Concept of numerical guidance

Masayuki Hirai

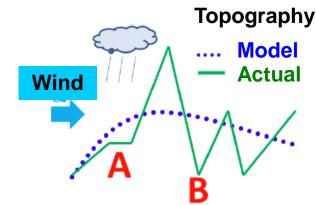
Tokyo Climate Center (TCC)/ Climate Prediction Division of Japan Meteorological Agency (JMA)

Outline

- Outline of guidance
 - Role
 - Principle
 - Regression model
 - Estimation of probability
- Verification
 - Verification score

Outline of guidance

Guidance


- "Guidance" is an application to translate model output values into target of forecasting.
- Principle of guidance is to predict future values based on statistical relationship using model forecasts and observation data for past cases.

Role of guidance

- To extract effect of <u>sub-grid scale</u> topography
 - Model may not reproduce effect of local topography due to limited resolution, while enable to reproduce large-scale field.
- To <u>reduce imperfection</u> of the model, such as systematic error (bias error).
- To estimate degree of uncertainty, considering prediction skill

A: Upwind side

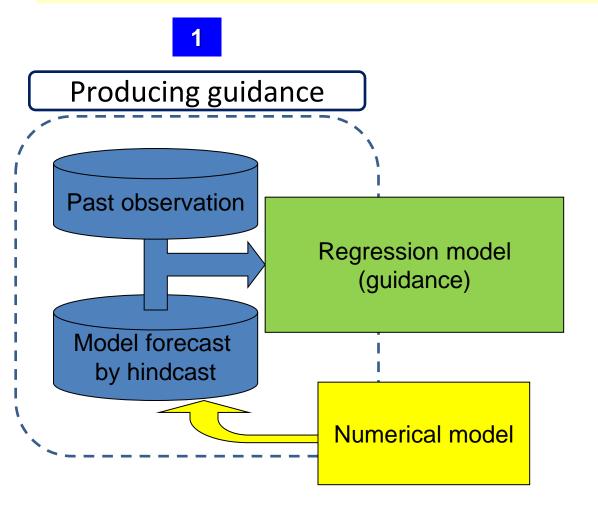
- Model may underestimate precipitation
- B: Bottom of the valley
 - Model may have warming bias

"Guidance" enable to improve prediction skill, compared with the direct model output.

Principle of guidance (MOS technique)

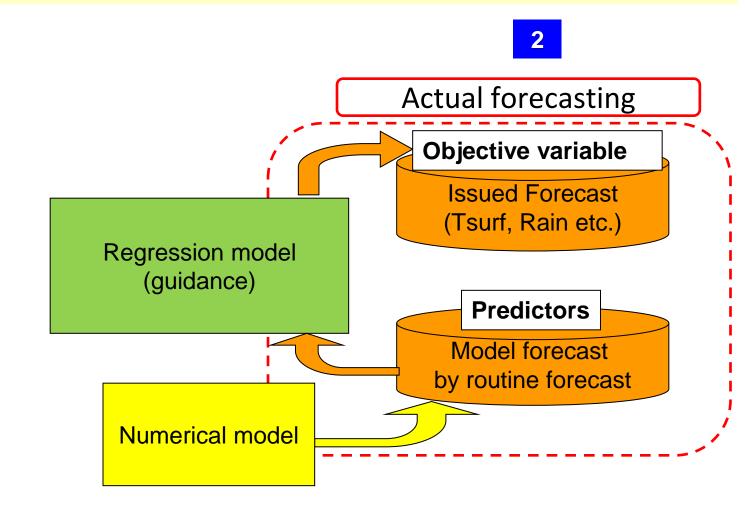
MOS (Model Output Statistics);

Calculation of statistical relationship between <u>observation</u> and <u>model forecast</u> for past cases, and apply to the real-time forecast


- > Two types of the time series data are needed in order to produce guidance.
 - 1. Past observation (i.e., Predictands)

 2. Past model forecast by hindcast (i.e., Predictors) Create by users

On ITACS

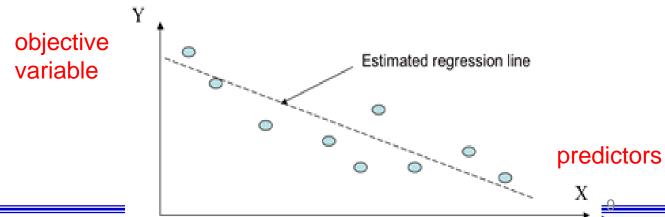

Concept of the guidance adopting MOS technique (1)

 Statistical relationship is estimated using observation and model forecast for past cases.

Concept of the guidance adopting MOS technique (2)

 In the real-time forecast, predicted value is calculated applying to the statistical relationship.

