🔹 1000 hPa 👻	Year average 🔹	RANGE - 1979 - 2008 -
	SD		Lon: 0 - 360 Ave			
analysis meth	od : REGRESSION_COEFFICIENT -	\sim	Selec	t REGRES	SION_COE	FFICIENT
data2						
dataset	element		input t	kt	average p	eriod lag
USER INPUT 🔻	UPLOAD TXT	SD 🔲	no_tera¥¥SHARE¥¥person¥¥ito¥¥ 1979.6,1,256 1979.7,1,256 1979.8,1,256 1980.6,1,543 1980.7,1,543 1980.8,1,543 1981.6,1,543 1981.7,1,543	TCC研修2011¥¥TokyoJJ <i>i</i>	APrec.csv Ave 🗖	▼ 0 ▼ YEAR
			1982,6,1,517 1982,7,1,517 1982,8,1,517		d your obse	rvation data
			1983,6,1,508 1983,7,1,508 1983,8,,508 1984,6,1,315 1984,7,1,315 1984,8,1,315 1984,8,1,315 1985,6,1,642 1985,7,1,642			
			clear	F		

DATA1 SAT oir ANOM lat = -40:40 ion = 0:360 level = 1:1 time = 1979060100:2008080100 ave = 3MONTH

DATA2 USER_INPUT USER_INPUT1 HIST lat = -90:90 lon = 0:360 level = 1:1 time = 1979060100:2008080100 ave = 3MONTH analysis method = REGRESSION_COEFFICIENT

This is a relationship between OLR and JJA precipitation in Tokyo. The OLR around Maritime Continent looks a likely predictor. Try looking for predictors in this way.

Note: ITACS can show the relationship between **analysis** and your observation data. If you use the variables as predictors, you need to confirm their forecast skill.

ITACS

You can see the verification results of hindcast.

http://ds.data.jma.go.jp/tcc/tcc/gpv/model/hindcast_map/

• Calculate the forecasts using multiple regression equation.

🔏 Mic	rosoft Excel - Exe	rciseFor	Guidance									
1	ファイル(<u>E</u>) 編集	(E) 表示	示(⊻) 挿入([<u>1</u>) 書式(<u>0</u>)	ツール(<u>エ</u>) データ	7(<u>D</u>) ウィンドウ	⊅(<u>₩)</u> へレプ(<u>⊦</u>	<u>1</u>)				
10	2 🖬 🖪 🔗 🖌		2 11 1	🗅 😤 • 🛷 🖡	9 - (* - 😣 🗴	ε - <u>2</u> ↓ <u>7</u> ↓ ()	4 100%	- 0	MS Pゴシ	10		• 11 • 1
	H4 🔻	6	=\$E\$39*	\$F4+\$F\$39*\$	E4+\$G\$39*\$G4	+\$F\$40			X 2			
	A	İ	В	C	D	E	F	G	н	I	J	JK
1				Observation					Forecast			Probabilistic Forecast
2		Year 1	Target	Precipitation	power of 1/4	Predictor 1	Predictor 2	Predictor 3	Xs	ower of 4	σn^2	[^] 2 Ν(Xs, σn)
3		4070	JJA/DJF	deg mm	deg mm [°] 0.25	IOBW SST	Z2030	NINOWEST S	ST	470.7		Prob. of above-normal
4		1979	JUA	250	4.0	-0.01	-1.01	-0.03	4.07	4/3./	1	
6		1981	LIA	403	4.0	-0.03	-1.21	-0.1	4.00	4/3.3		
7		1982	JUA	517	4.8	0.06	-1.32	-0.17	4.67	474.5		
8		1983	JUA	508	4.7	0.16	2.59	-0.14	4.56	433.3		
9		1984	JUA	315	4.2	-0.16	-6.63	0.05	4.76	511.3		
10		1985	JUA	642	5.0	-0.19	-8.17	0	4.81	534.4		
11		1986	JUA	508.5	4.7	-0.19	-5.93	-0.02	4.84	548.0		
12		1987 .	JUA	312.5	4.2	0.29	2.64	-0.13	4.40	375.5		
1.4		1900	JUA	7195	5.0	-0.2	-0.20	0.07	4.55	422.0 549.0		
15		1990	JUA	300.5	42	0.03	2.01	0.01	4.62	457.0		Colculate the forecasts using multiple
16		1991	JUA	452	4.6	0.04	0.27	-0.17	4.70	489.6		
17		1992	JUA	357.5	4.3	0.16	2.28	-0.23	4.61	452.9		S I
18		1993	JUA	988.5	5.6	-0.03	-1.68	-0.47	4.95	600.0	<u> </u>	regression equation
19		1994	JUA	330.5	4.3	-0.09	-5.34	-0.05	4.74	505.5		
20		1995	JUA	387.5	4.4	0.03	0.31	0	4.62	453.8		
21		1996	JUA	321	4.2	-0.01	-0.13	-0.21	4.00	431.9		
23		1998	.UA	450.5	4.6	0.36	9.07	0.012	4.03	318.1		
24		1999	JUA	835.5	5.4	-0.27	-4.28	0.03	4.92	584.7		Input "= $\xi E \xi 30 \times \xi E 1 \pm \xi E \xi 30 \times \xi E 1 \pm \xi C \xi 30$
25		2000	JUA	767.5	5.3	-0.2	-2.64	0.15	4.78	520.5		
26		2001	JUA	322.5	4.2	0.04	1.73	0.27	4.46	394.0		
27		2002	JUA	395.5	4.5	0.09	4.65	0.01	4.57	437.6		
28		2003	JUA	642.5	5.0	0.03	0.58	0.26	4.46	397.0		
30		2004 0	JUA	210.0	3.8	-0.06	2.19	0.08	4.09	484.2		
31		2006	JUA	429.5	4.6	-0.06	4.25	0.15	4.67	474.1		
32		2007	JUA	342.5	4.3	0.14	3.15	0.19	4.40	373.2		
33		2008	JUA	661	5.1	-0.21	-0.95	0.03	4.87	564.0		
34	Normal				4.6				ß		-	
35				slope		-0.97	-0.03	-0.50	_			
36	Single Regres	sion		Intercept		4.65	4.65	4.65				
37				Correlation		0.33	0.27	0.19		-		
39				slone		-1 19	0.01	-0.59		_		
40	Multi Regressi	on		intercept		4.65	0.01	-	-	_		
41				Correlation		0,48	<				111ti	Itiple Anomaly Correlation Coefficient
42								<u> </u>		IV	unt	
40												

