

Status and Plan of Seasonal Forecasting Services in KMA

Dong-Joon Kim, Jiseon Bak

and all other CPD/KMA staffs

Climate Prediction Division/KMA

2017 EASCOF

The Fifth Session of East Asian winter Climate Outlook Forum 8 – 10 November 2017, Tokyo, Japan

Operational Long-range Forecast in KMA

Assessment of KMA-UKMO Merged Ensemble

Quantile-based Method for Tercile Categorization

Vext-generation Global Model Development

V WMO LC-LRFMME

Operational Long-range Forecast - and Modeling System - in KMA

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum Climate Prediction Division/KMA

Long-range Forecast products

Forecast Type: Tercile Probability Forecast

Products	Date of issue / interval	Contents
1-month Outlook	 Every Thursday Outlook for the 1-month after the next 2-week 	• Weekly mean temperature and precipitation
3-month Outlook	 Every 23rd Outlook for the next three months Special : Feb., May., Aug., Nov. 	 Monthly mean temperature and precipitation El Niño/La Niña update Asian dust : February Typhoon : May / August
6-month Outlook	 23rd in Feb., May., Aug., Nov. Outlook for the season after next season 	 Seasonal mean temperature and precipitation El Niño/La Niña update
1-year forecast	 23rd December Outlook for the next year 	 Annual mean temperature and precipitation

Asian dust outlook : Frequency and density of Asian dust expected to affect Korea during upcoming Spring.
 Typhoon outlook : Number of Typhoon expected to affect Korea during upcoming Summer and Fall.

GloSea5: Global Seasonal forecasting system

Configuration Package / current version : GC2.0

•	UM (Met Office Unified Model) for Atmosphere	: GA6.0
•	JULES (Joint UK Land Environment Simulator) for Land Surface	: GL6.0
•	NEMO (Nucleus for European Modeling of the Ocean) for Ocean	: GO5.0
•	CICE (Los Alamos National Laboratory) for Sea-ice	: GSI6.0
•	OASIS (CERFACS) for coupling between component models	

GloSea5: Joint Seasonal Forecasting System

Recent Progress (1)

: Assessment of KMA-UKMO Ensemble (Merged Ensemble)

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum Climate Prediction Division/KMA

GloSea5: Hindcast Ensemble Size

※ 2017.03~

HCST year	КМА	UKMO	Merged Ensemble
1991	•••		
1992	•••		
1993	•••	•••••	•••••
2010	•••		
2011		•••••	
2012		•••••	
2013		•••••	
2014		•••••	
2015			
Total	20years	23 years	18 years

Assessment Design

- Common Hindcast Period : 18 years (1993-2010)
- Experiments 1 : 6 member ensemble (3 KMA members + 3 UKMO members)
 Period : May 2016 ~ Feb 2017 (40 cases)
- Experiments 2 : 10 member ensemble (3 KMA members + 7 UKMO members)
 Period : Mar 2017 ~ Aug. 2017 (17 cases)

Verification : 1.5m Temperature and Precipitation

Correlation coeff. between each ensemble mean and reanalysis data

- Reanalysis data : ERA-interim (1.5m T) and JRA55 (precip.) reanalysis
- HCST: temporal corr. coeff. / FCST: spatial corr. coeff.

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum, 8 – 10 November 2017, Tokyo, Japan,

'16

Verification : Sensitivity to the Ensemble Size

6 member ensemble (3 KMA + 3 UKMO) vs. 10 member ensemble (3 KMA + 7 UKMO)
 - Correlation coefficient between merged ensemble hindcast and reanalysis data

Temperature bias from reanalysis / June (1-month run)

KMA

UKMO

MERG-KMA

UKMO-KMA

Solution Note : UK Met Office uses climatological mean value of soil moisture variables for hindcast.

Recent Progress (2)

: Quantile-based method for

tercile categorization of precipitation

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum Climate Prediction Division/KMA

KMA's Current Tercile Categorization (As-Is)

Characteristics of Precipitation Data

Quantile-based method (for precip.)

^{*} Sensitivity test / Use of CDF (Cumulative Dist. Func.)