Single regression


- Single regression is modeled the relationship between one explanatory variable (predictors) and objective variable (ex. temp. rainfall).
- Single regression model is written as

$$Y = a_x + b + \varepsilon$$

Y: predictand X: predictor

a: regression coefficient b: constant,

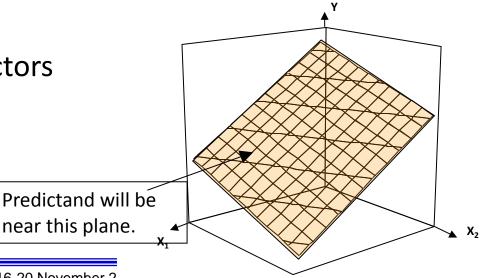
ε: error term

Multiple regression

- Multiple regression is assumed that the objective variable is the sum of a linear combination of plural predictors.
- Multiple regression model is written as

$$Y = \sum_{k} (a_k X_k) + b + \varepsilon$$

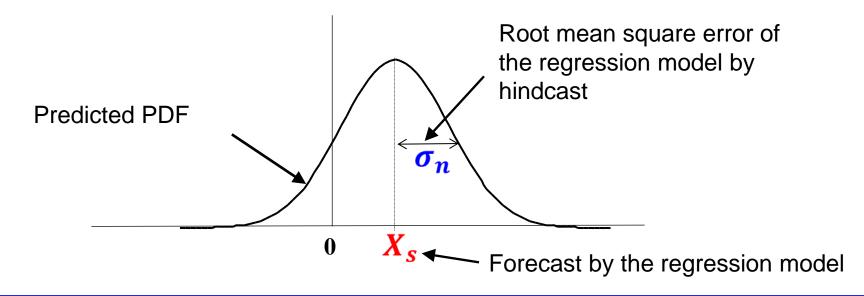
k=1,2,...,n


Y: predictand X: predictors

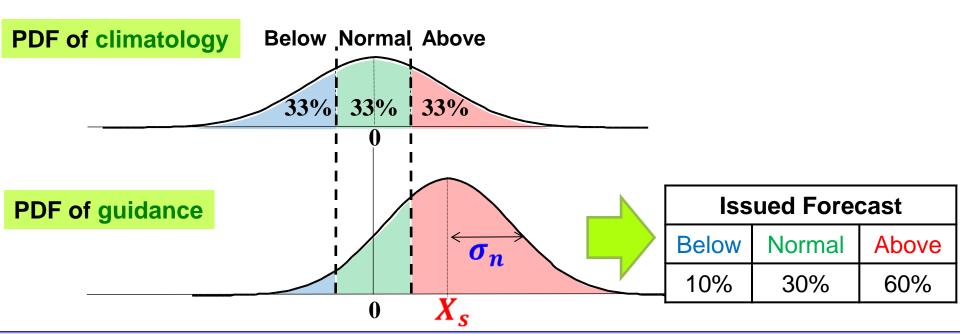
a: regression coefficient

b: constant

ε: error term


Example: two predictors

TCC Training Seminar on one-month forecast, 16-20 November 2

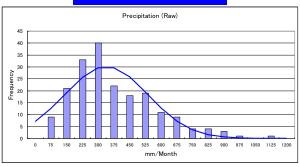

Translation to PDF in the regression model

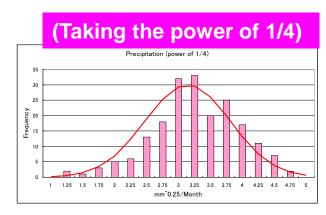
- In the guidance tool, Probability Density Function (PDF) is assumed to be a normal distribution.
 - Mean (x_s) : prediction value by the regression model
 - Standard deviation (σ_n) is error of the regression model, which is assumed to be RMSE of the regression model using hindcast.

Estimation of Tercile probability with regression model

- The threshold values for tercile categories determined from the past observation (1981 to 2010).
- Probability for each Tercile category (below-, near-, abovenormal) is calculated by referring to the PDF of guidance and the threshold values for tercile categories.

Normalization of precipitation data


- Normal distribution is assumed in the regression model.
- As for temperature, its distribution is generally approximated by a normal distribution.


Meanwhile,

- As for precipitation, its distribution does not represent a normal distribution, and it's usually approximated by a gamma distribution.
- In order to create guidance, precipitation data need to be normalized.
- Power of 1/4 for precipitation (RAIN^{1/4}) is approximated by a normal distribution.

