Climate Outlook for Winter 2016/2017

LEE Hyunsoo, PARK Jeongwon, LEE Seongeun, KIM Hyun-Kyung, SUNG Kumran (Korea Meteorological Administration)

Fourth EASCOF, 8~9 November 2016

Consideration elements for winter prediction

o ENSO

- o Dynamical model (GloSea5, WMO Lead Center for MME)
- o Arctic Sea Ice
- o Snow cover for Eurasian Continent
- o AO (Arctic Oscillation)
- o Blocking Activity

ENSO condition and prediction

SST weekly anomaly /23 Oct 2016 - 29 Oct 2016

MA Korea Meteorologica Currently, the Niño3.4 region of the tropical Pacific Ocean is likely to be in La Niña thresholds. The majority of international climate outlook models and expert opinion suggest that La Niña is approximately 50-60% likely during the remaining period of 2016, lasting into early 2017. The most likely strength of La Niña, if it prevails, is weak.

Mid-Oct 2016 Plume of Model ENSO Predictions

500hPa GPH and SST (GloSea5)

Fourth EASCOF, 8~9 November 2016

Ensemble prediction (GloSea5)

Probability of 1.5m temperature (DJF)

Valid Date : 20161201 - 20170228 (+2 +3 +4 mon)

Initial Date : 20161011 - 20161031 (42mem) HCST : 1991 - 2010 (360mem; 1001 1009 1017 1025 1101 1109)

Probability of precipitation (DJF)

MME Prediction (WMO LC)

Secul/Melbourne/ECMWF/EXETER/Montreal/Cptec/Beijing/Washington Probability of 1.5m temperature (DJF)

Ensemble mean for 1.5m temperature

Probability of precipitation (DJF)

MA Korea Meteorological Administration

Ensemble mean for precipitation

MME Prediction (ECMWF)

Ensemble mean for 1.5m temperature

Probability of precipitation (DJF)

Ensemble mean for precipitation

Impact of ENSO – La Nina years composite

(•): statistically significant level with 95(90)%
La Nina years: 1973/74, 1975/76, 1984/85, 1988/89, 1995/1996, 1998/99, 1999/2000, 2005/06, 2007/08, 2008/09, 2010/11, 2011/12

Impact of Arctic Oscillation : -AO composite

(•): statistically significant level with 95(90)%

Impact of ENSO and AO

Impact of Barents / Kara sea ice

• (•) : statistically significant level with 95(90)%

Severe winters across East Asia are associated with anomalous warmth in the Barents-Kara Sea region.

Impact of Laptev sea ice

• (•) : statistically significant level with 95(90)%

Impact of Arctic Sea Ice

o Analysis data are 1973~2014, and the * means statistically significant value

✓ Sea Ice Concentration over Kara-Barents(65-80N, 60~100E)

Korea	Dec	Jan	Feb		
SAT	0.43*	0.04	0.47*		
PRCP	-0.15	0.11	0.15		

✓ October Sea Ice Concentration over Laptev(65-80N, 105~150E)

Impact of Snowcover

More snowcover over the Eurasian continent and its fast progress for the previous October are significantly related to below-normal temperature for early winter

Impact of Snowcover

Fourth EASCOF, 8~9 November 2016

Summary

- Consideration for prediction
 - Weak La Niña is expected
 - Most dynamic model results show slightly above-normal temperature and below-normal precipitation for the following winter
 - Most statistical analyses(La Nina, arctic sea ice, and Eurasian snowcover) give us below-normal temperature for early winter, nearor above-normal temperature after mid winter, and below-normal precipitation
- 2016/17 winter outlook
 - Near normal winter monsoon is expected
 - Strong intra-seasonal variation

	Т	emperatur	е	Precipitation			
	Below Normal	Near normal Above norm		Below Normal	Near normal	Above normal	
Winter	30	50	20	50	30	20	

Comparison with La Nina years after strong El Nino years

Fourth EASCOF, 8~9 November 2016

Impact of Arctic Sea Ice

Two distinct influences of Arctic warming on cold winters over North America and East Asia

Jong-Seong Kug¹, Jee-Hoon Jeong^{2*}, Yeon-Soo Jang¹, Baek-Min Kim³, Chris K. Folland^{4,5}, Seung-Ki Min¹ and Seok-Woo Son⁶

- **ART(ARctic Temperature Indices) :** Index for Arctic regional Warming/Cooling
 - ART1 : SAT averaging over Barents-Kara Seas(30-70E, 65-85N)
 - ART2 : SAT averaging over East Siberia-Chukchi Seas(160E-160W, 65-80N)

✓ Warming in Barents-Kara Seas
✓ Warming in East Siberia-Chukchi Seas
✓ East Asia Cooling
✓ North America Cooling

