ITACS

Climate Prediction Division, JMA

menu

- What's ITACS
- Data
- Application to use
- Exercise and learning by using ITACS

What's ITACS

ITACS is the Interactive Iool for $\underline{\text { Analysis of } \underline{\text { Climate }} \text { System since } 2007 .}$
Aim:
Analyzing the causes of climate events and monitoring current climate status.

System:

Web interface + programs(Ruby, Gphys...) + GrADS + data files on the web server

data

- CLIMAT
- Monthly world climate data derived from CLIMAT messages via the GTS line from WMO Members around the world.
- INDEX
- El Nino Monitoring Indices consisting of monthly mean Sea Surface Temperature produced by COBE-SST.
- JRA-JCDAS
- Atmospheric circulation data produced by JMA's Climate Data Assimilation System (JCDAS), which is consistent quality with Japanese 25-year reanalysis (JRA-25).
- MOVE-G
- Oceanic assimilation produced by the system operated by JMA.
- SAT
- Outgoing Longwave Radiation (OLR), which is derived from observations by NOAA's polar orbital satellites, and provided by Climate Prediction Center (CPC) in the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA).
- SST
- Sea Surface Temperature produced by the system operated by JMA (COBE-SST).

Application to use

page top

There is banner link about application to use ITACS in the TCC homepage: http://ds.data.jma.go.jp/tcc/tcc/index.html

Exercise

Now, let's access and use ITACS. Using it will help you to understand ITACS.

Sample image Making image like sample image by yourself

$\sqrt{\ell}$ If we have enough time after every exercises...
Let's try to change sample image as you like (self study)

Let's start exercise. Please access to following site: http://extreme.kishou.go.jp/tool/itacs-tcc2011/

Appendix) Self study

Let's try to draw maps as you like if you know basic use of ITACS.
For example, you can make a map around your country...

Index of today's Exercise

- Sea surface temperature(SST)
- Average of SST anomaly
- Time-Iongitude cross section of 200-hPa velocity potential
- Interannual variation of monthly mean 850-hPa air temperature
- Regression Analysis and Correlation Analysis

Sea surface temperature（SST）

	1	1	1	1	1	1	1

Sea Surface Temperature in August 2010

Sea Surface Temperature anomaly in August 2010

This is tutorial for making a map of Sea Surface Temperature（SST）and its anomaly． Let＇s know basic use of ITACS．

ITACSの基本的な使用方法を，SSTの実況値及び平年偏差の描画，カラ一バーの変更方法などを通じて，学びます。

Sea surface temperature(SST)

datal									
dataset	element		$\begin{gathered} \text { data type } \\ \hline \text {-Data_type- } \vee \end{gathered}$	area		level		average period	show period
-Dataset- \checkmark	element			- Area-	\checkmark	$1000 \mathrm{hPa} \vee$	$1000 \mathrm{hPa} \vee$	-Mean Period- \checkmark	RANGE \checkmark
Vector \square SD \square								Ave \square	1900 V
								time filter	1900 マ
analysis method: -Analysis_method- \checkmark									

This is default screen of ITACS. Click "Clear" button if you need default screen. "Help" button gives you help page.

Sea surface temperature(SST)

Graphic Option	Show Contour Labels Show Color Bar Set Contour Parameters for datal	Color Table: Rainbow \checkmark	\square No Scale Labels
Colorizing : COLOR \vee		\square Polar Stereographic: North pole \vee	\square Draw Credit Inside
Drawing : SHADE \vee		\square Logarithmic Coordinates \square Reverse the Axes	\square Apply All Pics
Image Format: png \vee Font : default \vee	\square Set Vector size: \square [inch] value :	Flip the X-axis \square Flip the Y-axis \square No Caption	picture size \square \%

Submit Clear SliceTool Help Logout

First, select "dataset" - "SST" and its "element" - "Temperature".

Sea surface temperature(SST)

Secondly, select "data type" - "HIST"(historical data). Please note there are some data type.

Sea surface temperature(SST)

Next, select "area", "average period" and "show period".

Sea surface temperature(SST)

Graphic Option

Colorizing: COLOR \vee
Drawing: SHADE \checkmark
Image Format : png \vee
mage Format : png $\checkmark \square$ Set Vector size \checkmark Show Color Bar
\square Set Contour Parameters for datal interval: $\square \mathrm{min}$: , \qquad [inch] valu \square
Submit Cear SliceTool Help Logout

Color Table: Rainbow \vee

\square Polar Stereographic: North pole \vee
\square Logarithmic Coordinates
\square Reverse the Axes
\square Flip the X -axis \square Flip the Y -axis
\square No Caption
\square No Scale Labels
\square Draw Credit Inside
\square Apply All Pics
picture size 70

Sea surface temperature(SST) anomaly

Let's change "data type" - "ANOM" to make map of SST anomaly and click "Submit".

Sea surface temperature(SST) anomaly

If you want to change the range of colors in the color bar, please use "Graphic Options". Check "Set Contour Parameters for data1" and input parameters for interval, min and max of values.