Questions

- 1. What predictors do you select?
- 2. Can you get more accuracy guidance than single regression model?

3. Probabilistic Forecast

- Calculate square of regression error.
- Calculate root mean square error.

Microsoft I	Excel - ExerciseForGuidance	2									
副 ファイル	レ(E) 編集(E) 表示(⊻) 排	■入(<u>I</u>) 書式(<u>O</u>)	ツール(I) データ	タ(<u>D</u>) ウィンドウ	(W) へルプ(H)					
in 🗃 🖬		X Da (N 🛷	10 - 01 - 1 Q	Σ - AI ZI Ma	A 100%	- 🔊 🗋 :	MS Pゴシ	ック		• 11 • B	
. — — и			·	- 2, 1, 1							
	 ✓ /× -(5⊓ A 	4-504)2	D	F	F	G	н	I		K	
1	A 0	Observation		L		For	ecast		Prot	babilistic Forecast	
2	Year Target	Precipitation	power of 1/4	Predictor 1 F	Predictor 2	Predictor 3	Xs	power of 4	0/n^2	N(Xs, orn)	
3	JUÁ/D.	F deg mm	deg mm^0.25	IOBW SST 2	22030 1	NINOWEST SST			Pro	b. of above-normal	
4	1979 JUA	256	5 4.00	-0.01	-1.61	-0.03	4.67	473.7	0.442	1	
5	1980 JUA	540	4.83	0.05	1.93	-0.1	4.66	473.3	0.027		
6	1981 JUA	400	3 4.48	-0.03	-1.21	0.04	4.65	467.9	0.029		
9	1982 JUA 1983 LIA	50	4.77	0.06	-1.52	-0.17	4.07	474.0	0.010		
9	1984 JUA	315	5 4.21	-016	-6.63	0.05	4.76	511.3	0.294	_	
10	1985 JUA	64:	2 5.03	-0.19	-8.17	0	4.81	534.4	0.051		
11	1986 JUA	508.	5 4.75	-0.19	-5.93	-0.02	4.84	548.0	0.008		
12	1987 JJA	312.5	5 4.20	0.29	2.64	-0.13	4.40	375.5	0.039		
13	1988 JUA	697.5	5 5.14	0.06	-0.26	0.07	4.53	422.5	0.367		
14	1989 JUA	719.	5 5.18	-0.2	-4.87	0.01	4.84	549.2	0.114	line rest	
15	1990 JJA 1991 LIA	300.	9 4.16	0.03	2.01	-0.17	4.62	457.0	0.212		
17	1997 JUA	957	5 4.01	0.04	2.28	-0.17	4.70	409.0	0.008		
18	1993 JUA	988 5	5 5.61	-0.03	-1.68	-0.47	4.95	600.0	0.433		
19	1994 JUA	330.5	5 4.26	-0.09	-5.34	-0.05	4.74	505.5	0.228		are error
20	1995 JUA	387.5	5 4.44	0.03	0.31	0	4.62	453.8	0.032	Jugar	
21	1996 JUA	32	4.23	-0.01	-0.13	0.17	4.56	431.9	0.106		
22	1997 JJA	499.	5 4.73	0.03	4.24	-0.31	4.83	544.9	0.011	_	
23	1998 JUA 1998 LUA	450.	4.01	-0.35	9.07	0.12	4.22	318.1	0.147	Innu	
24	2000 . UA	767 5	5 526	-027	-4.20	0.03	4.92	5205	0.211		II = SUR I(AVERAGE(J4;J33)) al
26	2001 JUA	322.	5 4.24	0.04	1.73	0.27	4.46	394.0	0.047		
27	2002 JJA	395.5	5 4.46	0.09	4.65	0.01	4.57	437.6	0.013	104	to a laulate we at we are a surrous a surrous
28	2003 JUA	642.	5 5.03	0.03	0.58	0.26	4.46	397.0	0.326	<u> </u>	to calculate foot mean square effor.
29	2004 JJA	215.	5 3.83	-0.06	2.19	0.08	4.69	484.2	0.738		
30	2005 JUA	6073	4.96	0.16	3.13	0.19	4.37	365.1	0.352		
32	2000 304	429:	5 4.00	-0.06	4.25	0.15	4.07	979.2	0.009		
33	2008 JUA	661	5.07	-0.21	-0.95	0.03	4.87	564.0	0.039	Y	
34 Normal	1		4.65						0.394		
35		slope		-0.97	-0.03	-0.50			σn		
36 Single	Regression	intercept		4.65	4.65	4.65					
37		Correlation		0.33	0.27	0.19					
38		alara		-1.10	0.04	-0.50					
40 Multi	Regression	intercent		465	0.01	-0.58					
41		Correlation		0.48							
42				0.10							
43											
44											
45											
46				-							
47											
49											
H + P H T	Temperature) Precipitation	/								1	
コマンド											
	S 🖉 🖉	लो जि	1 🛄								