Similar cases for La-Niña developing years

															-
		Year	DJF	JFM	FMA	MAM		MJJ	JJA	JAS	ASO	SON	OND	NDJ	
		1981	-0.2	-0.4	-0.4	-0.3	-0.2	-0.3	-0.3	-0.3	-0.2	-0.1	-0.1	0	
		1982	0	0.1	0.2	0.5	0.6	0.7	0.8	1.0	1.5	1.9	2.1	2.1	
		1983	2.1	1.8	1.5	1.2	1.0	0.7	0.3	0	-0.3	-0.6	-0.8	-0.8	
		1984	-0.5	-0.3	-0.3	-0.4	-0.4	-0.4	-0.3	-0.2	-0.3	- 0.6	- 0.9	-1.1	
		1985	-0.9	-0.7	-0.7	-0.7	-0.7	-0.6	-0.4	-0.4	-0.4	-0.3	-0.2	-0.3	
		1986	-0.4	-0.4	-0.3	-0.2	-0.1	0	0.2	0.4	0.7	0.9	1.0	1.1	
		1987	1.1	1.2	1.1	1.0	0.9	1.1	1.4	1.6	1.6	1.4	1.2	1.1	
	➡	1988	0.8	0.5	0.1	-0.3	- 0.8	-1.2	-1.2	-1.1	-1.2	-1.4	-1.7	- 1.8	
		1989	- 1.6	-1.4	-1.1	-0.9	- 0.6	-0.4	-0.3	-0.3	-0.3	-0.3	-0.2	-0.1	
		1990	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.3	0.4	0.4	
		1991	0.4	0.3	0.2	0.2	0.4	0.6	0.7	0.7	0.7	0.8	1.2	1.4	
		1992	1.6	1.5	1.4	1.2	1.0	0.8	0.5	0.2	0	-0.1	-0.1	0	
		1993	0.2	0.3	0.5	0.7	0.8	0.6	0.3	0.2	0.2	0.2	0.1	0.1	
	➡	1994	0.1	0.1	0.2	0.3	0.4	0.4	0.4	0.4	0.4	0.6	0.9	1.0	
		1995	0.9	0.7	0.5	0.3	0.2	0	-0.2	- 0.5	-0.7	- 0.9	- 1.0	- 0.9	
		1996	- 0.9	-0.7	- 0.6	-0.4	-0.2	-0.2	-0.2	-0.3	-0.3	-0.4	-0.4	-0.5	
		1997	-0.5	-0.4	-0.2	0.1	0.6	1.0	1.4	1.7	2.0	2.2	2.3	2.3	
		1998	2.1	1.8	1.4	1.0	0.5	-0.1	-0.7	- 1.0	-1.2	-1.2	-1.3	-1.4	
		1999	-1.4	-1.2	-1.0	-0.9	-0.9	- 1.0	- 1.0	- 1.0	-1.1	-1.2	-1.4	- 1.6	
		2000	- 1.6	-1.4	-1.1	-0.9	-0.7	-0.7	-0.6	-0.5	- 0.6	-0.7	- 0.8	- 0.8	
		2001	- 0.7	-0.6	-0.5	-0.3	-0.2	-0.1	0	-0.1	-0.1	-0.2	-0.3	-0.3	
		2002	-0.2	-0.1	0.1	0.2	0.4	0.7	0.8	0.9	1.0	1.2	1.3	1.1	
		2003	0.9	0.6	0.4	0	-0.2	-0.1	0.1	0.2	0.3	0.4	0.4	0.4	
		2004	0.3	0.2	0.1	0.1	0.2	0.3	0.5	0.7	0.7	0.7	0.7	0.7	
	➡	2005	0.6	0.6	0.5	0.5	0.4	0.2	0.1	0	0	-0.1	-0.4	-0.7	
		2006	-0.7	-0.6	-0.4	-0.2	0.0	0.1	0.2	0.3	0.5	0.8	0.9	1.0	
	➡	2007	0.7	0.3	0	-0.1	-0.2	-0.2	-0.3	- 0.6	-0.8	-1.1	-1.2	-1.3	
		2008	-1.4	-1.3	-1.1	-0.9	-0.7	- 0.5	-0.3	-0.2	-0.2	-0.3	-0.5	-0.7	
		2009	-0.8	-0.7	-0.4	-0.1	0.2	0.4	0.5	0.6	0.7	1.0	1.2	1.3	_
		2010	1.3	1.1	0.8	0.5	0	-0.4	- 0.8	-1.1	-1.3	-1.4	-1.3	-1.4	
		2011	-1.3	-1.1	-0.8	-0.6	-0.3	-0.2	-0.3	-0.5	-0.7	-0.9	-0.9	-0.8	
]	2012	- 0.7	- 0.6	- 0.5	-0.4	-0.3	-0.1	0.1	0.3	0.4	0.4	0.2	-0.2	
		2013	-0.4	-0.5	-0.3	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.3	
		2014	-0.5	-0.6	-0.4	-0.2	0	0	0	0	0.2	0.4	0.6	0.6	
A Kore	88	2015	0.5	0.4	0.5	0.7	0.9	1.0	1.2	1.5	1.8	2.1	2.2	2.3	
A Met Adm	eerologica ninistratio	2016	2.2	1.9	1.5	1.1	0.6	0.1	-0.3	-0.5					

KM

예측인자	북극진동	엘니뇨 /라니냐	10월 눈덮임속도	바렌츠/카라 해빙	10월 랍테프 해빙	기몬 평년편차 (°C)	강수량 평년비 (%)
1983	•	•	—	•	+	-1.5	38
1998	+	—	•	•	+	1.4	24
2010		—	•	•		-0.6	124
1988	+		_	•	-	-0.4	57
1995	_	•	•	•		-1.6	18
2005	_	•	•	_	_	-3.7	62
2007	•	—	•	_		1.2	126

※ + (++): 각 기후인자 지수가 +0.75(+1.5) 표준편자 이상 - (--): 각 기후인자 지수가 -0.75(-1.5) 표준편자 이하

