KMA Extreme Climate Services and User-specific Applications on Energy Sector

Sunhee BAE, Bo Young YIM, Jong Seo PARK

Climate Extremes Analysis and Assessment Team, KMA

Contents

01 Introduction of Extreme Climate Service

O2 / Current status and Plan

O3 Extreme Climate Service : User-Specific Applications on Energy

Introduction of Extreme Climate Service

Early Detection(monitoring) and Warning(prediction)

Services for Extreme Climate

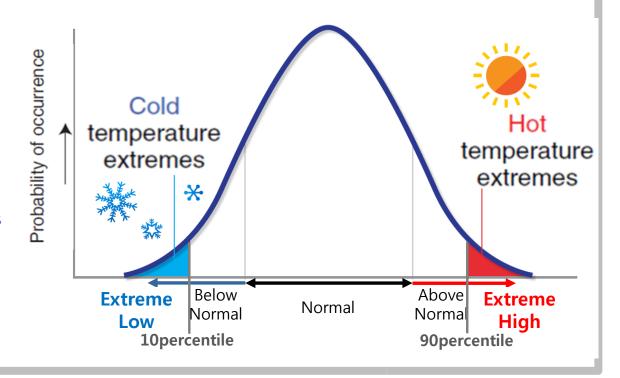
based on Probabilistic Long-Range Forecast

- ✓ Scientific Understanding of Extreme Climate
- ✓ Detection and Prediction Technology of Extreme Climate

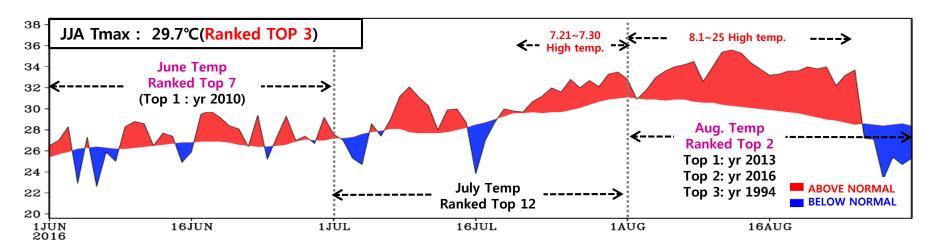
More frequent and severe extreme climate/weather in recent decades

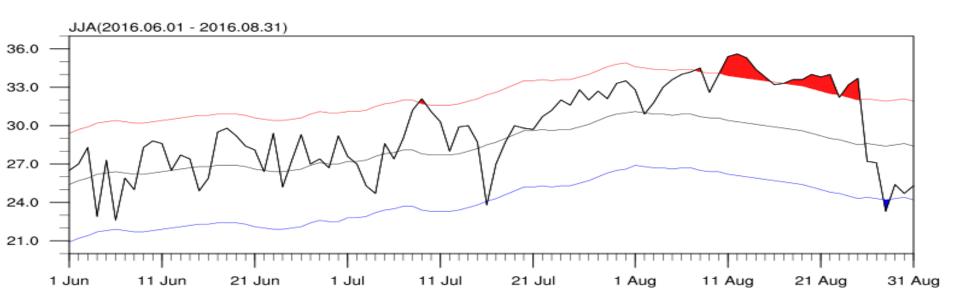
Large-scale impact and damage

2


Increasing demand for extreme climate/weather service

Definition of Extreme Climate


○ Climate elements, such as temperature and rainfall are unusually (abnormally) higher or lower than climatology (yr 1981~2010)


Over 90 percentiles
or
Below 10 percentiles

For Example: 2016 Summer Extreme High Temp.

Created on 2017-10-17

Current status and Plan

: Progress for Extreme Climate Service (since 2014)

Early Detection and Warning Technology for Extreme Climate

- development of characteristics analysis and application technology for extreme climate early detection using observational data
 - → cases study for extremes & understanding of mechanisms
- development of technology evaluating a predictability of operational model (GloSea5) for extreme climate early warning
 - → Improvement of predictability of extreme climate in GloSea5

Operational System Development

- development & improvement of operation system to support extreme climate services and provide early detection & warning information on extreme climate

Services & Application

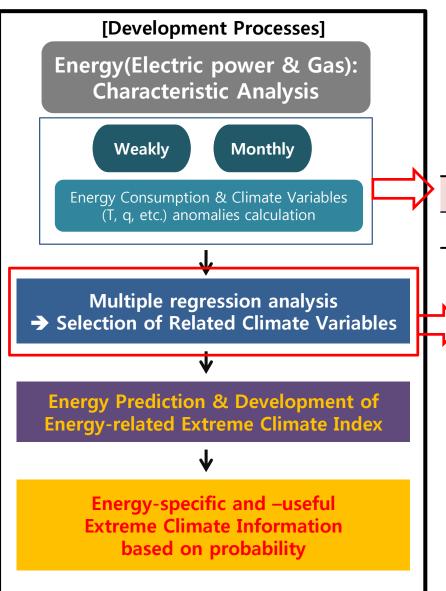
- design & development of service and verification system of extreme climate early warning

