

# Outlook of East Asia Winter Monsoon for 2015/2016

CHEN Lijuan<sup>(1)</sup>, YUAN Yuan<sup>(1)</sup>, REN Hongli<sup>(1)</sup>, LIU Xiangwen<sup>(1)</sup> MA Jiehua<sup>(2)</sup>, WANG Huijun<sup>(2)</sup>, SUN Jianqi<sup>(2)</sup>

> <sup>(1)</sup>Beijing Climate Center, China Meteorological Administra <sup>(2)</sup>Institute Atmospheric Physics, Chinese Academy of Scien

Nov.3-5, 2015, Seoul





EAWM System and Signals

Prediction by BCC\_CSM 1.1m, BCC/CMA

Prediction by NZC-PCCSM4, IAP/CAS

Statistic Analysis

➢Outlook for EAWM



(I)EAWM system and potential boundary forcing

SSTA (ENSO, IO, NAT Sea Ice Snow Cover



# **Impact of El Nino -- Circulation**

(1982,1986,1987,1991,1994,1997,2002,2004,2006,2009,2014)





**WPSH** 





# Impact of weak winter monsoon on temperature





### **Impact of El Nino -- Temperature**







### **Impact of El Nino -- Precipitation**









de la

### **Correlation between IO indices and Precip/Temp.**





### The correlation between AO and Temp.



Zuo, Ren, Li 2015

DEC



FEB



# (I) Prediction by BCC\_CSM1.1m Model prediction Scheme

**Model : Climate System model (**BCC\_CSM1.1m) Resolution of Atm. : T106 (~110 km ) ; Tropical ocean : 30 km.

### Initial data :

Atm. : NCEP daily reanalysis (Air Temp., winds, SLP, etc) Ocean : NCEP\_GODAS monthly, Pentad reanalysis

Ensemble members : 24 (15 LAF+9 SV)

Prediction range: 13 months (from 2015.10.1~2016.10.31)

Hindcast time period : 1991~2010

**Operational starting date of the model :** Dec., 2014





### **ENSO outlook in spring,2015**

Red:tradional El Nino; green:El nino-modoki







# ENSO outlook (Dec. 2015 - Feb.



El Nino mature phase in the Middle & East tropical Pacific Ocean

SSTA Nino index (Provided by BCC opening research Lab., Oct.

#### **Indian Ocean Index outlook**



Positive Dipole Mode









### IO index forecast skill



#### AO skill and outlook





#### EAWM index outlook



Monitor (NRA1): 1981-2014; Forecast: 201512-201512

Weak EASM in the coming winter

# 500 hPa GH

### Prediction

#### Hindcast



# SLP

### Prediction

### Hindcast



# 850hPa wind

### Prediction



Anti-cyclone around Phillipines

ACC of V850(DJF) 0.56 60N 0.44 0.38 30N -0.38 -0.44 -0.56 EQ <del>|-</del> 30E 60F 90E 150E 120F 180 ACC of U850(DJF) 0.56 60N 0.44 0.38 30N -0.38 -0.44 -0.56 EQ +-30E 60E 90E 120E 150E 180 Hindcast skill

## Air temperature and precipitation



-40

Normal

-60

-50

50

60

40



Norma

-60

-50

-40

Precip.







Regression analysis: Strong ENSO ----anti-cyclone over the Philippines, more rainfall over South China weak EAWM----warm over most Asia,

# From BCC\_CSM1.1m

Relative higher skill information: Strong ENSO ----anti-cyclone over the Philippines---- more rainfall over South China

IO indices (IOBW+, IOD+,SIOD-) -----more rainfall over South China

weak EAWM (weak SH, weak EAT) ----warm over most of the Asia

Uncertainties: NAST: low skill AO: near normal

# (III) Prediction by NZC-PCCSM4 Ensemble experiment design

- NZC-PCCSM4 T1 Prediction System (Ma and Wang, 2014) : Tier one prediction system based on Community Climate System Model version 4.0
- Ensemble prediction:
  - 7 members
  - Ensemble method: Lagged average forecast
- Integration time: 2015.10.01-2016.06.01 (2 month leading)

NZC-PCCSM4: Temporal ACC for DJF



Red: positive skill Blue: negative skill Cross line: 95% significance





### Predicted Anomalies of H500 (gpm)



Predicted Anomalies of SLP (Pa)





### Predicted Anomalies of UV200 (m/s)

Predicted Anomalies of UV850 (m/s)







### Anomaly Percentage of Precipitation (%)





-0.5

0

-2

-4

05

2

4



# From NZC-PCCSM4

Relative higher skill information: Strong ENSO ----anti-cyclone over the Philippines---- more rainfall over South China

weak EAWM (weak SH, weak EAT) ----warm over most of the Asia

Precip. ----more rainfall over South China, South Asia, south part of Japan Temp.----warm in most of region except part of northeast China and north part of Japan



# (IV) Statistic Analysis

- Strong signal and higher skill output from model: ENSO, more active moist condition
- Uncertainties: cold wave activity (AO, blocking high, SH)