Average of SST anomaly

Average of SST anomaly between 6 September and 5 October

Let＇s know how to figure out the average of daily data．

Average of SST anomaly

First, select "dataset" - "SST" and its "element" - "Temperature". And, select "data type" - "ANOM"(anomaly data) and "area" - "ALL".

Average of SST anomaly

"Ave" gives average of data.
Note:
ITACS figures out the monthly data if you select "MONTHLY" in the "average period".

Next, please select "average period" - "DAILY" and check "Ave" - "ON(checked)". And, select "show period"(2011.09.06-2011.10.05).

Average of SST anomaly

Finally, please select "Set Contour Parameters" of Graphic Option. Let’s change "Color Table" if you want to set the color of the plotted contours. And, click "Submit".

Time－longitude cross section of $200-\mathrm{hPa}$ velocity potential

DATA1 JRA－JCDAS chi23 ANOM lot $=-10: 10$ Ion $=0: 360$ leval $=10: 10$

Time－longitude cross section of 200－hPa velocity potential

Let＇s know how to draw time－longitude cross section of data．

```
経度-時間断面図を描画する方法を学びます。
```


Time-longitude cross section of $200-\mathrm{hPa}$ velocity potential

(data1)

Dataset: JRA-JCDAS
Element: X (Velocity Potential)
Data type: ANOM
Area: ALL
Level:
200hPa
200hPa
Average period: DAILY
Show period: 2011.06.01

First, please make a map of 200-hPa velocity potential anomaly on 1st June 2011 as mentioned above.

Time-longitude cross section of $200-\mathrm{hPa}$ velocity potential

Secondly, input latitude and check "Ave" box off. And select "show period". Could you draw a map like sample?

Time-longitude cross section of $200-\mathrm{hPa}$ velocity potential

Submit Clear SliceTool Help Logout

Finally, let's select "Color Table" - "Blue - Red" and click "submit" button.

Interannual variation of monthly mean $850-\mathrm{hPa}$ air temperature

Interannual variation of monthly mean 850－hPa air temperature around Japan

Let＇s try to draw line graph．

Interannual variation of monthly mean 850-hPa air temperature

Dataset: JRA-JCDAS
Element: T(Temperature)
Data type: ANOM(anomaly data)
Area: ALL
Level: 850hPa / 850hPa

First, please set parameters as mentioned above.

Interannual variation of monthly mean $850-\mathrm{hPa}$ air temperature

Secondly, input latitude and longitude. And check both "Ave" box off.

Interannual variation of monthly mean $850-\mathrm{hPa}$ air temperature

Finally, select "average period" - "Year average" and "show period" as mentioned above. And let’s click "Submit" button.

Regression Analysis ：NINO． 3 SST and 850hPa Stream Function

Regression Analysis ：NINO． 3 SST and 850hPa Stream Function

Let＇s know regression analysis．In shaded area of a map，stream function has a close connection with SST of NINO．3．
＊NINO．3：5S－5N，150－90W

NINO．3海域の海面水温と流線関数で回帰分析する方法を学びます。

Regression Analysis : NINO. 3 SST and 850hPa Stream Function

(data1)
Dataset: JRA-JCDAS
Element: Ψ (Stream function)
Data type: ANOM(anomaly data)
Area: ALL
Level: 850hPa / 850hPa
average period: Year average
show period: 1979-2010 / 09-09

```
(analysis method)
    REGRESSION COEFFICIENT
```

(data2)
Dataset: INDEX
Element: NINO. 3
Data type: ANOM(anomaly data)
Significance: 95\%

Let's try to set parameters as mentioned above and click submit button. A map like sample will be made.

Hint: (Graphic option) Drawing: CONTOUR

Correlation Analysis

dataset		element	data type	area			level	average period		show period	
JRA.JCDAS	\checkmark	v (Stream Function) [10 $\left.6 \mathrm{~m}^{\prime} 2 / \mathrm{s}\right]$	ANOM \quad v	ALL			850 hPa V	Year average	\checkmark	RANG	-
				Lat: -90	- 90	Ave \square	$850 \mathrm{hPa} \vee$	Ave \square		$1979 \sim$	2010 マ
		Vector \square SD		Lon: 0	$\text {] } 360$	Ave \square		time filter		$09 \vee$	$09 \times$

Correlation Analysis

Next, let's try correlation analysis.
Please change "analysis method" - "CORRELATION..." and click "submit" button.

Appendix

Correlation and Regression

Correlation

- The strength of the linear relationship between two variables
- Correlation coefficient must be between -1 and 1

Regression

$$
\begin{aligned}
& r<0: \text { Negative correlation } \\
& r=0: \text { No correlation } \\
& r>0: \text { Positive correlation }
\end{aligned}
$$

- The slope of the linear relationship between two variables

Regression Coef.

| $\begin{array}{ll}\text { y: Fields to be regressed } & \text { e.g. Stream function } \\ \text { x: Explanatory variable } & \text { e.g. Nino3-SST }\end{array}$ |
| :--- | :--- |

Relationship between Nino-3 SST and Stream function (850hPa)

