How to Use the Guidance Tool (Producing Guidance and Verification)

Hiroshi Ohno Tokyo Climate Center (TCC)/ Climate Prediction Division of Japan Meteorological Agency (JMA)

- Step 1: Prepare 3-month mean (Feb.-Apr.) temperature and precipitation observation data for 1981-2010.
- Step 2: Select appropriate predictor(s) and make a regression model at your forecast point for Feb.-Apr.
- Step 3: Verify the forecast skill of the guidance.
- Step 4: Calculate the guidance for Feb.-Apr. 2018 with your regression model.

- Step 1: Prepare 3-month mean (Feb.-Apr.) temperature and precipitation observation data for 1981-2010.
- Step 2: Select appropriate predictor(s) and make a regression model at your forecast point for Feb.-Apr.
- Step 3: Verify the forecast skill of the guidance.
- Step 4: Calculate the guidance for Feb.-Apr. 2018 with your regression model.

Past Observation Data

Element:

- ✓ 3-month mean temperature (February April)
- ✓ 3-month precipitation amount (February April) (Calculated from monthly observation data)

• Period: 1981-2010 (30-year)

- ✓ Same as the hindcast data so that the regression model between observation and hindcast can be created.
- A 3-month value (i.e., Feb.-Apr.) is calculated if only all of the 3 monthly values (i.e., Feb, Mar, and Apr.) are available. If not, the 3-month value will be treated as missing.
- Missing values are allowed to create the regression model. But the more the number of available data is, the better.

Copy & Paste the Data to the Excel Tool

Calculate 3-month Values

Check the Normal and Limit of 3-category

- Step 1: Prepare 3-month mean (Feb.-Apr.) temperature and precipitation observation data for 1981-2010.
- Step 2: Select appropriate predictor(s) and make a regression model at your forecast point for Feb.-Apr.
- Step 3: Verify the forecast skill of the guidance.
- Step 4: Calculate the guidance for Feb.-Apr. 2018 with your regression model.

Select a Predictor (Single Regression)