Current status and Plan

Summery of the Extreme Climate Services

- Trial Operation Date: '17.11.23~
- **○** Service Target : the Public
 - and Energy-related (electricity, gas) Government
- Way to Serve
 - public : KMA Homepage(www.kma.go.kr)
 - Energy Sector: another on-line system
 - **X User-specific application:**

Energy('17) \rightarrow Agriculture('18) \rightarrow Health('19) \rightarrow Water Resources('20)


○ Issue Cycle & Period

Kinds	Issue date	Period		
Kinas		Unit	Prediction Period (later)	
Weekly Info.	Every Thu.	A Week(Mon~Sun)	The week after next week (4 weeks)	
Monthly Info.	Every 23rd	A month	Next month (3 months)	

User-specific Application: Ex. Energy

* To investigate features of extreme climate that affect energy consumption..

- .. The 90/95 percentiles may be reasonable criteria in climate system. But, How about user-specific application?
- → Have to use different criteria of extreme climate reflecting the features of a target.

Ex. Weekly Electric Power consumption prediction (Seoul)

[Relationship between climate elements and power]

	Tmean	Tmax	Tmin	RH	Cloud	radiation	Wind
					Amount		Speed
Yr 2006	0.801**	0.675**	0.795**	-0.257**	-0.205*	0.213*	0.207**
~ 2015	0.601	0.675	0.795	-0.237	-0.205	0.213	0.207

- * Electric Power consumption : Summer (JJA)
 - → climate variables: mean T, min T, relative humidity
- * Gas consumption : Winter (DJF)
 - → climate variables: min T

Occurrence day

Occurrence day

* Forecasting information including both <u>intensity and occurrence day</u> of extremely hot or cold temperatures that cause maximum of electric power or gas consumption

Intensity

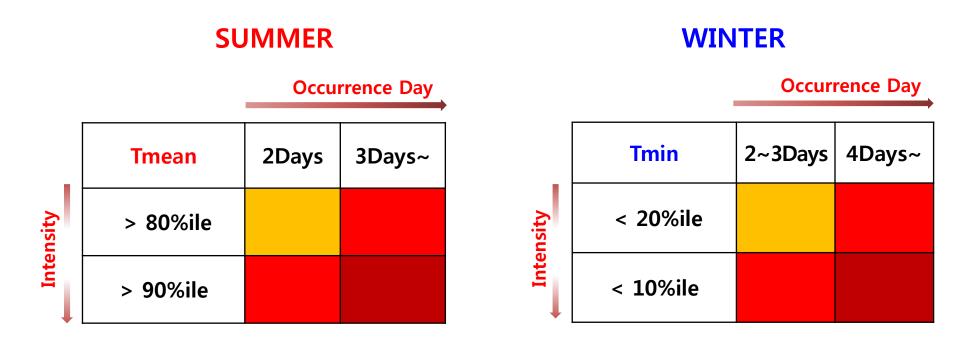
Category	Weekly mean Energy(Electric Power) consumption (GW/day)	Remarks
Level 1	165~	TOP 5%
Level 2	160~170	TOP 10%
Level 3	155~165	TOP 18%
Level 4	150~160	TOP 30%

	Summer	2Days	3Days	4~5Days	6Days~
	T _{mean} >= 27.0 (20%ile)	4	3	3	2
	T _{mean} >= 27.5 (15%ile)	3	3	2	2
ב ב	T _{mean} >= 28.5 (7%ile)	3	2	2	1
`\ \	T _{mean} >= 29.0 (3%ile)	2	2	1	1

Category	Weekly mean Energy(GAS) consumption (1000m³/day)	Remarks
Level 1	2300~	TOP 2.5%
Level 2	2100~2300	TOP 9%
Level 3	2000~2100	TOP 13%
Level 4	1900~2000	TOP 20%

	Winter	2Days	3Days	4Days	5Days~
	T _{min} <= -8.0 (30%ile)	4	3	3	2
	T _{min} <= -10.5 (16%ile)	3	3	2	2
	T _{min} <= -11.5 (12%ile)	3	2	2	1
ļ	T _{min} <= -12.0 (8%ile)	2	2	1	1

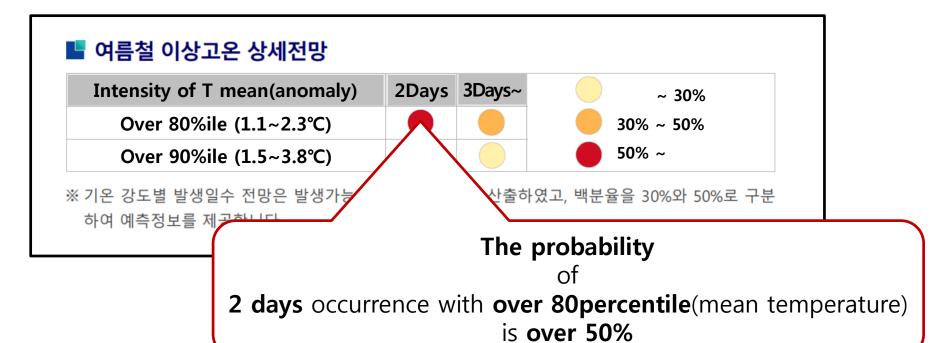
1등급


3등급

2등급

User-specific Application : Ex. Energy

- Extreme climate forecast information
 to predict summer electric power and winter gas consumption
- Modify based on climate prediction model



Weekly specific information on energy sector,

- → In summer and winter season,
 more specific information (strength, duration of Ext. high or low temp.)
 will be added (20/80 percentile, Not only 10/90 percentile~)
- → To expect Maximum power!!