3. Probabilistic Forecast

• Calculate probability of above-normal.

Question

- 1. What is the difference of probability between temperature and precipitation?
- 2. Have you made some guidance for temp/prec to do probabilistic verification?

4-1. Deterministic Verification

- Anomaly Correlation
- Root Mean Square Error
- Time series chart
- Scatter plot

4-2. Probabilistic Verification

- Brier Skill Score (BSS)
- Reliability Diagram

$$b = \frac{1}{N} \sum_{i=1}^{N} (p_i - v_i), \quad 0 \le p_i \le 1, \quad v_i \in \{0, 1\}$$

$$BSS = \frac{bc - b}{bc}$$

See the textbook in detail

Skill of JMA Routine Guidance from 2005 to 2009.

Target Period	BSS
1 st weekly temp.	0.45
2 nd weekly temp.	0.25
1 st monthly temp.	0.30
3-month temp.	0.35

Reliability Diagram of JJA temperature, totaling Tokyo, Sapporo and Naha station in Japan.

5. Create a Presentation

An example

- What predictors do you use?
- Why do you select their predictors?
 By ITACS regression tools, traditional, ...
- Verification results

Create a presentation with your originality.

Summary of Japanese guidance

Station	Tokyo	■ 本 庁 国家 ■ 管区支急合等 ● 管区支急合等
Season	JJA	● 地方 気素 合 ● 地方 気素 合 ● 私生 小 気 気 合 → 一 管 区 等 境 养 論 管 区 等 境 养 論
Predictand	Temperature	10日 10日 10日 10日 10日 10日 10日 10日
Predictors	WNP RAIN, Extratropical Thickness, Indian Ocean SST	
Correlation	0.52	
Brier Skill Score	0.28 (including Sapporo and Naha stations)	

	slope	0.63	1.75	0.33
Multiple Regression	intercept	24.99		
	Correlation	0.52		

The reason I select the predictors

DATA1 SAT oir ANOM lat = -20:50 ion = 60:180 level = 1:1 time = 1979060100:2008080100 gve = 3MONTH

-6

1980

1985

DATA2 USER INPUT USER INPUT1 HIST lat = -90:90 Ion = 0:360 level = 1:1 time = 1979060100:2008080100 ave = 3MONTH analysis method = REGRESSION_COEFFICIENT

1990

1995

2000

2005

Western North Pacific OLR is deeply associated with JJA temperature in Tokyo.

And the skill of WNP RAIN is <u>relatively high</u>, so the predictor may be useful.

The reason I select the predictors

CGCM03_2009

The JJA temperature have upward trend, so I use extratropical thickness as global warming predictor.

Verifications

A clear upward trend is well predicted. Moreover, the guidance can predict extreme cool/hot summer in 1993/1994.

It is important to be able to predict cool summer. Because, extreme cool summer can cause severe damage of crop production in Japan.

The figure shows reliability diagram of JJA temperature, totaling Tokyo, Sapporo and Naha station in Japan. The forecast probability is reliable to some degree.

Thank you