Initial date: **2017. 6. 26.** Target date: **2017. 7. 17~7. 23. (+4weeks)**

Observation

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum, 8 – 10 November 2017, Tokyo, Japan

Next-generation Global Model Development Project :

Korea Institute of Atmospheric Prediction Systems (KIAPS) / 2011~2019

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum Climate Prediction Division/KMA

Project Overview

- Purpose : Development of a next-generation operational global model for KMA
 - Global model (KIAPS Integrated Model, KIM) as well as its observation preprocessing and D.A. system
- Development period : 2011 ~ 2019

- number of staffs : 58

- Sudget : ~ 85 million USD (~ 10 million USD / year)
- Development Group : Korea Institute of Atmospheric Prediction Systems (KIAPS)

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum, 8 – 10 November 2017, Tokyo, Japan

KIM development : Dynamical Core

	 "The first fully functional non-hydrostatic spectral element global dynamic core over cubed sphere grid" Joseph Klemp (NCAR) KIM(KIAPS Integrated Model) : Hydrostatic/Non-hydrostatic system with spectral element method over cubed sphere grid 						
	KIM-SH (High Order Method Modeling Environment model; NCAR's CAM-SE)	KIM-SW (KIAPS Integrated Model – Spectral element method, WRF-Type)					
Spherical grid	Cubed-sphere (Equiangular gnomonic projection)						
Horizontal approximation	Spectral Element						
Vertical approximation	Finite Element	Finite Difference					
Temporal approximation	Fully Explicit Leapfrog, first-order due to Robert-Asselin filter	Split-explicit RK3, second-order for nonlinear equation					
Equation	Hydrostatic (Full variables)	Non-hydrostatic (Perturbation variables)					
Explicit spatial diffusion	4 th order linear horizontal diffusion	6 th order time-split explicit diffusion					

KIM development : Dynamical Core

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum, 8 – 10 November 2017, Tokyo, Japan

KIM development : Physics package (KIM3.0 / Apr. 2017)

2	Scheme	Updated	Reference
Radiation	Revised RAD (RRTMK)	 unified RRTMG reduced MCICA updated ancillaries (aerosol, GMAO ozone, reflectivity, emissivity, snow albedo) Improved two-stream approximation for shortwave radiation Scale-awareness for sub-grid hydrometeors 	lacono et al. 2008 Beak 2017
Land surface	Revised LSM	 3-layer sea-ice model frozen processes (z0, conductivity over snow cover, flux over sea-ice) USGS to IGBP for land data soil moisture initialization consistent diffusivity in LSM and RAD Heterogeneous land-surface parametrization Roughness length considering snow 	Ek et al. 2003 Koo et al. 2016
Ocean surface layer	Diurnal SST OSH	SST warming effectConsidering salinity effect	Kim and Hong 2010 Lee and Hong 2017
Boundary layer	Scale-aware non-local PBL	 top-down mixing updated background diffusion & heating rate minimum Richardson number changed scale-aware (ShingHong PBL) Considering dissipative heating 	Hong et al. 2006 Shin and Hong 2015 Lee et al. 2016
Gravity wave drag	Sub-grid orographic GWD	 flow blocking drag orographic anisotropy updated efficiency/intermittency factor 	Hong et al., 2008 Choi and Hong 2015
Gravity wave drag	Non-orographic GWD	Source-based spectral nonorographic GWD	Choi et al. 2017
Deep convection	Scale-aware mass-flux CPS	 revised autoconversion & entrainment rate moisture-based trigger threshold scale-aware / aerosol-aware 	Han and Pan 2011 Lim et al. 2014 Han et al. 2016 Kwon and Hong 2016
Shallow convection	Adjustment SCV	 improved eddy diffusivity profile (2.5) Considering diffusion of cloud water contents 	Hong et al. 2013
Microphysics	WSM5 MPS	effective radius	Hong et al. 2004 Bae et al. 2016
Cloudiness	Prognostic CLD	 revised CPS condensate consistency (cloud-MPS-CPS-RAD) reduced high cloud fraction at high latitude 	Park et al. 2016

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum, 8 – 10 November 2017, Tokyo, Japan