									Select a pre	odictor	and con	v the	values		
	Work	shee	t "Pr	edict	or (F	ΜΔ	<i>"</i>		(In this ass					·	
		Shee		Cuice	01 (1		/		(in this case	e, wic	2221125	select	.ea)		
	A	B	<u> </u>	D	E	F	G								
1	Hindcast 3-r	month mea	in indices	for Februar	rt - April (In	itial moi	nth: Janua	iry)						_	
2	Select one to	o three indic	es as prec	dictor and pa	ste them to	the shee	t "Calc_gu	dance."							
3	indices of the	e otner mon	ths are ava	allabel on the	ICC websi	te (regist	ration is re	quired; ntto		Norksh	neet "Calc	guida	ance"	G	н
4											-	_0		orecast of mod	del
0	1091	0.51	0.33	0.00	0 10	0.21	0.22	0.03	Year	Set blank for	Ran	<	Predictor 1	Predictor 2	Predictor 3
7	1982	-0.03	-0.04	-0.05	-0.15	-0.21	-0.22	-0.03		Set blank for i	inissing		T TOUCTOF T	Tredictor 2	T TCUICTOF 5
6	1983	2 19	1 77	-0.41	0.23	0.01	0.03	0.03	1001	10.2	1	26		1	
9	1984	-11	-1.25	0.12	-0.43	-0.48	-0.42	0.27	1981	10.3		20			
10	1985	-1.35	-1.33	-0.01	-0.5	-0.68	-0.41	0.12	1982	10.5		15			
11	1986	-0.56	-0.39	-0.13	-0.26	-0.34	-0.34	-0.07	1983	10.8		20			
12	1987	0.83	0.88	-0.39	-0.09	-0.15	-0.17	0.06	1964	0.0		30			
13	1988	-0.45	-0.29	-0.13	0.12	0.28	0.29	0.27	1985	10.5		20			
14	1989	-1.6	-1.61	0.31	-0.35	-0.36	-0.23	0.01	1980	9.8		10			
15	1990	-0.11	-0.03	-0.01	0.01	0	-0.07	0.01	1987	10.7		18			
16	1991	0.1	0.16	-0.18	0.09	0.08	0.05	-0.07	1988	9.9		21			
17	1992	1.31	1.42	-0.52	0.2	0.02									
18	1993	-0.18	-0.14	-0.5	-0.16	0.01	-0.1	-0.13	1001	10.4		25			
19	1994	-0.48	-0.33	-0.24	-0.04	0.16	-0.04	0.04	1991	10.4		25			
20	1995	0.89	0.9	-0.36	0.09	0.04	-0.02	0.05	1992	11.3		11	N 1		
21	1996	-0.13	-0.32	0.31	-0.15	-0.02	-0.14	-0.02	1993	10.9		14			
22	1997	-0.05	0.12	ndca	st d:	afa	-0.07	-0.01	1994	10.6		20	$+$ \rightarrow		
23	1998	2.59	2.02	1 0 0.950	0.66	0.58	0.42	0.35	1995	10.5		21		<u>ب</u>	
24	1999	-0.85	-f ⁰³	100	1 20	105	-0.05	-0.35	1996	9.5		29			
25	2000	-1.16	101	190	1720	1-022	-0.31	-0.11	1997	11.4		4			<u> </u>
26	2001	-0.15	-0.11	0.35	-0.11	-0.1	-0.01	-0.34	1998	12.6	Paste	e the	values	here	
27	2002	0.25	0.19	0.2	0.25	0.33	0.26	-0.06	1999	11.1					
28	2003	0.04	0.75	-0.04	0.42	0.3/	0.46	0.28	2000	10.5		11	-		
29	2004	0.59	0.43	0.17	0.22	0.31	0.22	0.01	2001	11.3		2	_		
30	2005	-0.38	-0.43	0.04	-0.1/	-0.15	0.23	-0.3	2002	12.0		2			
30	2000	0.0-	0.43	0.35	0.14	0.15	0 21	0.03	2003	11.4		6			1
32	2008	-1.64	-1.55	0.10	-0.19	-0.13	-0.05	0.05	2004	10.0		15			
34	2009	-0.81	-0.61	0.35	0.04	0.19	0.03	-0.1	2005	10.8		15	_		
35	2010	1 14	1 29	0.02	0.48	0.54	0.44	-0.1	2000	10.8		10	_		
36	unit K	к	1.20	κ	K		K	mm/day mm		12.1		10	_		
07								,	2000	10.7		3			
									2009	12.4		8			
										11.4					J
									This year						
									inis year						

Check the Correlation Coefficient

Select Multiple Predictors (Multi Regression)

Hint: Find a Appropriate Predictor (iTacs)

Check the correlation between observation data and SST/OLR with iTacs to find appropriate predictors.

Analy	ysis Dataset For	recast Dataset								
An	alysis Dat	taset								
Se	elect parameters	Graphic Options					_			
-		MONTHLY							Y	
L	Datal									
	Dataset	Element	Data type	Area		Level Tij	ne unit	Showing period		
	SST	Sea Surface Data Tomporature (SST) [(-	HIST •	ALL 00	▼ 1	MONTHI		RANGE -	_ 1981-2	2010
		Temperature (331) [(+		Lon: 0 - 360	Ave	Time	Tear-to-y	2 - 4 -	2	1
		Vector SD								†
		Derivative: 🔲 Ion 🔲 Iat								
Ar	nalysis method: COI							Check "	Year-to-ye	ear"
C	Data2		ORRE	LATION_	COEF	FICIEN	IT			
	Dataset	Element		Input txt		Time unit		Lag	Significance	
	USER_INPUT	UPLOAD_TXT -	奏照 ファイ	ハルが選択されていません。	Upload	MONTHLY -	0	▼ YEAR ▼	95%(two side) -	
			Uplos - n	d save as		Time filter	year			
			Ì							
								_		
					ot the	data fi				
JSER_I	NPUT		۶D_TX			uala II				
)			— I (utili	zed ir	n Tuesc	lav)			

Hint: Find a Appropriate Predictor (iTacs)

Hint: Combination of Predictors

Thickness (e.g., THMD) show long-term increasing trend, and may be good predictors for temperature.

Z500 (e.g., Z2030) represent increasing trend and response to the SST in the tropics (e.g., ENSO).

If two predictors are remarkably correlated, skill of multiregression may become poor (multicollinearity). In this case, it is recommended to use just one of them.