Ex. Precipitation over Japan

(Row value)

Verification

Verification for deterministic forecast (1 of 2)

- Mean Square Error (MSE)
- Root Mean Square Error (RMSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2}$$

F: forecast

O:observation

N: sample size

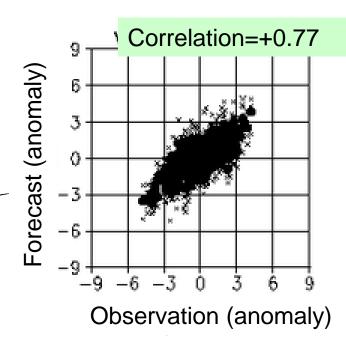
MSSS

Skill score of MSE, comparing with climatology

Verification for deterministic forecast (2 of 2)

Anomaly Correlation Coefficient (ACC)

$$AC = \frac{\sum_{i=1}^{N} (F_i - C_i)(O_i - C_i)}{\sqrt{\sum_{i=1}^{N} (F_i - C_i)^2} \sqrt{\sum_{i=1}^{N} (O_i - C_i)^2}}$$

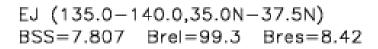

F:forecast

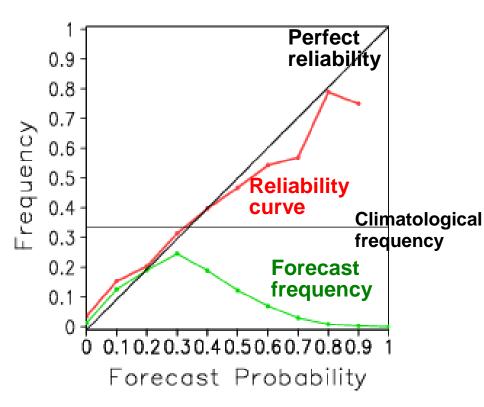
O:observation

C:climatology

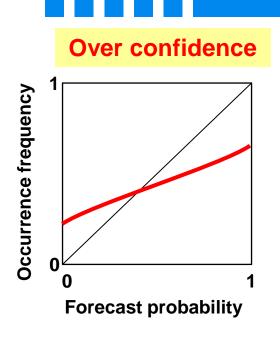
Range: -1 to 1. Perfect score: 1.

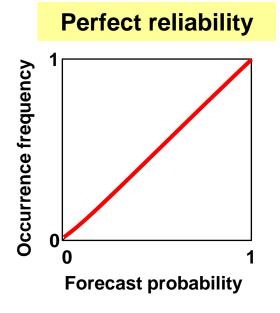
Forecast data is calibrated

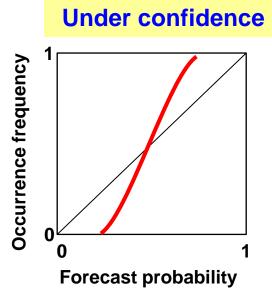

Verification for probabilistic forecast (1) Reliability diagram


Red line (reliability curve);

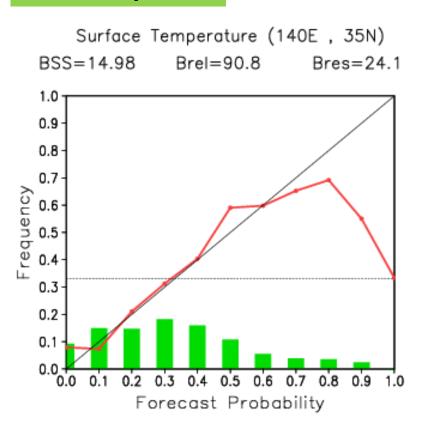
plotted the observed frequency(Y-axis) against the forecast probability(X-axis)


Probabilistic forecast becomes better the more the reliability curve fit to 45° line (perfect reliability).


- Green line denotes forecast frequency (sharpness diagram);
 - •If most of the forecast probabilities are near the climatological frequency = unsharp
 - •If probabilities near 0 and 1 (100%) are often used = sharp



Over/under confidence



 Predicted probabilities are overestimated as compared with actual ✓ Predicted probabilities are underestimated as compared with actual

Interpretation of reliability diagram

Example

 The forecast is generally reliable for below 60%, while overconfident over 70%.

✓ Maximum probability should be suppressed under 60%

Brier skill score (BSS)

■ Brier score is mean squared error of the probability forecasts.

$$BS = \frac{1}{2N} \sum_{i=1}^{N} \sum_{m=1}^{3} (p_i^m - o_i^m)^2$$

Range: 0 to 1. Perfect score: 0

 p_i^m : forecast probability

 o_i^m : observed occurrence (0 or 1)

N : forecast frequency

m: category

□ Brier skill score is skill relative to a reference forecast (usually climatology).

$$BSS = 1 - \frac{BS}{BS_{reference}}$$

- Perfect score: 1
- BSS>0 : better than the climatological forecast.
- BSS=0 indicates no skill when compared to the climatological forecast.
- BSS<0 : worse than the climatological forecast.