KIM development : Major Progresses so far

- Major components of KIM are mostly developed by KIAPS scientists
 dynamical core, physics, data assimilation and model framework
- Non-hydrostatic dynamic core and data assimilation system over cubed sphere system are implemented at KIAPS, will be adopted to US/NWS and UK Met Office
- Physics suite of KIM has many updates with special emphasis on scaleaware and inter-scheme consistency
- Flexible model framework operable on both CPU & GPU platform, KIM-IO, coupler capability are also developed in KIAPS

WMO LC-LRFMME

WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum Climate Prediction Division/KMA

13 WMO GPCs for LRF

- Beijing: China Meteorological Administration (CMA) / Bejing Climate Center (BCC)
- CPTEC: Center for Weather Forecasting and Climate Research / National Institute for Space Research (INPE), Brazil
- ECMWF: European Centre for Medium-Range Weather Forecasts
- Exeter: Met Office, United Kingdom
- Melbourne: Bureau of Meteorology (BOM), Australia
- Montreal: Meteorological Service of Canada (MSC)
- Moscow: Hydrometeorological Centre of Russia

- Offenbach: Deutscher Wetterdienst
 - Wetter und Klima aus einer Hand (Aug. 2017 ~)
- Pretoria: South African Weather Services (SAWS)
- Seoul: Korea Meteorological Administration (KMA)
- Tokyo: Japan Meteorological Agency (JMA) / Tokyo Climate Center (TCC)
- Toulouse: Météo-France
- Washington: Climate Prediction Center (CPC) / National Oceanic and Atmospheric Administration (NOAA), United States of America

Summary of data provided by the GPCs

Information on the data configuration supplied by the 13GPCs

GPC ····	Beijing	CPTEC	ECMWF	Exeter	Melbourne	Montreal	Moscow	Offenbach	Pretoria	Seoul	Tokyo	Toulouse	Washington
Forecast system	1-tier	2-tier	1-tier	1-tier	1-tier	1-tier	2-tier	1-tier	1-tier	1-tier	1-tier	1-tier	1-tier
	Fo	recast											
Ensemble size	24	15	41	42	33	20	10	30	40	42	51	41	40
	Hi	ndcast											
Period	1991- 2010	1979- 2001	1981- 2010	1993- 2015	1981- 2011	1981- 2010	1986- 2010	1981- 2010	1981- 2001	1991- 2010	1981- 2010	1979- 2007	1982- 2010
Ensemble size	24	10	15	28	99	20	10	15	10	12	10	11	20
Digital data	Ø	Ø	×	×	Ø	Ø	Ø	Ø	Ø	Ø	×	×	Ø

An "X" indicates that data is not currently available in LC-LRFMME, because of GPC's data Policy

LC-LRFMME Plan : contribution to S2S project

Pilot real-time MME service for sub-seasonal forecasts

- WMO Cg-XVI(2011) requested LC-LRFMME to expand its role to include exchange of extended-range predictions.
- In the meeting of the S2S steering group (2014), it was agreed to make use of the S2S research archive of sub-seasonal forecasts to develop a real-time multi-model display at the LC-LRFMME.

* S2S : Sub-seasonal to Seasonal Prediction Project

2017 EASCOF The Fifth Session of East Asian winter Climate Outlook Forum, 8 – 10 November 2017, Tokyo, Japan

LC-LRFMME Plan : contribution to S2S project

Pilot real-time MME service for sub-seasonal forecasts

The LC-LRFMME is planning to provide MME forecasts and its verification results through website after IPET-OPSLS and GPCs agree (2018~)

IPET-OPSLS: Inter-Programme Expert Team on Operational Predictions from Sub-seasonal to Longer-time Scales

Products/variables	Covering periods	Charts	Verification scores
 Accumulated prec Average 2m temp 	Weeks 1,2,3,4, 3-4,1-4	Probabilistic maps · terciles	Reliability diagrams / ROC
MJO Need: · OLR · U850 · U200	32 days	 Hendon and Wheeler Diagram Hovmoller 	Temporal correlation and RMSE
Velocity Potential	Weeks 1,2,3,4, 3-4,1-4	Velocity potential anom aly (Ensemble mean for each period)	correlation

Thank you

2017 EASCOF

The Fifth Session of East Asian winter Climate Outlook Forum 8 – 10 November 2017, Tokyo, Japan