Example; NINO3-SST / NINO3.4-SST (correl.: 0.99)

Find the better combination of predictors with trial and error process!

Guidance for Precipitation

		Workshe	eet"	Calc gu	iidance	, "		
Histogram of precipitation is usua	(for precipitation)							
distribution, so normalization is ne	A	Year	B Observation (P Set blank for mi	C recipitation) ssing	D Rank			
with 1/4-power transformation.		1981	278	Power of 1/4 4.083	16			
			1982 1983 1984	310.5 406.5 245	4.198 4.490 3.956	12 4 23		
Distribution of Precipitation	The excel too	ol for	1985 1986	404.5 251.5	4.485 3.982	5 21		
45	precipitation	automatically	1987 1988	299 307 212.5	4.158 4.186 4.204	14 13		
	normalize the	e observation	1989 1990 1991	295 439	4.204 4.144 4.577	15		
	data		1992 1993	420.5 274.5	4.528 4.070	3 17		
			1994 1995 1996	251.5 270	4.221 3.982 4.054	21 18		
5 0 0 75 150 225 300 375 450 525 600 675 750 825 900 975 1050 1125 1200	Obse	ervation data	1997 1998	266 362	4.039 4.362 3.840	20 7		
			2000	217.5	3.820 3.903	30 24		
Precipitation (power of 1/4)	o normal		2002	268 322	4.046 4.236 2.001	19 9		
	ion	Dower of 1/	2004 2005 106	231.5 220 394.5	3.851 4.457	23 27 6		
		Fower of 1/	4 kz	217.5 334	3.840 4.275 3.901	28 8 25		
			2009	424.5	4.539	23		
			This year					
0 1 125 15 1.75 2 225 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 mm [°] 0.25/M onth		Normal The lower limit of near	normal	300.550 258.750	4.144 4.010			
		The upper limit of nea	r normal	315.000	4.213			

- Step 1: Prepare 3-month mean (Feb.-Apr.) temperature and precipitation observation data for 1981-2010.
- Step 2: Select appropriate predictor(s) and make a regression model at your forecast point for Feb.-Apr.
- Step 3: Verify the forecast skill of the guidance.
- Step 4: Calculate the guidance for Feb.-Apr. 2018 with your regression model.

Confirm the Prediction Skill of the Guidance

Check!

 Does the guidance predict the noticeable year?

In this example,

- In 1998, (significantly warm year), probability of above normal is very high.
- In 1984, (significantly cold year), probability of below normal is relatively high, but not significant...

- Blue/green/yellow bars show the probabilities of below/near/above normal for each year.
- Black/red lines indicate observation and guidance values.

Confirm the Prediction Skill of the Guidance

- Step 1: Prepare 3-month mean (Feb.-Apr.) temperature and precipitation observation data for 1981-2010.
- Step 2: Select appropriate predictor(s) and make a regression model at your forecast point for Feb.-Apr.
- Step 3: Verify the forecast skill of the guidance.
- Step 4: Calculate the guidance for Feb.-Apr. 2018 with your regression model.

Calculate the Guidance of FMA 2018

42

43 44

Worksheet "Predictor (FMA)"

- Forecast 3-month mean indices for Februart April 2018 (Initial month: January 2018) 38
- 39 Paste the data of the selected predictors to the sheet "Calc guidance."
- Forecast Indices are availabel on the TCC website (registration is required; http://ds.data.jma.go.jp/tcc/tcc/gpv/indices/) 40
- NINO3 SS NINO3.4 NINOWES IOBW SST WIO SST EIO SST IOBW RAII WIO RAIN EIO RAIN SAMOI RAWNP RAIN SEAs 41 INDEX UNIT
 - K Κ ĸ κ κ κ mm/day mm/day mm/day mm/day mm/day mm/d -0.7 -0.67 0.54 0.05 0.09 -0.3 0 24 0.97 2018 1 4 2
 - -0.02 Worksheet "Calc guidance"

Copy the forecast values of the selected predictors

In this example, IOBW-SST, MC-RAIN and Z3040 are selected for the guidance, so the forecast values of these indices will be pasted one by one.

Be careful not to paste the value of predictor 1 to the cell of predictor 2 or 3!

Check the Guidance of FMA 2018