Weekly detailed forecast (ex. Summer)

Weekly Service on Energy Sector

이상기후 감시·예측정보

주간정보

2017년 8월 10일 발표

이상기후 전망

북태평양고기압의 영향을 주로 받겠음

(주 최저기온) 평년과 비슷하겠으며, 이상저온 고온 모두 발생가능성이 낮겠음 (주 최고기온) 평년보다 높은 경향을 보이겠으며, 이상고온 발생가능성이 높겠음

전망기간 : 2017년 8월 21일 ~ 8월 27일

[Minimum Temp.] 10Hder (Meximum Temp.]

Probability of Extreme see an Probability of Extreme high or low temp.

occurrence is

high temp. occurrence

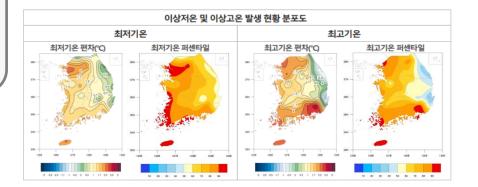
이상고온 (최저·최고기온 90퍼센티 목초과

** 이상기격**under**이**30%**이상고온에 대한 발생기 능성(확률) 전망을 **over**발**30%** 백분율이 30% 이상과 미만일 경우 각각 발생가능성 높세음과 첫겠음으로 제공합니다.

여름철 이상고온 상세전망

평균기온 강도 (기온편차 기준)	2일	3일 이상	30% 미만
90퍼센타일 초과 (1.5 ~ 3.8℃)			30% 이상 50% 미만
80퍼센타일 초과 (1.1 ~ 2.3℃)			50% 이상

※ 기온 강도별 발생일수 전망은 발생가능성(확률) 백분율로 산출하였고, 백분율을 30%와 50%로 구분 하여 예측정보를 제공합니다


참고자료

🛂 전망기간(2017. 8. 21 ~ 8. 27) 이상저온 및 이상고온 기준 분포도

지난주(2017년 7월 31일 ~ 8월 6일) 이상기후 발생 현황

- 최저기온과 최고기온 모두 경기도, 전남해안, 제주도를 중심으로 일부 지역에서만 이상고온에 해 당하였음
- 지난주 동안 기온 변화가 크게 나타났음. 전반에는 동풍의 영향으로 동서 지역 간의 기온 차이가 컸고 후반에는 태풍의 영향으로 따뜻한 공기가 유입되어 최저기온과 최고기온이 전국 대부분 지역에서 크게 상승하였음

Monthly Service on Energy Sector

이상기후 감시·예측정보

월간정보

2017년 10월 25일 발표

이상기후 전망

기상청

test(분석) 중국 남부지방의 태풍과 북태평양고기압의 영향으로 많은 수증기를 포함 한 남서풍이 불어오면서 25일까지 전국에 많은 비가 내리고 기온이 높았음 이후에는 고기압의 영향으로 맑고 일교차가 큰 날씨를 보였음

■ 전망기간: 2017년 11월

후는 기온, 강수량 등의 기후요소가 평년(1981~2010년)에 비해 현저히 높거나 낮은 수치 으로 이상저온은 최저·최고기온 10퍼센타일,

temp. occurrence]

than normal (3days)

평년과 비슷 평년과 비슷하거나 적음

평년보다 적음

한 발생가능성(확률) 전망에 나타 다른 발생일수를

(30:40:30) (30:30:40)

화률이 50% 이상

에 각 3일 정도이고, 이 (() () () () () ()

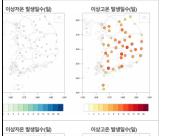
* 퍼센타일은 관년 동일 기간의 기온을 비교하여 낮은 순서대 Days of Extreme high

정의하는데 사용하였습니다.

평년값과 비교하여 3분위(적음, 비슷, 많음)로 구분하여

[Days of Extreme low temp. occurrence]

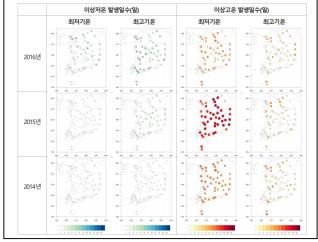
확률(적음:비슷:많을)vill be 해설 많음 확률이 50%이상 vill be


same or less

than normal(3days)

)일) 이상기후 발생 현황

양고기압의 영향으로 많은 수증기를 포함한 남서풍이 · 큰 날씨를 보였음


발생강도 및 발생일수 분포도

참고자료

11월 이상저온 및 이상고온 기준 분포도

최근 3년간(2014 ~ 2016) 11월 이상저온 및 이상고온 발생일수 분포도

