# Concept of numerical guidance

Masayuki HIRAI
Tokyo Climate Center (TCC)/
Climate Prediction Division of
Japan Meteorological Agency (JMA)



## **Outline**

- Basic concept of the guidance
  - Objective of Guidance
  - MOS Technique
  - Regression Model
  - Estimation of Probability
- Verification
  - Verification Score



# Basic concept of the guidance

## Guidance



- "Guidance" is an application tool to translate model output values into target of forecasting.
- Principle of guidance is based on <u>statistical relationship</u> using model forecasts and observation data for past cases.

## Role of Guidance

- To extract the effects of <u>sub-grid scale</u> topography
  - Model may not enough reproduce the effects of local topography due to limited resolution, while a guidance enable to consider from the large-scale field.
- To <u>reduce imperfection</u> of the model, such as systematic error (bias error)
- To estimate degree of uncertainty, considering prediction skill





A: Upwind side

- Model may underestimate precipitation
- B: Bottom of the valley
  - Model may have warming bias

"Guidance" enable to improve prediction skill from the direct model output.



# Principle of Guidance – MOS Technique

### MOS (Model Output Statistics):

Forecast value is derived by **statistical relationship** between observation and model forecast\_from past cases, and **applied** this relationship to the real-time forecast.

- Two types of the time series data are necessary in order to produce guidance.
  Prepared by users
  - 1. Past observation (Thank you for preparing!!!)
     (Variable to be predicted; Predictand)
  - 2. Past model forecast by hindcast (Predictor)

Included in the guidance tool

# Concept of MOS Technique (1)

 Statistical relationship is estimated by the regression model using observation and model forecast for past cases.



# Concept of MOS Technique (2)

 In the real-time forecast, model results are applied to the statistical relationship to obtain guidance result.



# Single Regression

- "Single regression" is the relationship between one explanatory predictor and variable to be predicted (predictand, ex., temp. rainfall).
- Single regression model is written as

$$Y = aX + b + \varepsilon$$

Y: predictand X: predictor

a: regression coefficient b: constant,

ε: error term



## Multiple Regression

- "Multiple Regression" is more than one predictors are employed.
  - It is assumed that the predictand is the sum of a linear combination of predictors.

Example: **two** predictors

$$Y = a_1 X_1 + a_2 X_2 + b + \varepsilon$$

 $a_1, a_2$ : regression coefficient

b: constant

ε: error term

Predictand will be near this plane.

# Translation to PDF in the regression model

- Probabilistic forecast is essential for seasonal prediction.
- In the guidance tool, Probability Density Function (PDF) is assumed to be a **normal distribution**.
  - Mean  $(x_s)$ : prediction value by the regression model
  - Standard deviation  $(\sigma_n)$ : error of the regression model, which is assumed to be forecast error (RMSE) of the regression model using hindcast.



## Estimation of Tercile probability with regression model

- The <u>threshold values for tercile categories</u> (below-, near-, above-normal) determined from the past observation. (ex. 1991 to 2020, depending on the setting by user)
- Probability for each tercile category is calculated by PDF of guidance and the threshold values for tercile categories.



## Normalization of Precipitation Data

- Normal distribution is assumed in the regression model.
- As for <u>temperature</u>, its distribution is generally approximated by a <u>normal distribution</u>.

#### Meanwhile,

- As for <u>precipitation</u>, its distribution does <u>not</u> <u>represent a normal distribution</u>, and it's generally approximated by a gamma distribution.
- In order to create guidance, precipitation data need to be normalized.
- Power of 1/4 for precipitation (RAIN<sup>1/4</sup>) is approximated by a normal distribution.

Ex. Precipitation over Japan







◆ The guidance tool <u>automatically</u> enable to consider this normalization.



# Verification

### Verification scores for Deterministic Forecast

- Root Mean Square Error (RMSE)
- representing absolute magnitude of the forecast
- Perfect score: 0

$$RMSE = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (F_j - O_j)^2}$$

*F<sub>i</sub>:* Forecast, O<sub>i</sub>: Observation

C<sub>i</sub>: Climatology, N: Sample size

- Anomaly Correlation Coefficient (ACC)
- representing correlation between anomalies of **forecasts** and those of the **reference**

1: Perfect score

0.31: 95% significance level of t-test (30 samples)

0: No signal

$$ACC = \frac{\sum_{i=1}^{N} (F_i - C_i)(O_i - C_i)}{\sqrt{\sum_{i=1}^{N} (F_i - C_i)^2} \sqrt{\sum_{i=1}^{N} (O_i - C_i)^2}}$$



# Reliability Diagram

- Red line (reliability curve);
  - plotted the observed frequency (Y-axis) against the forecast probability (X-axis)

Probabilistic forecast becomes better the more the reliability curve fit to 45° line (perfect reliability).

- Green bars denote forecast frequency (sharpness diagram);
  - •If most of the forecast probabilities are near the climatological frequency (33%) => unsharp
  - •If probabilities near 0% or 100% are often calculated => **sharp**



## Over/under Confidence







 Predicted probabilities are overestimated as compared with the actual ✓ Predicted probabilities are underestimated as compared with the actual

# Probabilistic forecast Interpretation of Reliability Diagram

### **Example**

Surface Temperature (140E, 35N) BSS=14.98 Brel=90.8 Bres=24.1



 The forecast is generally reliable for below 60%, while overconfident over 70%.



Maximum probability should be suppressed under about 60%

- In actual, reliability curve may not such smooth "curve".
- If so, the forecaster should moderate the probabilities, taking account of the other information, such as the verification scores (e.g., ACC, BSS).

# Brier (skill) Score (BS)



$$BS = \frac{1}{2N} \sum_{i=1}^{N} \sum_{m=1}^{3} (\rho_i^m - o_i^m)^2$$

 $p_i^m$ : forecast probabilit y

 $o_i^m$ : observed occurrence (0 or 1)

*N*: forecast frequency

m: category

- Range: 0 to 1
- Smaller score indicates better forecast (Perfect score: 0)

■ Brier skill score is <u>skill</u> relative to a reference forecast (usually climatology).

$$BSS = 1 - \frac{BS}{BS_{reference}}$$

- Perfect score: 1
- BSS>0; better than the climatological forecast.
- BSS=0; climate forecast
- BSS<0; worse than the climatological forecast.</li>

$$BSr = \frac{1}{3}$$