## **Possible impact of SIC in BK Sea**

#### Corr(SHI-DJF, SIC-Sep)



#### Cor (BK,SHI) = -0.42 (>95%)



Barents-Kara Sea: 67.5-80.5N, 20.5-80.5E

|      | Sea ice anomaly in<br>BK sea in Sept.<br>(detrend linear<br>tendency) | standard SH index<br>in DJF |
|------|-----------------------------------------------------------------------|-----------------------------|
| 1984 | -1.41                                                                 | 0.62                        |
| 1983 | -1.35                                                                 | 1.78                        |
| 1985 | -1.16                                                                 | 1.31                        |
| 1994 | -1.13                                                                 | 0.50                        |
| 1995 | -1.08                                                                 | 1.31                        |
| 1991 | -0.88                                                                 | -1.00                       |
| 2012 | -0.77                                                                 | 0.03                        |
| 2007 | -0.76                                                                 | 1.47                        |
| 2013 | -0.70                                                                 | -0.39                       |
| 1992 | -0.68                                                                 | -0.83                       |
| 2011 | -0.66                                                                 | 2.48                        |
| 2015 | -0.65                                                                 | ?                           |
| 1997 | -0.59                                                                 | -0.82                       |
| 2000 | -0.53                                                                 | -0.95                       |
| 2010 | -0.43                                                                 | 0.80                        |



### **Statistic model: AO outlook**



predictors: sea ice in Aug. and snow cover over Eurasian in Oct.

AO outlook: near normal (weak positive phase, even weak than that in 2014)

# India-Burma Trough (H700-Diff)



IBT index is defined as the H700 differences between RI and RII Negative index: strong IBT Positive index: weak IBT

| Corr                  | IBT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IBT-      | IBT-     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
|                       | Nino3.4(DJF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IOBW(DJF) | IOD(SON) |
| 1980-                 | -0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.35     | -0.54    |
| 2013                  | (>90%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (>95%)    | (>99.9%) |
| and the second second | AND ADDRESS AND ADDRESS AND ADDRESS ADDRES |           |          |

**Positive IOD** 

#### **Corr. between IBT in DJF and SSTA in previous SON**





**Strong IBT in DJF** 



**Corr. (IBT, MoistFlux)** 







 $-0.5 - 0.45 - 0.4 - 0.35 - 0.3 - 0.25 - 0.2 \quad 0.2 \quad 0.25 \quad 0.3 \quad 0.35 \quad 0.4 \quad 0.45 \quad 0.5$ 

#### Composite CMAP in DJF during strong IBT years



# Outlook for Winter Circulation in DJF 2015/2016

- AO: near normal
- EAWM: weak
- Siberian High: weak
- East Asian Trough: weak
- India-Burma Trough: strong
- Low level: anomalous anticyclone around the Philippines, anomalous southerly winds over East Asia



## **Outlook for Temp. in DJF 2015/2016**



![](_page_39_Picture_0.jpeg)

### **Outlook for Precip. in DJF 2015/2016**

![](_page_39_Picture_2.jpeg)

![](_page_40_Picture_0.jpeg)

# Thanks for

# your attention

### **ENSO review and outlook**

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_41_Figure_3.jpeg)

#### **NAST skill and outlook**

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

NAST Index (North Atlantic SST Triple Index): BCC\_CSM1.1m Forecast Monitor (OISST): 201410-201509; Forecast: 201510-201610

![](_page_42_Figure_4.jpeg)

The skill of NAST is not very high

![](_page_43_Picture_0.jpeg)

### NAST index and Temp./Precip.

![](_page_43_Figure_2.jpeg)

High NAST in winter----warm in Northeast China, Less rainfall in most of China

![](_page_44_Picture_0.jpeg)

### **BCC\_AGCM** versions

| Version                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                    |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BCC_AGCM2.0<br>(T42L26)                                                               | Originated from CAM3<br>Model Dynamics: Wu et al.(2008, <i>J.Atmos.Sci.</i> )<br>Model Physics: Wu et al. (2010, <i>Climate Dynamics</i> )<br>> Deep convection: modified Zhang and Mu (2005) scheme .<br>> Dry Adiabatic<br>> Snow cover fraction parameterization (Wu T. and Wu G., 2004)<br>> Sensible and latent flux parameterization on the ocean-<br>Atmosphere interface are modified. |  |
| BCC_AGCM2.1<br>(T42L26)<br>BCC_AGCM2.2<br>(T106L26)                                   | A new cumulus convective parameterization scheme suggested by Wu (2012: Climate Dynamics)                                                                                                                                                                                                                                                                                                      |  |
| BCC_AGCM3.0 (T266)<br>Developing                                                      | <ul> <li>Model Dynamics (Divergence Damping; FFSL;)</li> <li>Moisture process, Cloud parameterizations, Land surface process</li> </ul>                                                                                                                                                                                                                                                        |  |
| BCC_AGCM_Chem0<br>BCC_AGCM_Chem1<br>(T42L26, T106L26)<br>BCC_AGCM_CUACE<br>Developing | <ul> <li>To couple with the atmospheric chemistry model (MOZART2)</li> <li>To couple with MOZART2, and to include 17 prognostic aerosol tracers</li> </ul>                                                                                                                                                                                                                                     |  |